Federal Register / Vol. 62, No. 29 / Wednesday, February 12, 1997 / Rules and Regulations 6687

Total Page:16

File Type:pdf, Size:1020Kb

Federal Register / Vol. 62, No. 29 / Wednesday, February 12, 1997 / Rules and Regulations 6687 Federal Register / Vol. 62, No. 29 / Wednesday, February 12, 1997 / Rules and Regulations 6687 Methylphosphonyl difluoride (C.A.S. aminoethane thiol (C.A.S. #5842±07±9), identified in this ECCN 1C350, unless #676±99±3). N,N-Diisopropyl-2-aminoethyl chloride those compounds are also identified in b. Countries Not Eligible: The hydrochloride (C.A.S. #4261±68±1), this entry. following countries are not eligible to N,N-Diisopropyl-beta-aminoethanol * * * * * receive sample shipments: Cuba, Iran, (C.A.S. #96±80±0), N,N-Diisopropyl- Dated: February 7, 1997. Libya, North Korea, Sudan, Syria. beta-aminoethyl chloride (C.A.S. #96± c. Sample Shipments: A license is not 79±7), Dimethyl ethylphosphonate Sue E. Eckert, required for sample shipments when the (C.A.S. #6163±75±3), Dimethyl Assistant Secretary for Export cumulative total of these shipments methylphosphonate (C.A.S. #756±79±6), Administration. does not exceed a 55-gallon container or Ethylphosphonous dichloride [FR Doc. 97±3490 Filed 2±11±97; 8:45 am] 200 kg of each chemical to any one [Ethylphosphinyl dichloride] (C.A.S. BILLING CODE 3510±33±P consignee per calendar year. Multiple #1498±40±4), Ethylphosphonus sample shipments, in any quantity, not difluoride [Ethylphosphinyl difluoride] exceeding the totals indicated in this (C.A.S. #430±78±4), Ethylphosphonyl DEPARTMENT OF COMMERCE paragraph may be exported without a dichloride (C.A.S. #1066±50±8), license, in accordance with the Methylphosphonous dichloride Bureau of Export Administration provisions of this NOTE 1. A consignee [Methylphosphinyl dicloride] (C.A.S. 15 CFR Part 774 that receives a sample shipment under #676±83±5), Methylphosphonous this exclusion may not resell, transfer or difluoride [Methylphosphinyl [Docket No. 961206342±6342±01] reexport the sample shipment, but may # difluoride] (C.A.S. 753±59±3), RIN 0694±AB46 use the sample shipment for any other Methylphosphonyl dichloride (C.A.S. legal purpose unrelated to chemical #676±97±1), Pinacolyl alcohol (C.A.S. Revisions to the Commerce Control weapons. However, a sample shipment #464±07±3), 3-Quinuclidinol (C.A.S. List: Exports of Mixtures Containing received under this exclusion remains #1619±34±7), and Thiodiglycol (C.A.S. Trace Quantities of Precursor subject to all General Prohibitions #111±48±8); (Related ECCN: 1C995) Chemicals; ECCNs 1C350 and 1C995 including the end-use restriction c. A license is required when at least described in § 744.4 of the EAR. one of all other chemicals in the List of AGENCY: Bureau of Export d. The exporter is required to submit Items Controlled constitutes more than Administration, Commerce. a quarterly written report for shipments 25 percent of the weight of the mixture ACTION: Final rule. of samples made under this Note 1. The on a solvent free basis (related ECCN: report must be on company letterhead 1C995); and SUMMARY: The Bureau of Export stationery (titled ``Report of Sample d. A license is not required under this Administration is amending the Shipments of Chemical Precursors'' at entry for mixtures when the controlled Commerce Control List (CCL) of the the top of the first page) and identify the chemical is a normal ingredient in Export Administration Regulations (15 chemical(s), Chemical Abstract Service consumer goods packaged for retail sale CFR parts 730±774) to simplify export Registry (C.A.S.) number(s), for personal use. Such consumer goods controls on mixtures that contain quantity(ies), the ultimate consignee's are controlled by ECCN EAR99. relatively small amounts, ``traces'', of name and address, and the date e. Calculation of concentrations of controlled precursor chemicals. exported. The report must be sent to the AG-controlled chemicals. DATES: This rule is effective February U.S. Department of Commerce, Bureau 1. Usual Commercial Purposes. In 12, 1997. of Export Administration, Room 2705, calculating the percentage of an AG FOR FURTHER INFORMATION CONTACT: For Washington, DC 20230, Attn: ``Report of controlled chemical in a mixture Sample Shipments of Chemical questions on foreign policy controls, (solution), any other chemical must be call Patricia Sefcik, Bureau of Export Precursors''. excluded if it was not added for usual 2. MIXTURES: Mixtures controlled by Administration, Telephone: (202) 482± commercial purposes, but was added for 0707. this entry that contain certain the sole purpose of circumventing the concentrations of precursor and For questions of a technical nature on Export Administration Regulations. chemical weapon precursors, biological intermediate chemicals are subject to 2. ``Solvent Free Basis Requirement.'' the following licensing requirements: agents, and equipment that can be used When calculating the percentage, by to produce chemical and biological a. A license is required, regardless of weight, of components in a chemical the concentrations in the mixture, for weapons agents, call James mixture, you must exclude from the Seevaratnam, Bureau of Export the following chemicals: 0-Ethyl-2- calculation any component of the diisopropylaminoethyl Administration, Telephone: (202) 482± mixture that acts as a solvent. 3343. methylphosphonite (QL) (C.A.S. 3. SolventÐFor purposes of this # 57856±11±8), Ethylphosphonyl ECCN ``A substance capable of SUPPLEMENTARY INFORMATION: Currently, # difluoride (C.A.S. 753±98±0) and dissolving another substance to form a Export Control Classification Number Methylphosphonyl difluoride (C.A.S. uniformly dispersed mixture (ECCN) 1C350 on the Commerce Control # 676±99±3); (solution)''. List (CCL) includes an exemption from b. A license is required when at least • Solvents are liquids at standard controls for mixtures containing certain one of the following chemicals temperature and pressure (STP). concentrations of precursor and constitutes more than 10 percent of the • In no instance is an AG controlled intermediate chemicals identified by weight of the mixture on a solvent free chemical considered a ``solvent''. that entry. This exemption is on a basis: Arsenic trichloride (C.A.S. #7784± • All ingredients of mixtures are solvent-free basis. 34±1), Benzilic acid (C.A.S. #76±93±7), expressed in terms of weight. This final rule amends the CCL of the Diethyl ethylphosphonate (C.A.S. #78± • The solvent component of the Export Administration Regulations 38±6), Diethyl methylphosphonite mixture converts it into a solution. (EAR) to implement a new treatment of (C.A.S. #15715±41±0), Diethyl-N,N- 3. COMPOUNDS: A license is not ``trace chemicals'' under ECCN 1C350. If dimethylphosphoroamidate (C.A.S. required under this entry for chemical all the criteria set forth are met and the #2404±03±7), N,N-Diisopropyl-beta- compounds created with any chemicals relevant General Prohibitions found in 6688 Federal Register / Vol. 62, No. 29 / Wednesday, February 12, 1997 / Rules and Regulations part 736 do not apply, exports may be date, are inapplicable because this License Requirements made under ECCN 1C350 without regulation involves a military and * * * * * applying for a license, for mixtures that foreign affairs function of the United contain a cumulative total concentration States (see 5 U.S.C. 553(a)(1)). Further, License Requirement Notes of no more than 10,000 parts by weight no other law requires that a notice of * * * * * (pbw) per million, of all precursor or proposed rulemaking and an 3. Trace Quantities: intermediate chemicals listed in ECCN opportunity for public comment be 1C350. Such mixtures are controlled given for this rule. Because a notice of a. A license is required for mixtures under ECCN 1C995. This treatment is proposed rulemaking and an containing any amount (including trace not available for mixtures containing the opportunity for public comment are not quantities) of the following chemicals: following precursor chemicals: 0-Ethyl- required to be given for this rule by 5 0-Ethyl-2-diisopropylaminoethyl 2-diisopropylaminoethyl U.S.C 553, or by any other law, the methylphosphonite (QL) (C.A.S. #57856±11±8), Ethylphosphonyl methylphosphonite (QL) (C.A.S. analytical requirements of the # #57856±11±8), Ethylphosphonyl Regulatory Flexibility Act, 5 U.S.C. 601 difluoride (C.A.S. 753±98±0), and # Methylphosphonyl difluoride (C.A.S. difluoride (C.A.S. 753±98±0), and et seq., are inapplicable. # Methylphosphonyl difluoride (C.A.S. Therefore, this regulation is issued in 676±99±3). #676±99±3). final form. Although there is no formal b. Except as noted in paragraph (a) of This rule also revises the ``Related comment period, public comments on this Note, a license is not required Definition'' section of ECCN 1C995 to this regulation are welcome on a under this entry for mixtures that clarify that mixtures containing trace continuing basis. Comments should be contain a cumulative total concentration quantities are controlled under this submitted to Sharron Cook, Regulatory of no more than 10,000 parts by weight entry. Policy Division, Office of Exporter (pbw) per million of all precursor or This new treatment will permit export Services, Bureau of Export intermediate chemicals listed in this without applying for a license for many Administration, Department of entry. The calculation for this paragraph common commercial products while Commerce, P.O. Box 273, Washington, (b) should not be done on a solvent-free requiring license applications for those DC 20044. basis (related ECCN: 1C995). c. Countries Not Eligible: The mixtures that contain significant List of Subjects in 15 CFR part 774 quantities of precursor chemicals. following countries are not eligible for Exports, Foreign trade. exports under this Trace Quantities Rulemaking Requirements Accordingly, part 774 of the Export Note: Cuba, Iran, Iraq, Libya, North 1. This final rule has been determined Administration Regulations (15 CFR Korea, Sudan, and Syria. to be not significant for purposes of Parts 730±799) are amended as follows: * * * * * 1. The authority citation for part 774 Executive Order 12866. 1C995 Mixtures containing precursor continues to read as follows: 2. This rule involves collections of and intermediate chemicals used in the information subject to the Paperwork Authority: 50 U.S.C.
Recommended publications
  • Information Data Sheet Detector Tube QUALITEST QL Part No. (US): 497665 Part No. D5085810
    Information Data Sheet Detector Tube QUALITEST QL Part No. (US): 497665 Part No. D5085810 1. Application Detction of dangerous (toxic or combustible) gases and vapors in air.In particular fot testing the air in confined spaces such as fuel tanks, storage bins, cable vaults, sewers. Furthermore the tube QL can be used to detect or localize leaks, e.g. in pipelines. 2. General Description The detector tube QL does not have any calibration scale. The indication is non-specific and qualita- tive, i. e. only the presence resp. the absence of contaminants will be detected. The indication gives no information about type or concentration of contaminants detected. A special detector tube with quantitative indication shoud be used if the presence or the concentration of a known contaminant is to be determined. This applies also to substances which can not be indicated by the detector tube QL. The various contaminants are indicated with different sensitivity. However, the detector tube is sufficiently sensitive for all listed substances. Normally, concentrations of a few ppm are detectable. Among others, the following substances are indicated: Acetone, acetylene, benzene, 1.3-butadiene, butanes, butylenes, carbon disulfide, carbon monoxide, cyclohexane, diesel oil, ethanol (ethyl alcohol), ethylene, formic acid, fuel oil, gasoline (engine fuel),hydrogen chloride, hydrogen sulfide, kerosene, liquid petroleum gas (propane, butanes), methyl ethyl ketone (butanone), pentanes and other saturated hydrocarbons, phenol, propane, propanols (propyl alcohols),
    [Show full text]
  • Kinetics of Coal Fly Ash Chlorination by Phosgene Douglas John Adelman Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1984 Kinetics of coal fly ash chlorination by phosgene Douglas John Adelman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Adelman, Douglas John, "Kinetics of coal fly ash chlorination by phosgene " (1984). Retrospective Theses and Dissertations. 8971. https://lib.dr.iastate.edu/rtd/8971 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Composite Carbon Foams As an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application
    materials Article Composite Carbon Foams as an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application Mahitha Udayakumar 1,2 , Renáta Zsanett Boros 3,László Farkas 3 , Andrea Simon 4 , Tamás Koós 5, Máté Leskó 6, Anett Katalin Leskó 5, Klara Hernadi 7,8 and Zoltán Németh 1,* 1 Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515 Miskolc, Hungary; [email protected] 2 Institute of Chemistry, University of Miskolc, H-3515 Miskolc, Hungary 3 Wanhua-Borsod Chem Zrt, Bolyai tér 1, H-3700 Kazincbarcika, Hungary; [email protected] (R.Z.B.); [email protected] (L.F.) 4 Institute of Ceramic and Polymer Engineering, University of Miskolc, H-3515 Miskolc, Hungary; [email protected] 5 Institute of Energy and Quality Affairs, University of Miskolc, H-3515 Miskolc, Hungary; [email protected] (T.K.); [email protected] (A.K.L.) 6 Institute of Mineralogy and Geology, University of Miskolc, H-3515 Miskolc, Hungary; [email protected] 7 Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary; [email protected] 8 Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary * Correspondence: [email protected]; Tel.: +36-46-565-111/1380 Citation: Udayakumar, M.; Boros, R.Z.; Farkas, L.; Simon, A.; Koós, T.; Abstract: The suitability of a new type of polyurethane-based composite carbon foam for several Leskó, M.; Leskó, A.K.; Hernadi, K.; possible usages is evaluated and reported. A comparison of the properties of the as-prepared carbon Németh, Z.
    [Show full text]
  • Chemical Weapons Convention Inventory Report - 2017
    University of British Columbia Risk Management Services CHEMICAL WEAPONS CONVENTION INVENTORY REPORT - 2017 Department: Name of Building: Room No. Principal Investigator: SCHEDULE 1 CHEMICALS Location Quantity Obtained /Stored / Used A.Toxic Chemicals 1 O-Alkyl (<=C10, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr) – phosphonofluoridates, Sarin: O-Isopropyl methylphosphonofluoridate (CAS 107-44-8) Soman: O-Pinacolyl methylphosphonofluoridate (CAS 96-64-0) 2 O-Alkyl (H or <=C10, incl. cycloalkyl) S-2-dialkyl (Me, Et, n- Pr or i-Pr) -aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates, and corresponding alkylated or protonated salts VX: O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (CAS 50782-69-9) 3 O-Alkyl (H or <=C10, incl. cycloalkyl) S-2-dialkyl (Me, Et, n- Pr or i-Pr) -aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates, and corresponding alkylated or protonated salts VX: O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (CAS 50782-69-9) 4 Sulphur Mustards: 2-Chloroethylchloromethylsulfide (CAS 2625-76-5) Mustard gas: Bis (2-chloroethyl) sulfide (CAS 505-60-2) Bis (2-chloroethylthio)methane (CAS 63869-13-6) Sesquimustard: 1, 2-Bis (2-chloroethylthio) ethane (CAS 3563-36-8) 1, 3-Bis (2-chloroethylthio) -n-propane (CAS 63905-10-2) 1, 4-Bis (2-chloroethylthio) -n-butane (CAS 142868-93-7) 1, 5-Bis (2-chloroethylthio) -n-pentane (CAS 142868-94-8) Bis (2-chloroethylthiomethyl) ether (CAS 63918-90-1) O-Mustard: Bis (2-chloroethylthioethyl) ether (CAS 63918-89-8) 5 Lewisites: Lewisite 1: 2-Chlorovinyldichloroarsine (CAS 541-25-3) Lewisite 2: Bis (2-chlorovinyl) chloroarsine (CAS 40334-69-8) Lewisite 3: Tris (2-chlorovinyl) arsine (CAS 40334-70-1) 6 Nitrogen Mustards: HN1: Bis (2-chloroethyl) ethylamine (CAS 538-07-08) HN2: Bis (2-chloroethyl) methylamine (CAS 51-75-2) HN3: Tris (2-chloroethyl) amine (CAS 555-77-1) University of British Columbia Risk Management Services CHEMICAL WEAPONS CONVENTION INVENTORY REPORT - 2017 Department: Name of Building: Room No.
    [Show full text]
  • VX Binary (VX2) – Developed by the US • Novichok Agent
    THE FOUR LIKELY BINARY AGENTS Working paper Charles P. Blair Last Updated, January 2013 Binary sarin (GB2) – developed by the U.S. Binary soman (GD2) VX binary (VX2) – developed by the U.S Novichok agent (“New Comer) –developed by the Soviets Additionally, Eric Croddy has written that VNSAs may use “binarytype designs” in an attack…with simple designs most likely using common chemical ingredients (e . g. , c ya n id e . ) ” 1 Aum is an example o f t h is . 1. Binary sarin . With binary sarin (also referred to as “GB binary” and “GB2”) a forward container has methylphosphonic difluoride (DF), while a second, rear container has an isopropyl alcohol and isopropylamine solution (OPA). The DF resides in the munition prior to use. The OPA is added just prior to launch. After deployment of the weapon, the two canisters rupture, “the isopropyl amine binds to the hydrogen fluoride generated during the chemical reaction, and the chemical mixture produces GB.”2 Experts note that, “The final product of the weapon is of the same chemical structure as the original nerve agent. The term binary refers only to the storage and deployment method used, not to the chemical structure of the substance.”3 With regard to how long it takes the DF and OPA to mix before binary sarin is extant, Eric Croddy notes that, “as in any chemical reaction, a certain amount of time is required for the [binary] reaction to run its course. In the case of GB binary, this required about seven seconds.”4 2. Binary soman (also referred to as “GD binary” and “GD2”).
    [Show full text]
  • CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011
    CSAT Top-Screen Questions January 2009 Version 2.8 CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011 Change Log .........................................................................................................3 CVI Authorizing Statements...............................................................................4 General ................................................................................................................6 Facility Description.................................................................................................................... 7 Facility Regulatory Mandates ................................................................................................... 7 EPA RMP Facility Identifier....................................................................................................... 9 Refinery Capacity....................................................................................................................... 9 Refinery Market Share ............................................................................................................. 10 Airport Fuels Supplier ............................................................................................................. 11 Military Installation Supplier................................................................................................... 11 Liquefied Natural Gas (LNG) Capacity................................................................................... 12 Liquefied Natural Gas Exclusion
    [Show full text]
  • VLE of Hydrogen Chloride, Phosgene, Benzene
    VLE of Hydrogen Chloride, Phosgene, Benzene, Chlorobenzene, Ortho-Dichlorobenzene and Toluene by Molecular Simulation † ‡ ¶ ,† Yow-Lin Huang, Manfred Heilig, Hans Hasse, and Jadran Vrabec∗ Thermodynamics and Energy Technology Laboratory (ThEt), University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany, GCP Chemical and Process Engineering , BASF SE, Ludwigshafen, Germany, and Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Germany E-mail: [email protected] Keywords: Molecular modeling; vapor-liquid equilibrium; critical properties; Hydrogen chloride; Phosgene; Benzene; Chlorobenzene; Ortho-Dichlorobenzene; Toluene Abstract Vapor-liquid equilibria (VLE) of nine binary mixtures containing Hydrogen chloride or Phosgene in the sol- vents Benzene, Chlorobenzene, Ortho-Dichlorobenzene and Toluene as well as the mixture Hydrogen chloride + Phosgene are predicted by molecular modeling and simulation. The underlying force fields for the pure substances are developed on the basis of quantum chemical information on molecular geometry and electrostatics. These are individually optimized to experimental pure fluid data on the vapor pressure and saturated liquid density, where the deviations are typically less than 5 and 0.5 %, respectively. The unlike dispersive interaction is optimized for ∗To whom correspondence should be addressed †University of Paderborn ‡BASF SE ¶University of Kaiserslautern 1 seven of the nine studied binaries. Previously unpublished
    [Show full text]
  • Federal Register/Vol. 86, No. 4/Thursday, January 7, 2021/Rules
    936 Federal Register / Vol. 86, No. 4 / Thursday, January 7, 2021 / Rules and Regulations List of Subjects in 12 CFR Part 747 PART 747—ADMINISTRATIVE § 747.1001 Adjustment of civil monetary ACTIONS, ADJUDICATIVE HEARINGS, penalties by the rate of inflation. Civil monetary penalties, Credit RULES OF PRACTICE AND unions. (a) The NCUA is required by the PROCEDURE, AND INVESTIGATIONS Federal Civil Penalties Inflation Melane Conyers-Ausbrooks, ■ 1. The authority for part 747 Adjustment Act of 1990 (Pub. L. 101– Secretary of the Board. continues to read as follows: 410, 104 Stat. 890, as amended (28 U.S.C. 2461 note)), to adjust the For the reasons stated in the Authority: 12 U.S.C. 1766, 1782, 1784, 1785, 1786, 1787, 1790a, 1790d; 15 U.S.C. maximum amount of each civil preamble, the Board amends 12 CFR monetary penalty (CMP) within its part 747 as follows: 1639e; 42 U.S.C. 4012a; Pub. L. 101–410; Pub. L. 104–134; Pub. L. 109–351; Pub. L. jurisdiction by the rate of inflation. The 114–74. following chart displays those adjusted ■ 2. Revise § 747.1001 to read as amounts, as calculated pursuant to the follows: statute: U.S. Code citation CMP description New maximum amount (1) 12 U.S.C. 1782(a)(3) ................. Inadvertent failure to submit a report or the inadvertent submission of $4,146. a false or misleading report. (2) 12 U.S.C. 1782(a)(3) ................. Non-inadvertent failure to submit a report or the non-inadvertent sub- $41,463. mission of a false or misleading report. (3) 12 U.S.C.
    [Show full text]
  • What Killed Kim Jong-Nam? Was It the Agent Vx?
    Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2017, vol. 86(2), p. 86-89 ISSN 0372-7025 DOI: 10.31482/mmsl.2017.013 LETTER TO THE EDITOR WHAT KILLED KIM JONG-NAM? WAS IT THE AGENT VX? INTRODUCTION Kim Jong-nam (10 May 1971 – 13 February 2017) was the eldest son of Kim Jong-il, leader of North Korea, and the estranged half-brother of North Korean dictator Kim Jong-un. From roughly 1994 to 2001, he was consid - ered the heir to his father [1]. Following a series of actions showing dissent to the North Korean regime, including a failed attempt to visit Tokyo Disneyland in May 2001 by entering Japan with a false passport, he was thought to have fallen out of favour with his father. On 13 February 2017, Kim was allegedly murdered by two women who fled after the crime [2]. The murder was commited in Malaysia during his return trip to Macau, at the low-cost carrier terminal of the Kuala Lumpur International Airport [3]. Initial reports suggest that Kim Jong-nam was mur - dered by VX, a type of agent used in chemical warfare [4]. Toxicological tests showed the presence of VX in Kim's eyes and face [5]. What is the agent VX and could this toxic substance cause the death of Kim? What is it VX? The VX is very toxic organophosphate (CAS Number 50782-69-9, O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate) and extremely active cholinesterase inhibitor. At room temperature it is odorless, colorless to straw-colored liquid with m.p.
    [Show full text]
  • Chemicals Requiring EHS Pre-Approval
    Chemicals Requiring EHS Approval Before Purchasing Chemical Name CAS # 1,3-Bis(2-chloroethylthio)-n-propane 63905-10-2 1,4-Bis(2-chloroethylthio)-n-butane 142868-93-7 1,5-Bis(2-chloroethylthio)-n-pentane 142868-94-8 1H-Tetrazole 288-94-8 2-chloroethyl ethylsulfide 693-07-2 2-Chloroethylchloro-methylsulfide 2625-76-5 2-Cyanoethyl diisopropylchlorophosphoramidite 89992-70-1 2-Ethoxyethanol 110-80-5 2-Ethoxyethylacetate 111-15-9 2-Methoxyethanol 109-86-4 2-Methoxyethylacetate 110-49-6 5-Nitrobenzotriazol 2338-12-7 Acetone cyanohydrin, stabilized 75-86-5 Acrolein 107-02-8 Acrylamide (powder) 79-06-1 Allylamine 107-11-9 Aluminum (powder) 7429-90-5 Aluminum phosphide 20859-73-8 Ammonia 7664-41-7 Ammonium nitrate 6484-52-2 Ammonium perchlorate 7790-98-9 Ammonium picrate 131-74-8 Arsenic 7440-38-2 Arsenic trichloride 7784-34-1 Arsenic trioxide 1327-53-3 Arsine 7784-42-1 Barium azide 18810-58-7 Beryllium 7440-41-7 Bis(2-chloroethylthio)methane 63869-13-6 Bis(2-chloroethylthiomethyl)ether 63918-90-1 Boron tribromide 10294-33-4 Boron trichloride 10294-34-5 Boron trifluoride 7637-07-2 Bromine 7726-95-6 Bromine chloride 13863-41-7 Bromine pentafluoride 7789-30-2 Bromine trifluoride 7787-71-5 Cadmium 7440-43-9 Calcium phosphide 1305-99-3 Carbon monoxide 630-08-0 Carbonyl fluoride 353-50-4 Carbonyl sulfide 463-58-1 Chlorine 7782-50-5 Chlorine dioxide 10049-04-4 Chlorine pentafluoride 13637-63-3 Chlorine trifluoride 7790-91-2 Chemicals Requiring EHS Approval Before Purchasing Chloroacetyl chloride 79-04-9 Chlorosarin 1445-76-7 Chlorosoman 7040-57-5 Chlorosulfonic
    [Show full text]
  • 128 Part 713—Activities Involving Schedule 2
    Pt. 712, Supp. 1 15 CFR Ch. VII (1–1–06 Edition) (d) If you are required to submit an nual declaration on past activities, an- amended declaration or report pursu- nual declaration on anticipated activi- ant to paragraph (a) or (b) of this sec- ties). Only complete that portion of tion, you must complete and submit a each form that corrects the previously new Certification Form and the spe- submitted information. cific form(s) being amended (e.g., an- SUPPLEMENT NO. 1 TO PART 712—SCHEDULE 1 CHEMICALS (CAS registry number) A. Toxic chemicals: (1) O-Alkyl (≤C10, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr)-phosphonofluoridates e.g. Sarin: O-Isopropyl methylphosphonofluoridate ............................................................................... (107–44–8) Soman: O-Pinacolyl methylphosphonofluoridate .................................................................................... (96–64–0) (2) O-Alkyl (≤C10, incl. cycloalkyl) N,N-dialkyl (Me, Et, n-Pr or i-Pr) phosphoramidocyanidates e.g. Tabun: O-Ethyl N,N-dimethyl phosphoramidocyanidate ........................................................................................ (77–81–6) (3) O-Alkyl (H or ≤C10, incl. cycloalkyl) S–2-dialkyl (Me, Et, n-Pr or i-Pr)-aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates and corresponding alkylated or protonated salts e.g. VX: O-Ethyl S–2- diisopropylaminoethyl methyl phosphonothiolate ....................................................................................... (50782–69–9) (4) Sulfur mustards: 2-Chloroethylchloromethylsulfide
    [Show full text]
  • Analytical Protocol for Cyclohexyl Sarin, Sarin, Soman and Sulfur Mustard Using Gas Chromatography/Mass Spectrometry
    EPA/600/R-16/115 | September 2016 www.epa.gov/homeland-security-research Analytical Protocol for Cyclohexyl Sarin, Sarin, Soman and Sulfur Mustard Using Gas Chromatography/Mass Spectrometry Office of Research and Development Homeland Security Research Program This page intentionally left blank EPA/600/R-16/115 September 2016 Analytical Protocol for Cyclohexyl Sarin, Sarin, Soman and Sulfur Mustard Using Gas Chromatography/Mass Spectrometry United States Environmental Protection Agency Office of Research and Development Homeland Security Research Program Cincinnati, Ohio 45268 Acknowledgments This method is based on procedures developed by Lawrence Livermore National Laboratory (LLNL) under Interagency Agreement (IAG) DW89922616-01-0 with the U.S. Environmental Protection Agency (EPA). EPA’s Homeland Security Research Program (HSRP) and Office of Land and Emergency Management managed and funded laboratory testing of the procedures for analysis of water, soil, and wipe samples in a multi-laboratory study. Laboratories participating in the study and providing technical support include EPA Regions 1, 3, 6, 9, and 10; EPA’s Portable High Throughput Integrated Laboratory Identification System (PHILIS) Unit mobile laboratory in Castle Rock, Colorado; the Virginia Division of Consolidated Laboratories; the Florida Department of Environmental Protection; and LLNL. Technical support, study coordination and data evaluatio n were provided by CSGov (formerly CSC). Disclaimer The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described herein under EPA Contract No. EP-C-10-060 to CSGov (formerly CSC). It has been reviewed by the Agency but does not necessarily reflect the Agency’s views. No official endorsement should be inferred.
    [Show full text]