P2804 Alternative Dual Beta-Lactam Combinations For

Total Page:16

File Type:pdf, Size:1020Kb

P2804 Alternative Dual Beta-Lactam Combinations For P2804 Alternative dual beta-lactam combinations for Enterococcus faecalis infective endocarditis Jaclyn Cusumano*1,2, Kathryn Daffinee1, Emily Bodo1,2, Kerry Laplante3,2,1,4 1 Providence VA Medical Center, Providence, United States, 2 College of Pharmacy , Kingston, United States, 3 Center of Innovation in Long-Term Support Services, Providence, United States, 4 Warren Alpert Medical School , Providence, United States Background: Dual beta-lactam therapy has emerged as a novel treatment strategy for Enterococcus faecalis infective endocarditis due to favorable side effect profiles and tolerability during long-term use compared to traditional beta-lactam plus aminoglycoside combinations. Ampicillin-ceftriaxone is the only guideline recommended dual beta-lactam for E. faecalis, but mortality rates still exceed 40%. Alternative dual beta-lactam combinations must be assessed and we sought to describe in vitro synergistic beta-lactam combinations against E. faecalis. Materials/methods: E. faecalis strain JH2-2 was utilized in a 24-hour time kill assay to detect dual beta-lactam synergy. Subinhibitory concentrations of a penicillin (ampicillin, penicillin, piperacillin, or nafcillin) or a carbapenem (ertapenem, imipenem, or meropenem) were combined with a cephalosporin (ceftriaxone, cefepime, or ceftaroline), as previously described, in order to detect synergy. Synergy was defined as a ≥2-log10 decrease in colony-forming units (CFU)/mL at 24 hours from the most active single agent. Antagonism was defined as a ≥2- log10 increase in CFU/mL at 24 hours from the most active single agent, and indifference was defined as any CFU/mL in between. Table 1. JH2-2 24-hour time kill log10 CFU/mL decrease Ceftriaxone Cefepime Ceftaroline MIC 0.12x 0.25x 0.5x 0.12x 0.25x 0.5x 0.12x 0.25x 0.5x concentrations Ampicillin 3.48 3.94 2.98 2.03 4.31 3.54 2.17 4.42 3.32 Penicillin 0.47 0.41 -0.15 0.22 0.46 0.7 2.27 3.4 2.26 Piperacillin 0.72 1.31 2.14 0.1 0.24 1.31 0.42 0.39 0.78 Nafcillin 0.32 0.91 1.25 -0.08 0.11 0.33 0.25 0.4 0.04 Ertapenem 3.12 3.88 3.25 0.53 1.27 2.91 0.63 1.96 3.25 Imipenem 0.58 1.24 1.83 0.01 0.02 0.08 0.25 0.15 0.42 Meropenem 4.8 4.29 3.62 1.02 3.38 4.14 0.92 4.49 4.2 Results: In vitro synergy was detected for the standard of care ampicillin-ceftriaxone, which served as a control. Several other combinations described in Table 1, including ampicillin-cephalosporin combinations, penicillin- ceftaroline, piperacillin-ceftriaxone, ertapenem-cephalosporin, and meropenem-cephalosporin combinations, demonstrated in vitro synergy. All other combinations exhibited indifference. Conclusions: Demonstrated synergy between penicillin-ceftaroline, ertapenem-cephalosporin, and meropenem- cephalosporin combinations warrant further exploration to determine optimal dosing. Commonly described E. faecalis susceptible beta-lactams, penicillin and imipenem, did not consistently demonstrate in vitro synergy when combined with a cephalosporin and may not be safe regimens for patients. 29TH ECCMID 13-16 APRIL 2019 AMSTERDAM, NETHERLANDS POWERED BY M-ANAGE.COM .
Recommended publications
  • Medical Review(S) Clinical Review
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 200327 MEDICAL REVIEW(S) CLINICAL REVIEW Application Type NDA Application Number(s) 200327 Priority or Standard Standard Submit Date(s) December 29, 2009 Received Date(s) December 30, 2009 PDUFA Goal Date October 30, 2010 Division / Office Division of Anti-Infective and Ophthalmology Products Office of Antimicrobial Products Reviewer Name(s) Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD Review Completion October 29, 2010 Date Established Name Ceftaroline fosamil for injection (Proposed) Trade Name Teflaro Therapeutic Class Cephalosporin; ß-lactams Applicant Cerexa, Inc. Forest Laboratories, Inc. Formulation(s) 400 mg/vial and 600 mg/vial Intravenous Dosing Regimen 600 mg every 12 hours by IV infusion Indication(s) Acute Bacterial Skin and Skin Structure Infection (ABSSSI); Community-acquired Bacterial Pneumonia (CABP) Intended Population(s) Adults ≥ 18 years of age Template Version: March 6, 2009 Reference ID: 2857265 Clinical Review Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD NDA 200327: Teflaro (ceftaroline fosamil) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 9 1.1 Recommendation on Regulatory Action ........................................................... 10 1.2 Risk Benefit Assessment.................................................................................. 10 1.3 Recommendations for Postmarketing Risk Evaluation and Mitigation Strategies ........................................................................................................................
    [Show full text]
  • In Vitro Susceptibilities of Escherichia Coli and Klebsiella Spp. To
    Jpn. J. Infect. Dis., 60, 227-229, 2007 Short Communication In Vitro Susceptibilities of Escherichia coli and Klebsiella Spp. to Ampicillin-Sulbactam and Amoxicillin-Clavulanic Acid Birgul Kacmaz* and Nedim Sultan1 Department of Central Microbiology and 1Department of Microbiology, Faculty of Medicine, Gazi University, Ankara, Turkey (Received January 30, 2007. Accepted April 13, 2007) SUMMARY: Ampicillin-sulbactam (A/S) and amoxicillin-clavulanic acid (AUG) are thought to be equally efficacious clinically against the Enterobacteriaceae family. In this study, the in vitro activities of the A/S and AUG were evaluated and compared against Escherichia coli and Klebsiella spp. Antimicrobial susceptibility tests were performed by standard agar dilution and disc diffusion techniques according to the Clinical and Laboratory Standards Institute (CLSI). During the study period, 973 strains were isolated. Of the 973 bacteria isolated, 823 were E. coli and 150 Klebsiella spp. More organisms were found to be susceptible to AUG than A/S, regardless of the susceptibility testing methodology. The agar dilution results of the isolates that were found to be sensitive or resistant were also compatible with the disc diffusion results. However, some differences were seen in the agar dilution results of some isolates that were found to be intermediately resistant with disc diffusion. In E. coli isolates, 17 of the 76 AUG intermediately resistant isolates (by disc diffusion), and 17 of the 63 A/S intermediately resistant isolates (by disc diffusion) showed different resistant patterns by agar dilution. When the CLSI breakpoint criteria are applied it should be considered that AUG and A/S sensitivity in E. coli and Klebsiella spp.
    [Show full text]
  • Below Are the CLSI Breakpoints for Selected Bacteria. Please Use Your Clinical Judgement When Assessing Breakpoints
    Below are the CLSI breakpoints for selected bacteria. Please use your clinical judgement when assessing breakpoints. The lowest number does NOT equal most potent antimicrobial. Contact Antimicrobial Stewardship for drug selection and dosing questions. Table 1: 2014 MIC Interpretive Standards for Enterobacteriaceae (includes E.coli, Klebsiella, Enterobacter, Citrobacter, Serratia and Proteus spp) Antimicrobial Agent MIC Interpretive Criteria (g/mL) Enterobacteriaceae S I R Ampicillin ≤ 8 16 ≥ 32 Ampicillin-sulbactam ≤ 8/4 16/8 ≥ 32/16 Aztreonam ≤ 4 8 ≥ 16 Cefazolin (blood) ≤ 2 4 ≥ 8 Cefazolin** (uncomplicated UTI only) ≤ 16 ≥ 32 Cefepime* ≤ 2 4-8* ≥ 16 Cefotetan ≤ 16 32 ≥ 64 Ceftaroline ≤ 0.5 1 ≥ 2 Ceftazidime ≤ 4 8 ≥ 16 Ceftriaxone ≤ 1 2 ≥ 4 Cefpodoxime ≤ 2 4 ≥ 8 Ciprofloxacin ≤ 1 2 ≥ 4 Ertapenem ≤ 0.5 1 ≥ 2 Fosfomycin ≤ 64 128 ≥256 Gentamicin ≤ 4 8 ≥ 16 Imipenem ≤ 1 2 ≥ 4 Levofloxacin ≤ 2 4 ≥ 8 Meropenem ≤ 1 2 ≥ 4 Piperacillin-tazobactam ≤ 16/4 32/4 – 64/4 ≥ 128/4 Trimethoprim-sulfamethoxazole ≤ 2/38 --- ≥ 4/76 *Susceptibile dose-dependent – see chart below **Cefazolin can predict results for cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime axetil, cephalexin and loracarbef for uncomplicated UTIs due to E.coli, K.pneumoniae, and P.mirabilis. Cefpodoxime, cefinidir, and cefuroxime axetil may be tested individually because some isolated may be susceptible to these agents while testing resistant to cefazolin. Cefepime dosing for Enterobacteriaceae ( E.coli, Klebsiella, Enterobacter, Citrobacter, Serratia & Proteus spp) Susceptible Susceptible –dose-dependent (SDD) Resistant MIC </= 2 4 8 >/= 16 Based on dose of: 1g q12h 1g every 8h or 2g every 8 h Do not give 2g q12 Total dose 2g 3-4g 6g NA Table 2: 2014 MIC Interpretive Standards for Pseudomonas aeruginosa and Acinetobacter spp.
    [Show full text]
  • Ampicillin (Ampicillin Sodium) INJECTION, POWDER, FOR
    Ampicillin for Injection, USP Rx Only (For Intramuscular or Intravenous Injection) To reduce the development of drug-resistant bacteria and maintain the effectiveness of ampicillin and other antibacterial drugs, ampicillin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION Ampicillin for injection, USP the monosodium salt of [2S-[2α,5α,6β(S*)]]-6- [(aminophenylacetyl)amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, is a synthetic penicillin. It is an antibacterial agent with a broad spectrum of bactericidal activity against both penicillin-susceptible Gram-positive organisms and many common Gram-negative pathogens. Ampicillin for injection, USP is a white to cream-tinged, crystalline powder. The reconstituted solution is clear, colorless and free from visible particulates. Each vial of Ampicillin for injection, USP contains ampicillin sodium equivalent to 250 mg, 500 mg, 1 gram or 2 grams ampicillin. Ampicillin for injection, USP contains 65.8 mg [2.9 mEq] sodium per gram ampicillin. It has the following molecular structure: The molecular formula is C16H18N3NaO4S, and the molecular weight is 371.39. The pH range of the reconstituted solution is 8 to 10. CLINICAL PHARMACOLOGY Ampicillin for injection diffuses readily into most body tissues and fluids. However, penetration into the cerebrospinal fluid and brain occurs only when the meninges are inflamed. Ampicillin is excreted largely unchanged in the urine and its excretion can be delayed by concurrent administration of probenecid. Due to maturational changes in renal function, ampicillin half-life decreases as postmenstrual age (a sum of gestational age and postnatal age) increases for infants with postnatal age of less than 28 days.
    [Show full text]
  • Penicillin Allergy Guidance Document
    Penicillin Allergy Guidance Document Key Points Background Careful evaluation of antibiotic allergy and prior tolerance history is essential to providing optimal treatment The true incidence of penicillin hypersensitivity amongst patients in the United States is less than 1% Alterations in antibiotic prescribing due to reported penicillin allergy has been shown to result in higher costs, increased risk of antibiotic resistance, and worse patient outcomes Cross-reactivity between truly penicillin allergic patients and later generation cephalosporins and/or carbapenems is rare Evaluation of Penicillin Allergy Obtain a detailed history of allergic reaction Classify the type and severity of the reaction paying particular attention to any IgE-mediated reactions (e.g., anaphylaxis, hives, angioedema, etc.) (Table 1) Evaluate prior tolerance of beta-lactam antibiotics utilizing patient interview or the electronic medical record Recommendations for Challenging Penicillin Allergic Patients See Figure 1 Follow-Up Document tolerance or intolerance in the patient’s allergy history Consider referring to allergy clinic for skin testing Created July 2017 by Macey Wolfe, PharmD; John Schoen, PharmD, BCPS; Scott Bergman, PharmD, BCPS; Sara May, MD; and Trevor Van Schooneveld, MD, FACP Disclaimer: This resource is intended for non-commercial educational and quality improvement purposes. Outside entities may utilize for these purposes, but must acknowledge the source. The guidance is intended to assist practitioners in managing a clinical situation but is not mandatory. The interprofessional group of authors have made considerable efforts to ensure the information upon which they are based is accurate and up to date. Any treatments have some inherent risk. Recommendations are meant to improve quality of patient care yet should not replace clinical judgment.
    [Show full text]
  • Staphylococcus Aureus Bloodstream Infection Treatment Guideline
    Staphylococcus aureus Bloodstream Infection Treatment Guideline Purpose: To provide a framework for the evaluation and management patients with Methicillin- Susceptible (MSSA) and Methicillin-Resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI). The recommendations below are guidelines for care and are not meant to replace clinical judgment. The initial page includes a brief version of the guidance followed by a more detailed discussion of the recommendations with supporting evidence. Also included is an algorithm describing management of patients with blood cultures positive for gram-positive cocci. Brief Key Points: 1. Don’t ignore it – Staphylococcus aureus isolated from a blood culture is never a contaminant. All patients with S. aureus in their blood should be treated with appropriate antibiotics and evaluated for a source of infection. 2. Control the source a. Removing infected catheters and prosthetic devices – Retention of infected central venous catheters and prosthetic devices in the setting of S. aureus bacteremia (SAB) has been associated with prolonged bacteremia, treatment failure and death. These should be removed if medically possible. i. Retention of prosthetic material is associated with an increased likelihood of SAB relapse and removal should be considered even if not clearly infected b. Evaluate for metastatic infections (endocarditis, osteomyelitis, abscesses, etc.) – Metastatic infections and endocarditis are quite common in SAB (11-31% patients with SAB have endocarditis). i. All patients should have a thorough history taken and exam performed with any new complaint evaluated for possible metastatic infection. ii. Echocardiograms should be strongly considered for all patients with SAB iii. All patients with a prosthetic valve, pacemaker/ICD present, or persistent bacteremia (follow up blood cultures positive) should undergo a transesophageal echocardiogram 3.
    [Show full text]
  • Management of Penicillin and Beta-Lactam Allergy
    Management of Penicillin and Beta-Lactam Allergy (NB Provincial Health Authorities Anti-Infective Stewardship Committee, September 2017) Key Points • Beta-lactams are generally safe; allergic and adverse drug reactions are over diagnosed and over reported • Nonpruritic, nonurticarial rashes occur in up to 10% of patients receiving penicillins. These rashes are usually not allergic and are not a contraindication to the use of a different beta-lactam • The frequently cited risk of 8 to 10% cross-reactivity between penicillins and cephalosporins is an overestimate based on studies from the 1970’s that are now considered flawed • Expect new intolerances (i.e. any allergy or adverse reaction reported in a drug allergy field) to be reported after 0.5 to 4% of all antimicrobial courses depending on the gender and specific antimicrobial. Expect a higher incidence of new intolerances in patients with three or more prior medication intolerances1 • For type-1 immediate hypersensitivity reactions (IgE-mediated), cross-reactivity among penicillins (table 1) is expected due to similar core structure and/or major/minor antigenic determinants, use not recommended without desensitization • For type-1 immediate hypersensitivity reactions, cross-reactivity between penicillins (table 1) and cephalosporins is due to similarities in the side chains; risk of cross-reactivity will only be significant between penicillins and cephalosporins with similar side chains • Only type-1 immediate hypersensitivity to a penicillin manifesting as anaphylaxis, bronchospasm,
    [Show full text]
  • Ceftaroline in Complicated Skin and Skin-Structure Infections
    Infection and Drug Resistance Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Ceftaroline in complicated skin and skin-structure infections Paul O Hernandez1 Abstract: Ceftaroline is an advanced-generation cephalosporin antibiotic recently approved by Sergio Lema2 the US Food and Drug Administration for the treatment of complicated skin and skin-structure Stephen K Tyring3 infections (cSSSIs). This intravenous broad-spectrum antibiotic exerts potent bactericidal activity Natalia Mendoza2,4 by inhibiting bacterial cell wall synthesis. A high affinity for the penicillin-binding protein 2a (PBP2a) of methicillin-resistant Staphylococcus aureus (MRSA) makes the drug especially 1University of Texas School of Medicine at San Antonio, beneficial to patients with MRSA cSSSIs. Ceftaroline has proved in multiple well-conducted San Antonio, TX, 2Woodhull clinical trials to have an excellent safety and efficacy profile. In adjusted doses it is also recom- Medical and Mental Health Center, mended for patients with renal or hepatic impairment. Furthermore, the clinical effectiveness Brooklyn, NY, 3Department of Dermatology, University of Texas and high cure rate demonstrated by ceftaroline in cSSSIs, including those caused by MRSA Health Science Center at Houston, and other multidrug-resistant strains, warrants its consideration as a first-line treatment option 4 Houston, TX, USA; Department of for cSSSIs. This article reviews ceftaroline and its pharmacology, efficacy, and safety data to Dermatology, El
    [Show full text]
  • Antimicrobial Resistance to Cefotaxime and Ertapenem in Enterobacteriaceae: the Effects of Altering Clinical Breakpoints
    Original Article Antimicrobial resistance to cefotaxime and ertapenem in Enterobacteriaceae: the effects of altering clinical breakpoints Po-Yu Liu1,2,3*, Zhi-Yuan Shi1,4*, Kwong-Chung Tung5*, Ching-Lin Shyu5, Kun-Wei Chan6, Jai-Wen Liu7, Zong-Yen Wu5, Chih-Chuan Kao8, Yi-Ching Huang9, Chin-Fu Lin10,11 1 Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan 2 Center for General Education, Tunghai University, Taichung, Taiwan 3 Department of Pharmacy, Tajen University, Yanpu, Taiwan 4 National Yang-Ming University, Taipei, Taiwan 5 Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan 6 Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan 7 Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan 8 Department of Internal Medicine, Dajia Lee's Hospital, Lee's Medical Corporation, Taichung, Taiwan 9 Department of Internal Medicine, Chiayi Branch, Taichung Veterans General Hospital, Taichung, Taiwan 10 Microbiology Section of the Medical Laboratory Department, Taichung Veterans General Hospital, Taichung, Taiwan 11Department of Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan. * authors contributed equally to this work Abstract Introduction: The Clinical and Laboratory Standards Institute (CLSI) updated its antimicrobial susceptibility testing interpretation criteria for Enterobacteriaceae. This study assessed the effects of clinical breakpoint changes in the CLSI 2009 to 2012 guidelines on antibiotic susceptibility testing reports. Methodology: In total, 2,076 non-duplicate clinical isolates of Enterobacteriaceae were analyzed. The disk diffusion method was used for susceptibility testing. The CLSI 2009-12 clinical breakpoints were applied to determine susceptibility of cefotaxime and ertapenem.
    [Show full text]
  • The Efficacy of Ampicillin Compared with Ceftriaxone on Preventing
    Assawapalanggool et al. Antimicrobial Resistance and Infection Control (2018) 7:13 DOI 10.1186/s13756-018-0304-6 RESEARCH Open Access The efficacy of ampicillin compared with ceftriaxone on preventing cesarean surgical site infections: an observational prospective cohort study Srisuda Assawapalanggool1, Nongyao Kasatpibal2*, Supatra Sirichotiyakul3, Rajin Arora4, Watcharin Suntornlimsiri5 and Anucha Apisarnthanarak6 Abstract Background: Cesarean surgical site infections (SSIs) can be prevented by proper preoperative antibiotic prophylaxis. Differences in antibiotic selection in clinical practice exist according to obstetricians’ preferences despite clear guidelines on preoperative antibiotic prophylaxis. This study aimed to compare the efficacy of ampicillin and ceftriaxone in preventing cesarean SSIs. Methods: The observational prospective cohort study was conducted at a tertiary hospital in Thailand from 1 January 2007 to 31 December 2012. Propensity scores for ceftriaxone prophylaxis were calculated from potential influencing confounders. The cesarean SSI rates of the ceftriaxone group vs. those of the ampicillin prophylactic group were estimated by multilevel mixed-effects Poisson regression nested by propensity score. Results: Data of 4149 cesarean patients were collected. Among these, 911 patients received ceftriaxone whereas 3238 patients received ampicillin as preoperative antibiotic prophylaxis. The incidence of incisional SSIs was (0.1% vs. 1.2%; p = 0.001) and organ space SSIs was (1.2% vs. 2.9%; p = 0.003) in the ceftriaxone group compared with the ampicillin group. After adjusting for confounders, the rate ratios of incisional and organ/space SSIs in the ceftriaxone compared with the ampicillin group did not differ (RR, 0.23; 95% CI 0.03–1.78), and (RR, 1.62; 95% CI 0.83–3.18), respectively.
    [Show full text]
  • Ceftaroline Fosamil for the Treatment of Gram-Positive Endocarditis: CAPTURE Study Experience
    International Journal of Antimicrobial Agents 53 (2019) 644–649 Contents lists available at ScienceDirect International Journal of Antimicrobial Agents journal homepage: www.elsevier.com/locate/ijantimicag Ceftaroline fosamil for the treatment of Gram-positive endocarditis: CAPTURE study experience ∗ Christopher J. Destache a, David J. Guervil b, Keith S. Kaye c, a School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA b Memorial Hermann-Texas Medical Center, Houston, TX, USA c Wayne State University and Detroit Medical Center, Detroit, MI, USA a r t i c l e i n f o a b s t r a c t Article history: Background: The clinical experience of ceftaroline fosamil (CPT-F) therapy for Gram-positive infective Received 3 October 2018 endocarditis is reported from CAPTURE, a retrospective study conducted in the USA. Accepted 27 January 2019 Methods: Data, including patient demographics, medical history, risk factors, microbiological aetiology and clinical outcomes, were collected by review of patient charts between September 2013 and February Editor: Professor Matthew Falagas 2015. Results: Patients ( n = 55) with Gram-positive endocarditis were treated with CPT-F. The most common Keywords: risk factors were intravascular devices (43.6%), diabetes mellitus (40.0%) and injection drug use (38.2%). Ceftaroline fosamil Gram-positive endocarditis The most commonly isolated pathogens were meticillin-resistant Staphylococcus aureus (MRSA; 80%), Meticillin-resistant Staphylococcus aureus meticillin-susceptible S. aureus (MSSA; 7.3%) and coagulase-negative staphylococci (7.3%). CPT-F was given Meticillin-susceptible Staphylococcus aureus as first-line therapy in 7.3% of patients and as second-line or later therapy in 92.7% of patients, and as CAPTURE study monotherapy in 41.8% of patients and as concurrent therapy in 58.2% of patients.
    [Show full text]
  • Clinical Benefit of Ertapenem Compared to Flomoxef for the Treatment of Cefotaxime- Resistant Enterobacteriaceae Bacteremia
    Journal name: Infection and Drug Resistance Article Designation: Original Research Year: 2018 Volume: 11 Infection and Drug Resistance Dovepress Running head verso: Lee et al Running head recto: Therapy of cefotaxime-resistant Enterobacteriaceae BSI open access to scientific and medical research DOI: http://dx.doi.org/10.2147/IDR.S146923 Open Access Full Text Article ORIGINAL RESEARCH Clinical benefit of ertapenem compared to flomoxef for the treatment of cefotaxime- resistant Enterobacteriaceae bacteremia Chen-Hsiang Lee1,2 Objectives: Cefotaxime-resistant Enterobacteriaceae (CE) infections are intractable, with I-Ling Chen3 limited treatment options. Though carbapenems are frequently prescribed for CE infections, Chia-Chin Li4 the emergence of carbapenem-resistant Enterobacteriaceae is of huge concern. Flomoxef is Chun-Chih Chien4 effective against CE in vitro, and some clinical data on its demonstrated effectiveness against CE bloodstream infections (BSIs) exists. 1Department of Internal Medicine, Division of Infectious Diseases, Patients and methods: We conducted a retrospective study on adults with BSI caused by Kaohsiung Chang Gung Memorial, flomoxef-susceptible CE to investigate the efficacy of flomoxef compared with that of ertape- 2 Hospital, Chang Gung University, nem. The outcome was evaluated with propensity score-based matching and logistic regression College of Medicine, 3Department of Pharmacy, 4Department of Laboratory analysis. For personal use only. Medicine, Kaohsiung Chang Gung Results: Demographic and clinical characteristics of patients treated with flomoxef (n = 58) or Memorial Hospital, Kaohsiung, Taiwan ertapenem (n = 188) were compared. In the multivariate analysis, severe sepsis (adjusted odds ratio [AOR] = 3.84; 95% confidence interval [CI], 1.16–12.78; p = 0.03), high BSI mortality score (AOR = 5.59; 95% CI, 2.37–13.21; p < 0.01), ultimately or rapidly fatal comorbidity (AOR = 10.60; 95% CI, 3.43–32.75; p < 0.01), and pneumonia (AOR = 10.11; 95% CI, 3.43–29.81; p < 0.01) were independently associated with 28-day mortality.
    [Show full text]