Full Document (Pdf 1065

Total Page:16

File Type:pdf, Size:1020Kb

Full Document (Pdf 1065 Final Research Report Agreement T2695, Task 67 ”Roadside Vegetation” Assessment of Alternatives in Roadside Vegetation Management by Kristina Hill, Ph.D. Richard Horner, Ph.D. Associate Professor Research Associate Professor Department of Landscape Architecture University of Washington, Box 355734 Seattle, Washington 98195 Washington State Transportation Center (TRAC) University of Washington, Box 354802 1107 NE 45th Street, Suite 535 Seattle, Washington 98105-4631 Washington State Department of Transportation Technical Monitor Ray Willard, Roadside Maintenance Program Manager WSDOT Headquarters Maintenance Office Olympia, Washington Prepared for Washington State Transportation Commission Department of Transportation and in cooperation with U.S. Department of Transportation Federal Highway Administration December 2005 TECHNICAL REPORT STANDARD TITLE PAGE 1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. WA-RD 621.1 4. TITLE AND SUBTITLE 5. REPORT DATE ASSESSMENT OF ALTERNATIVES IN ROADSIDE December 2005 VEGETATION MANAGMENT 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO. Kristina Hill and Richard Horner 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Washington State Transportation Center (TRAC) University of Washington, Box 354802 11. CONTRACT OR GRANT NO. University District Building; 1107 NE 45th Street, Suite 535 Agreement T2695, Task 67 Seattle, Washington 98105-4631 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED Research Office Final Research Report Washington State Department of Transportation Transportation Building, MS 47372 Olympia, Washington 98504-7372 14. SPONSORING AGENCY CODE Kim Willoughby, Project Manager, 360-705-7978 15. SUPPLEMENTARY NOTES This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. 16. ABSTRACT This study was conducted for the Washington State Department of Transportation (WSDOT) to explore both the need for and the variety of alternatives to the use of an annual application of herbicides for removing vegetation in the area immediately adjacent to the pavement edge. Our study approached these questions in two different ways, developing both a literature review and a set of interviews with people who have specific knowledge or views of these issues. We conducted interviews with three groups of people to identify issues, maintenance alternatives, and significant literature references: (1) staff at other federal, state, and county transportation agencies, (2) staff and volunteers who work with advocacy groups, and (3) researchers at academic institutions who specialize in related areas. Our literature review contains a set of citations that present related management issues and alternative practices. The abstracts for these references were included when available. To summarize what we learned from the interviews and literature sources, we developed a decision framework that could be used to guide WSDOT district maintenance staff in formulating management plans for vegetation. The decision framework differs from current practice primarily in that it begins with the assumption that maintenance of the area immediately adjacent to the pavement is not necessary unless some particular, observable condition triggers the need for such maintenance. 17. KEY WORDS 18. DISTRIBUTION STATEMENT Vegetation management, herbicides, pavement No restrictions. This document is available to the edge, Zone 1, environmental management, weeds, public through the National Technical Information roadside maintenance, road ecology, best practices, Service, Springfield, VA 22616 integrated vegetation management (IVM) 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE None None DISCLAIMER The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Transportation Commmission, Department of Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. iii iv CONTENTS Section Page Executive Summary................................................................................................. ix Chapter 1. Introduction........................................................................................... 1 Chapter 2. Literature Review ................................................................................. 5 Summary of Literature on Decision Factors.............................................................. 6 Drainage and Roadside Vegetation................................................................ 6 Literature on the Associated Effects of Relatively Low-Risk Herbicides..... 7 Dynamics of Fire-Starts Adjacent to Roadway Paved Areas ........................ 10 Interactions between Roadside Vegetation Patterns and Wildlife Habitat Use 10 Relative Safety of Alternative Practices ........................................................ 11 Summary of Literature on Alternative Practices ....................................................... 12 Chapter 3. Interview Summary ............................................................................. 15 Interviews of Transportation Agency Staff................................................................ 16 Stormwater Ponding....................................................................................... 16 Native Plant Mixes......................................................................................... 18 Best Alternative Practices.............................................................................. 19 Interviews with Other Government Agency Staff ..................................................... 19 Interviews with Consultants....................................................................................... 20 Interviews with University Researchers .................................................................... 21 Chapter 4. Decision Framework ............................................................................ 23 Background and Scope .............................................................................................. 23 Decision Framework Context ........................................................................ 23 Definitions...................................................................................................... 25 Use of the Framework in Integrated Vegetation Management Planning....... 26 Modules...................................................................................................................... 31 Decision Factors Module ............................................................................... 31 General Procedure.............................................................................. 31 Surface Drainage-Related Decision Factor........................................ 31 Subsurface Drainage-Related Decision Factor .................................. 32 Stormwater Management Decision Factor......................................... 32 Pavement Breakup Decision Factor................................................... 33 Visibility for Safety Decision Factor ................................................. 33 Maintenance Worker Safety Decision Factor.................................... 34 Fire Starts Decision Factor................................................................. 34 v Landscape Design Decision Factor.................................................... 35 Wildlife Road Kill Decision Factor ................................................... 36 Structural Deterioration Decision Factor........................................... 36 Noxious Weed Presence ................................................................... 36 Alternatives Assessment Module................................................................... 37 A. Alternatives for Maintenance of Zone 1 ....................................... 37 B. Alternatives for Vegetation Control.............................................. 46 Environmental Sensitivity Analysis Module ................................................. 52 Chapter 5. Further Work ....................................................................................... 54 Vegetation Management Plans .................................................................................. 54 Observing Problem Areas.......................................................................................... 54 Experimental Field Trials .......................................................................................... 55 Next Steps .................................................................................................................. 56 References ................................................................................................. 59 Appendix A – Literature References...................................................................... A-1 I. Articles in Peer-Reviewed Journals, and Peer-Reviewed Books ........................... A-1 II. Government Agency “Toolkit” Resources for Selecting Alternative Practices.... A-12 III. Government Reports ............................................................................................ A-12 IV. Conference Presentations....................................................................................
Recommended publications
  • Assessing Population Sizes, Biological Potential and Mass
    1. ASSESSING POPULATION SIZES, BIOCONTROL POTENTIAL AND MASS PRODUCTION OF THE ROOT BORING MOTH AGAPETA ZOEGANA FOR AREWIDE IMPLEMENTATION AND MONITORING OF SPOTTED KNAPWEED BIOCONTROL 2. PRINCIPAL INVESTIGATORS: Mark Schwarzländer, PSES Department, University of Idaho, 875 Perimeter DR MS 2339, Moscow, ID 83844-2339, (208) 885-9319, FAX (208)885- 7760, [email protected]; Joseph Milan, USDI Bureau of Land Management, 3948 Development Ave., Boise, ID 83705, (208) 384-3487, FAX (208) 384-3326, [email protected]; Paul Brusven, Nez Perce Tribe Bio-Control Center, P.O. Box 365, 22776 Beaver Road, Lapwai, ID 83540, (208) 843-9374, FAX (208) 843-9373, [email protected] 3. COOPERATORS: Dr. Hariet Hinz (CABI Switzerland), Dr. Urs Schaffner (CABI Switzerland, Dr. Sanford Eigenbrode (University of Idaho), Dr. Heinz Müller-Schärer (University of Fribourg, Switzerland), Brian Marschmann (USDA APHIS PPQ State Director, Idaho), Dr. Rich Hansen (USDA APHIS CPHST, Ft. Collins, Colorado), John (Lewis) Cook (USDI BIA Rocky Mountain Region, Billings, Montana), Dr. John Gaskin (USDA ARS NPARL, Sidney, Montana), Idaho County Weed Superintendents and Idaho-based USFS land managers. BCIP CONTACT: Carol Randall, USFS Northern and Intermountain Regions, 2502 E Sherman Ave, Coeur d'Alene, ID 83814, (208) 769-3051, (208) 769-3062, [email protected] 4. REQUESTED FUNDS: USFS $100,000 (Year 1: $34,000; Year 2: $33,000; and Year 3: $33,000), Project Leveraging: University of Idaho $124,329. 5. EXECUTIVE SUMMARY: 1) The current status of ecological research suggests that albeit having some impact on spotted knapweed, both, A. zoegana and C. achates have stronger negative effects on native grasses, thus indirectly benefiting one of most devastating invasive plants in the U.S.
    [Show full text]
  • Cochylini Del 2
    Cochylini del 2 Agapeta, Eupoecilia, Aethes (part.) Agapeta hamana (L.) 4268 15-25 mm. Imago flyver sidst på dagen og kommer fint til lys fra maj til august (september). Ikke alle eksem- plarer er så stærkt tegnet som ovenstående. Agapeta hamana (L.) Larven lever overvintrende i i rødderne af forskellige tidsler (Carduus, Cirsium mv.). Udbredt i Europa op til Mellemsverige og Finland. Almindelig. Agapeta largana (Rebel) 4270 16-23 mm. Imago er på vingerne i solens sidste stråler fra sidst i juni gennem juli. Lokalt ikke sjælden på enge. Præimaginale stadier er ukendte. Kendt fra Grækenland, Rumænien, Ungarn, det vestlige Østrig og jeg har selv fundet den flere steder i det sydøstlige Frankrig. Agapeta zoegana (L.) 4271 15-24 mm. Imago flyver i de sidste lyse timer og kommer fint til lys i juli-august. Agapeta zoegana (L.) Larven lever overvintrende i rødderne af Blåhat (Knautia) og Knopurt (Centaurea). Den forpupper sig i rødderne. Agapeta zoegana (L.) Ind i mellem dukker eksemplarer op som er formørket i den yderste tredjedel. Disse eksemparer er gerne mindre end normalt. Agapeta zoegana (L.) I Danmark er der ikke mange findesteder i Jylland og arten mangler helt vest for israndslinjen. I det øvrige land er den ikke sjælden, men sjældent talrig. Nordgrænsen går gennem det sydligste Norge, mellemste Sverige og sydlige Finland. Arten når til Ural og Lilleasien. Eugnosta lathoniana (Hb.) 4279 21-27 mm. Imago flyver sidst på dagen fra midt i maj til sidst i juni. Præimaginale stadier er ukendte. Udbredt i det meste af Sydeuropa, mod nord til Tyskland, men herfra kendes ingen konkrete fund.
    [Show full text]
  • Evaluation of a Plant-Herbivore System In
    EVALUATION OF A PLANT-HERBIVORE SYSTEM IN DETERMINING POTENTIAL EFFICACY OF A CANDIDATE BIOLOGICAL CONTROL AGENT, CORNOPS AQUATICUM FOR WATER HYACINTH, EICHHORNIA CRASSIPES A thesis submitted in fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY by ANGELA BOWNES December 2008 Abstract Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a free- floating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocontrol agents have been introduced for the control of water hyacinth but their impact has been variable. It is believed that their efficacy is hampered by the presence of highly eutrophic systems in South Africa in which plant growth is prolific and the negative effects of herbivory are therefore mitigated. It is for these reasons that new, potentially more damaging biocontrol agents are being considered for release. The water hyacinth grasshopper, Cornops aquaticum Brüner (Orthoptera: Acrididae), which is native to South America and Mexico, was brought into quarantine in Pretoria, South Africa in 1995. Although the grasshopper was identified as one of the most damaging insects associated with water hyacinth in its native range, it has not been considered as a biocontrol agent for water hyacinth anywhere else in the world.
    [Show full text]
  • Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
    Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns.
    [Show full text]
  • Lepidoptera: Tortricidae)
    1 A molecular phylogeny of Cochylina, with confirmation of its relationship to Euliina 2 (Lepidoptera: Tortricidae) 3 4 John W. Brown*1, Leif Aarvik2, Maria Heikkilä3, Richard Brown4, and Marko Mutanen5 5 6 1 National Museum of Natural History, Smithsonian Institution, Washington, DC, USA, e-mail: 7 [email protected] 8 2 Natural History Museum, University of Oslo, Norway, e-mail: [email protected] 9 3 Finnish Museum of Natural History, LUOMUS, University of Helsinki, Helsinki, 00014, 10 Finland, e-mail: [email protected] 11 4 Mississippi Entomological Museum, Mississippi State, MS 39762, USA, e-mail: 12 [email protected] 13 5 Ecology and Genetics Research Unit, PO Box 3000, 90014, University of Oulu, Finland, e- 14 mail: [email protected] 15 *corresponding author 16 17 This is the peer reviewed version of the following article: Brown, J.W., Aarvik, L., Heikkilä, M., 18 Brown, R. and Mutanen, M. (2020), A molecular phylogeny of Cochylina, with confirmation of its 19 relationship to Euliina (Lepidoptera: Tortricidae). Syst Entomol, 45: 160-174., which has been 20 published in final form at https://doi.org/10.1111/syen.12385. 21 1 22 Abstract. We conducted a multiple-gene phylogenetic analysis of 70 species representing 24 23 genera of Cochylina and eight species representing eight genera of Euliina, and a maximum 24 likelihood analysis based on 293 barcodes representing over 220 species of Cochylina. The 25 results confirm the hypothesis that Cochylina is a monophyletic group embedded within a 26 paraphyletic Euliina. We recognize and define six major monophyletic lineages within 27 Cochylina: a Phtheochroa Group, a Henricus Group, an Aethes Group, a Saphenista Group, a 28 Phalonidia Group, and a Cochylis Group.
    [Show full text]
  • A Potential Collection Method for Agapeta Zoegana (Lepidoptera: Cochylidae), a Knapweed·Root·Feeding Moth Sheila M
    J. ENTOMOL Soc. BRIT. COLUMBIA 86 (1989), SEPT. 3D, 1989 55 A POTENTIAL COLLECTION METHOD FOR AGAPETA ZOEGANA (LEPIDOPTERA: COCHYLIDAE), A KNAPWEED·ROOT·FEEDING MOTH SHEILA M. FITZPATRICK AGRICULWRE CANADA REsEARCH STATION 6660 N.W. MARINE DRIVE VANCOUVER, B.C. V6T lX2 ABSTRACT This paper describes a method for collecting living, undamaged Agapeta zoegana (L.) moths, especially recently mated females. The objective was to gather this potential biological control agent for subsequent distribution to land infested with Icnapweeds (CenJaurea spp.) Sweep-netting and baiting techniques were inappropriate collection methods, because the moths were delicate and did not appear to forage. The moths did not move to the plant tops at particular temperatures or times of day and therefore could not easily be collected by aspiration. However, males and virgin and mated females within large field cages were attracted to UV light and, during their daily period of reproductive activity from dusk to midnight, could be collected in a Heliothis trap (Sentry) illuminated by a blacklight. In the open, neither this method nor a mobile­ blacklight technique were successful in 1988, but both warrant further work. Results are discussed in the context of A. zoegana establishment in B.C. INTRODUCTION Diffuse (Centaurea diffusa Lam.) and spotted (c. maculosa Lam.) knapweed, introduced from Europe in the early 1900's, pose a serious threat to range- and pasture-hinds in B.C. (Cranston, 1980). The knapweeds outcompete native forage species on disturbed or over­ grazed sites, and are of low value as forage (Harris and Myers 1984). Chemical control of knapweed in most areas is neither economically practical nor environmentally desirable (Cranston 1980).
    [Show full text]
  • Scientific Names of Pest Species in Tortricidae (Lepidoptera)
    RESEARCH Scientific Names of Pest Species in Tortricidae (Lepidoptera) Frequently Cited Erroneously in the Entomological Literature John W. Brown Abstract. The scientific names of several pest species in the moth meate the literature. For example, the subfamilial designation for family Tortricidae (Lepidoptera) frequently are cited erroneously in Olethreutinae (rather than Olethreutidae) was slow to be accepted contemporary entomological literature. Most misuse stems from the for many years following Obraztsov’s (1959) treatment of the group. fact that many proposed name changes appear in systematic treat- They even appear at both taxonomic levels (i.e., Olethreutinae and ments that are not seen by most members of the general entomologi- Olethreutidae) in different papers in the same issue of the Canadian cal community. Also, there is resistance among some entomologists Entomologist in the 1980s! (Volume 114 (6), 1982) Olethreutinae to conform to recently proposed changes in the scientific names of gradually was absorbed into the North America literature, espe- well-known pest species. Species names discussed in this paper are cially following publication of the Check List of the Lepidoptera Brazilian apple leafroller, Bonagota salubricola (Meyrick); western of America North of Mexico (Hodges 1983), which has served as a black-headed budworm, Acleris gloverana (Walsingham); and green standard for more than 20 years. budworm, Choristoneura retiniana (Walsingham). Generic names During preparation of a world catalog of Tortricidae (Brown discussed include those for false codling moth, Thaumatotibia leu- 2005), it became obvious to me that several taxonomically correct cotreta (Meyrick); grape berry moth, Paralobesia viteana (Clemens); combinations of important pest species were not in common use in pitch twig moth, Retinia comstockiana (Fernald); codling moth, the entomological literature.
    [Show full text]
  • Westenhanger Area and Kiln Wood)
    Folkestone and Hythe Birds Tetrad Guide: TR13 I (Westenhanger area and Kiln Wood) One of the more interesting habitats in TR13 I is the lake at Folkestone Racecourse, which holds breeding Tufted Duck, Little Grebe, Great Crested Grebe and Coot, with these being joined by Gadwall and Pochard in winter, whilst White-fronted Goose, Barnacle Goose, Wigeon, Pintail and Goldeneye have also occurred on occasion, generally during cold weather, though the lake is prone to freezing over during prolonged frosts. Snipe can sometimes be found in the ditches by the lake and Reed Buntings breed in the surrounding vegetation, whilst Marsh Harrier and Merlin have been noted overhead. The parkland area around Westenhanger Castle used to hold Spotted Flycatchers but this species has since declined considerably. Black Redstart has been recorded singing from the racecourse buildings and may occasionally breed here. The fields in the Hillhurst Farm area may attract Lapwings and occasionally Golden Plover, whilst when left as stubble in the winter of 2013/14 they held a flock of up to 50 Yellowhammers, together with single Jack Snipe and Corn Bunting, and small numbers of Stock Doves, Sky Larks, Meadow Pipits, Linnets and Reed Buntings. Large numbers of Mediterranean Gulls may be attracted, with a peak count of about 100 in November 2013. Kiln Wood has breeding Buzzard and typical woodland species, including Nuthatch, whilst Woodcock, Siskin and sometimes Lesser Redpoll may winter and the small pond in the wood can attract Mandarin. In May 2009 a singing Wood Warbler was present but was presumably just a migrant.
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]
  • Wildland Fire in Ecosystems: Fire and Nonnative Invasive Plants
    Alaska (Producer). Available: http://akweeds.uaa.alaska.edu/ References _____________________ akweeds_ranking_page.htm [2005, January 15]. Abella, S. R.; Covington, W. W. 2004. Monitoring an Arizona Albert, M. 2000. Carpobrotus edulis. In: Bossard, C. C.; Randall, J. ponderosa pine restoration: sampling efficiency and multivari- M.; Hoshovsky, M. C., eds. Invasive plants of California’s wildlands. ate analysis of understory vegetation. Restoration Ecology. 12: Berkeley, CA: University of California Press: 90-94. 359-367. Albini F.; Amin, M. R.; Hungerford R. D.; Frandsen W. H.; Ryan, Abella, Scott. R.; MacDonald, Neil. W. 2000. Intense burns may K. C. 1996. Models for fire-driven heat and moisture transport reduce spotted knapweed germination. Ecological Restoration. in soils. Gen. Tech. Rep. INT-GTR-335. Ogden, UT: U.S. Depart- 18(2): 203-205. ment of Agriculture, Forest Service, Intermountain Reasearch Abrahamson, W. G. 1984. Species responses to fire and the Florida Station. 16 p. Lake Wales ridge. American Journal of Botany. 71: 35-43. Alexander, Janice M.; D‘Antonio, Carla M. D. 2003. Seed bank dy- Acker, Steven A. 1992. Wildfire and soil organic carbon in sage- namics of French broom in coastal California grasslands: effects brush-bunchgrass vegetation. The Great Basin Naturalist. 52(3): of stand age and prescribed burning on control and restoration. 284-287. Restoration Ecology. 11(2): 185-197. Adger, Neil; Aggarwal, Pramod; Agrawala, Shardul; [and others]. Alexander, M.; Stefner, C.; Beck, J.; Lanoville, R. 2001. New 2007. Climate Change 2007: impacts, adaptation and vulnerability. insights into the effectiveness of fuel reduction treatments on Contribution of Working Group II to the 4th assessment report of crown fire potential at the stand level.
    [Show full text]
  • FACTS Data Dictionary # Natural UOM 1. Description
    FACTS Data Dictionary # Natural UOM 1. Description - The number of natural trees found per unit of measure (i.e. acres) for a specific species for a specific stocking exam. 2. Field Length - 5 3. Format - Numeric (with no decimal) 4. Required - No 5. Table Name. Field Name FACT_STCKG_EXAM_SPCS. NBR_NATURAL 6. Forms Stocking Exam (ACTV130) 7. Valid Codes 8. Comments # Planted Trees Staked 1. Description - The number of planted trees staked by species for a survival exam. 2. Field Length - 5 3. Format - Numeric (with no decimal) 4. Required - Yes 5. Table Name. Field Name FACT_SURVIVAL_EXAMS. NBR_PLANTED_TREES_STAKED 6. Forms Survival Exam (ACTV135) file:///C|/A_PROJECTS/facts/FACTS_Data_Dictionary.txt 7. Valid Codes 8. Comments # of Trees 1. Description - The number of trees treated or found. 2. Field Length - 5 3. Format - Numeric (with no decimal) 4. Required - No 5. Table Name. Field Name FACT_VEG_AMT_TREATED. NBR_TREES 6. Forms Vegetation Manipulation - Amount Treated (ACTV127) 7. Valid Codes 8. Comments # Staked Trees Surviving 1. Description - The number of staked trees by species found alive. 2. Field Length - 5 3. Format - Numeric (with no decimal) 4. Required - Yes 5. Table Name. Field Name FACT_SURVIVAL_EXAMS. NBR_STAKED_TREES_SURVIVING 6. Forms Survival Exam (ACTV135) 7. Valid Codes file:///C|/A_PROJECTS/facts/FACTS_Data_Dictionary.txt (2 of 252)8/4/2006 3:31:01 AM file:///C|/A_PROJECTS/facts/FACTS_Data_Dictionary.txt 8. Comments # Surviving Planted/UOM 1. Description - The number of planted trees per unit of measure (i.e. acres) found by species found alive. 2. Field Length - 5 3. Format - Numeric (with no decimal) 4. Required - No 5. Table Name. Field Name FACT_STCKG_EXAM_SPCS.
    [Show full text]
  • Chapter 12. Biocontrol Arthropods: New Denizens of Canada's
    291 Chapter 12 Biocontrol Arthropods: New Denizens of Canada’s Grassland Agroecosystems Rosemarie De Clerck-Floate and Héctor Cárcamo Agriculture and Agri-Food Canada, Lethbridge Research Centre 5403 - 1 Avenue South, P.O. Box 3000 Lethbridge, Alberta, Canada T1J 4B1 Abstract. Canada’s grassland ecosystems have undergone major changes since the arrival of European agriculture, ranging from near-complete replacement of native biodiversity with annual crops to the effects of overgrazing by cattle on remnant native grasslands. The majority of the “agroecosystems” that have replaced the historical native grasslands now encompass completely new associations of plants and arthropods in what is typically a mix of introduced and native species. Some of these species are pests of crops and pastures and were accidentally introduced. Other species are natural enemies of these pests and were deliberately introduced as classical biological control (biocontrol) agents to control these pests. To control weeds, 76 arthropod species have been released against 24 target species in Canada since 1951, all of which also have been released in western Canada. Of these released species, 53 (70%) have become established, with 18 estimated to be reducing target weed populations. The biocontrol programs for leafy spurge in the prairie provinces and knapweeds in British Columbia have been the largest, each responsible for the establishment of 10 new arthropod species on rangelands. This chapter summarizes the ecological highlights of these programs and those for miscellaneous weeds. Compared with weed biocontrol on rangelands, classical biocontrol of arthropod crop pests by using arthropods lags far behind, mostly because of a preference to manage crop pests with chemicals.
    [Show full text]