Lead Content of Round Scad (Decapterus Macrosoma)

Total Page:16

File Type:pdf, Size:1020Kb

Lead Content of Round Scad (Decapterus Macrosoma) Asia Pacific Journal of Multidisciplinary Research, Vol. 3, No. 4, November 2015 Part V _______________________________________________________________________________________________________________ Asia Pacific Journal of Lead Content of Round scad (Decapterus Multidisciplinary Research macrosoma)from Batangas Bay, Philippines Vol. 3 No. 4,118-124 November 2015 Part V Reygan H. Sangalang1, Erma B. Quinay2 P-ISSN 2350-7756 1 College of Arts and Sciences, Batangas State University, Philippines E-ISSN 2350-8442 2 College of Engineering Architecture and Fine Arts, Batangas State Univer- www.apjmr.com sity, Philippines 1 2 [email protected], [email protected] Date Received: October 29, 2015; Date Revised: November 19, 2015 Abstract—The main objective of the study was to determine the presence of lead in the head, flesh and internalorgans of roundscad (Decapterus macrosoma) collected from three sampling stations along Batangas Bay, Philippines. It is done to assess if the lead levels are still within the safety level set by United States Environmental Protection Agency (US EPA) and Food and Drug Administration (FDA). Quantitative analysis following Association of Official Analytical Chemists (AOAC) official method confirmed the presence of lead in the head, flesh and internal organs of round scad. Lead analysis of round scad was carried out using Flame Atomic Absorption Spectroscopy. The internal organs of round scad was found to contain the highest amount of leadas compared to the muscle and the head. Round scad samples collected along Batangas Bay had mean lead concentrationwhich is below the USEPA and FDA’s standardand can be considered safe for consumption. Continuous monitoring of lead content of roundscad is recommended to effectively investigate the risk and effects of heavy metals on the environ- ment and on the general public’s welfare. Keywords—AtomicAbsorption Spectroscopy, Batangas Bay, Heavy metals, Lead, Philippines, Round scad INTRODUCTION Fishes have always been a common table com- a total catch of 172, 498.52 metric ton (MT) or 16.7% modity for most Filipinos. It is a vital source of food of total commercial fish production in the Philippines and it is the single most important source of high qual- [1]. ity protein and polyunsaturated fatty acids (PUFA). Round scad can be caught in almost every part of The Batangas Bay is located at the heartof the the country. Large concentration of round scad can be Coral Triangle, the global center of marine biodiversi- found in Sulu Sea, Visayan Sea, Moro Gulf, Lamon ty. About halfway between the provinces of Batangas Bay, Cuyo Pass, Ragay Gulf, Batangas Coast, Tayabas and Mindoro, the Verde Island Passage contains the Bay, Samar Sea, Camotes Sea, Sibuyan Sea, Bohol most diverse concentration of marine species in the Sea, Davao Gulf and Babuyan Channel [2]. planet. Recent studies conducted showed that its reefs The price of round scad is cheaper compared to are home to nearly 60% of the world's known shore other fishes due to the large volume of landings in the fish, as well as over 300 species of coral. Batangas market [2]. Per capita consumption of 3 kg/year has Bay contains various species of corals, fishes and oth- proven that round scad is among the favorite fish er aquatic life.Commercial fishes such as round scad, among Filipinos. [1] Round scad can grow up to a foot anchovies, Indian Mackerel, yellowfin tuna, frigate in length and has a dark somewhat oily but tasty flesh tuna, skipjack, Spanish mackerel, slipmouth, grouper, [2]. threadfin bream are caught in large amounts and pro- Due to modernization and increasing population, vides the locals with livelihood and ample supply of the state of Philippine Fisheries,known for its rich bio- food. diversity, is now in poor state. Nowadays, water pollu- Round scad (Decapterus macrosoma), locally tion is widespread and plays an important role in shap- known as galunggongis one of the popular commercial ing today’s rivers, seas and other bodies of water [3]. fishes caught in Batangas Bay. According tothe Phi- Seas and other bodies of water often receive the lippine’s Bureau of Fisheries and Aquatic Resources, majority of human waste, whether it is man-made in 2011, round scad is the major commercial fish with emissionor from natural run-off from the land. Pollu- 118 P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com Asia Pacific Journal of Multidisciplinary Research, Vol. 3, No. 4, November 2015 Sangalang & Quinay, Lead Content of Round scad (Decapterus macrosoma)from Batangas Bay, Philippines _______________________________________________________________________________________________________________ tion of the aquatic environment by inorganic chemi- forcing regulations based on laws passed by the Unit- cals was alwaysconsidered a major threat to the aqua- ed States Congress. Both regulatory agencies have set tic organisms includingfishes [4]. Agricultural run an allowable level in soils, water, and food products. offs, whichcontainssignificant amount ofpesticides and These levels are calculated based on of the quantity of fertilizers, and industrial discharges provides the water lead that a person can consume or ingest without hav- bodies and sediments with huge amounts of inorganic ing an ill affect. For instance, FDA has set an action anions and heavy metals. These pollutants, when re- level of 0.5 µg/mL (0.5 mg/kg) for lead in infant and leased, enters the marine ecosystem slowlyincreasing childrens products and has banned the use of lead- their concentrations until it reach toxic levels [5]. It soldered food cans [10]. was noted that the contributions from these sources, either man-made or natural, are not the same in dif- OBJECTIVE OF THE STUDY ferent regions and in different seasons, thus heavy The main objective of the study is to determine the metal concentrations in surface water and sediments lead content in round scadfrom Batangas Bay. Specifi- varies both spatially and seasonally [6]. cally, it aims (1) to determine the concentrations of To monitor the extent of pollution in marine eco- lead in the head, flesh and internal organs of round systems, scientists nowadays utilized plant and animal scad in three sampling periods;(2) to determine if there species asbioindicators. Fishes are described to be a are significant differences between the lead concentra- good bioindicator of aquatic pollution since it is con- tion found in the head, flesh and internal organs of stantly exposed to pollutants through water and food round scadamong the sampling stations and (3) among [7]. the sampling periods; and (4) to know if the lead con- Heavy metals, which include lead (Pb), are among centrationsin round scadfrom Batangas Bay conforms the pollutants which contaminate the major bodies of to the specifications set by the United States Envi- waters. The amount of lead in water bodies are gener- ronmental Protection Agency (US EPA) and Food and ally low, but significant amounts of heavy metal-rich Drug Administration (FDA). dusts and vapors can be transmitted by the air, from windblown materials and volcanic eruptions. Common SETTING OF THE STUDY source of lead, which contributes to large emission to Batangas Bay is situated in the southern part of the theenvironment, are those derived from mining, smelt- Batangas province, which is located in the Southwes- ing and refining of lead and other metals.Mobile tern tip of Luzon Island. The Bay sits at the heart of sources of lead, which includes cars and other auto- the heart of the Coral Triangle, the global center of mobiles,is still a major factorand contributes to ele- marine biodiversity. vated levelsin ground and surface waters and other The coastline is about 470 km long. It is bordered bodies of water.Once ingested, lead may cause an irre- by coastal municipalities of Tingloy in Maricaban Isl- versible effect to the human body, inhibiting oxygen and, San Pascual, Bauan, Mabini and Batangas City. and calcium transport and affects the central nervous There are 44 coastal barangays along the Batangas system. Once exposed to lead, a person can suffer Bay [11]. from cardiovascular effects, increased blood pressure The coastline of Batangas Bay is home to different and incidence of hypertension, decreased kidney industries in Batangas province. Along its shores are function and reproductive problems (in both men and 23 large scale industries, 3 of them are large petroleum women). Recent studies indicates that no amount of companies located in the municipality of Mabini, San lead is safe for a growing child [8]. Pascual and Batangas City. Various industries like Food safety and quality is now a growing concern power generation, ship building, heavy metal fabrica- amongst consumer around the globe. Concerns on the tion, oleochemical manufacturing, petrochemical and assessment and control of food safety and quality in chemicalmanufacturing and storage are distributed aquaculture is important, as is the development of an along the coastline of Batangas Bay [12]. information base and other tools to enable objective Batangas Bay is also a busy road for both local and assessment of hazards and risks [9]. foreign vessels. It containsthe second largest interna- The United States Environmental Protection tional seaport in the Philippines, the Batangas Port. Agency (US EPA) and Food and Drug Administration The port serves as the center oftransportation of goods (FDA)are international agencies mandated to protect that originate from Batangas province and serves as human health
Recommended publications
  • Oeconomics of the Philippine Small Pelagics Fishery
    l1~~iJlLll.I.~lJ~ - r--I ~ ~~.mr'l ~ SH I 207 TR4 . #38c~.1 .I @)~~[fi]C!ffi]m @U00r@~O~~[ro)~[fi@ \ . §[fi]~~~~~~ ~~ II "'-' IDi III ~~- ~@1~ ~(;1~ ~\YL~ (b~ oeconomics of the Philippine Small Pelagics Fishery Annabelle C. ad Robert S. Pomeroy Perlita V. Corpuz Max Agiiero INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES 407 Biqeconomics of the Philippine Small Pelagics Fishery 7?kq #38 @-,,/ JAW 3 1 1996 Printed in Manila, Philippines Published by the International Center for Living Aquatic Resources Management, MCPO Box 2631, 0718 Makati, Metro Manila, Philippines Citation: Trinidad, A.C., R.S. Pomeroy, P.V. Corpuz and M. Aguero. 1993. Bioeconomics of the Philippine small pelagics fishery. ICLARM Tech. Rep. 38, 74 p. ISSN 01 15-5547 ISBN 971-8709-38-X Cover: Municipal ringnet in operation. Artwork by O.F. Espiritu, Jr. ICLARM Contribution No. 954 CONTENTS Foreword ................................................................................................................................v Abstract ..............................................................................................................................vi Chapter 1. Introduction ......................................................................................................1 Chapter 2 . Description of the Study Methods ................................................................4 Data Collection ....................................................................................................................4 Description
    [Show full text]
  • The Home of Blue Water Fish
    The Home of Blue Water Fish Rather than singly inhabiting the trackless ocean, pelagic fish species travel together in groups, which migrate between hidden, productive oases A. Peter Klimley, John E. Richert and Salvador J. Jorgensen ore than two decades ago, I (Klim- It was a wonder. But what left us side of the ocean have later been caught Mley) pressed my mask against my dumbfounded was the sudden erup- on the other side. However, these data face, took a deep breath and flipped tion of this multilayered community. do not tell marine scientists whether over the edge of a small Mexican fish- Just one week before, we had visited the individual moved alone or as part ing boat into the Gulf of California. The the same site and seen nothing. The of a school, as a single species or within spectacular vision I saw that day has difference between the visits was like an aggregation of many species. These shaped the questions that motivate my comparing an empty stadium to one unanswered questions are part of a research career in marine biology. crowded with tens of thousands of general ignorance that has hindered ef- I was looking for hammerhead sharks cheering fans. Had we witnessed the forts to maintain healthy populations of over the Gorda Seamount, a shallow arrival of a massive influx of oceanic pelagic fishes, many of which are in a underwater ridge at the mouth of the species to the Gulf of California? precipitous, worldwide decline because gulf between the Baja Peninsula and of over-harvesting.
    [Show full text]
  • Round Scad Exploration by Purse Seine in the South China Sea, Area III: Western Philippines
    Round scad exploration by purse seine in the South China Sea, Area III: Western Philippines Item Type book_section Authors Pastoral, Prospero C.; Escobar Jr., Severino L.; Lamarca, Napoleon J. Publisher Secretariat, Southeast Asian Fisheries Development Center Download date 01/10/2021 13:06:13 Link to Item http://hdl.handle.net/1834/40530 Proceedings of the SEAFDEC Seminar on Fishery Resources in the South China Sea, Area III: Western Philippines Round Scad Exploration by Purse Seine in the South China Sea, Area III: Western Philippines Prospero C. Pastoral1, Severino L. Escobar, Jr.1 and Napoleon J. Lamarca2 1BFAR-National Marine Fisheries Development Center, Sangley Point, Cavite City, Philippines 2BFAR-Fishing Technology Division, 860 Arcadia Bldg., Quezon Avenue, Quezon City, Philippines ABSTRACT Round scad exploration by purse seine in the waters of western Philippines was conducted from April 22 to May 7, 1998 for a period of five (5) fishing days with a total catch of 7.3 tons and an average of 1.5 tons per setting. Dominant species caught were Decapterus spp. having 70.09% of the total catch, followed by Selar spp. at 12.66% and Rastrelliger spp. 10.70%. Among the Decapterus spp. caught, D. macrosoma attained the highest total catch composition by species having 68.81% followed by D. kurroides and D.russelli with 0.31% and 1.14% respectively. The round scad fishery stock was composed mainly of juvenile fish (less than 13 cm) and Age group II (13 cm to 14 cm). Few large round scad at Age group IV and V (20 cm to 28 cm) stayed at the fishery.
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations
    A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS June 30 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria. L.D. Palomares, Rainer Froese, Brittany Derrick, Simon-Luc Nöel, Gordon Tsui Jessika Woroniak Daniel Pauly A report prepared by the Sea Around Us for OCEANA June 30, 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria L.D. Palomares1, Rainer Froese2, Brittany Derrick1, Simon-Luc Nöel1, Gordon Tsui1, Jessika Woroniak1 and Daniel Pauly1 CITE AS: Palomares MLD, Froese R, Derrick B, Nöel S-L, Tsui G, Woroniak J, Pauly D (2018) A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. The University of British Columbia, Vancouver, p. 64. 1 Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC V6T1Z4 Canada 2 Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany TABLE OF CONTENTS Executive Summary 1 Introduction 2 Material and Methods 3 − Reconstructed catches vs official catches 3 − Marine Ecoregions vs EEZs 3 − The CMSY method 5 Results and Discussion 7 − Stock summaries reports 9 − Problematic stocks and sources of bias 14 − Stocks in the countries where OCEANA operates 22 − Stock assessments on the Sea Around Us website 31 − The next steps 32 Acknowledgements 33 References 34 Appendices I. List of marine ecoregions by EEZ 37 II. Summaries of number of stock by region and 49 by continent III.
    [Show full text]
  • Earthquake Plan Swiss Community
    Embassy of Switzerland in the Philippines Our reference: 210.0-2-MAV Phone: + 632 757 90 00 Fax: + 632 757 37 18 Manila, November 2010 Earthquake Plan WHAT IS AN EARTHQUAKE? 1. Earthquakes are caused by geological movements in the earth which release energy and can cause severe damage due to ground vibration, surface faulting, tectonic uplifts or ground ruptures. These can also trigger tsunamis (large sea- waves), landslides, flooding, dam failures and other disasters up to several hundred kilometres from the epicentre. 2. These occur suddenly and usually without warning. Major earthquakes can last minutes, but as a rule, these last only a few ten seconds. All types of earthquakes are followed by aftershocks, which may continue for several hours or days, or even years. It is not uncommon for a building to survive the main tremor, only to be demolished later by an aftershock. 3. The actual movement of the ground during an earthquake seldom directly causes death or injury. Most casualties result from falling objects and debris or the collapse of buildings. The best protection for buildings is solid construction and a structural design intended to withstand an earthquake. 4. An initial shock of an earthquake is generally accompanied by a loud rumbling noise, and it is not uncommon that people rush outside of the building to see what is happening, only to be caught unprepared by the subsequent and potentially more dangerous shocks and falling debris. EARTHQUAKES AND THEIR EFFECTS Intensity Force Effects on Persons Buildings Nature I Unnoticed Not noticeable Very light noticed here and there II III Light Mainly noticed by persons in relaxing phase IV Medium Noticed in houses; Windows are vibrating waking up V Medium to strong Noticed everywhere in the open.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Decapterus Maruadsi (Temminck & Schlegel, 1843)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Species Fact Sheets Decapterus maruadsi (Temminck & Schlegel, 1843) Decapterus maruadsi: (click for more) Decapterus maruadsi: (click for more) Synonyms Caranx maruadsi Temminck & Schlegel, 1843: 108 (original description). Caranx scombrinus Valenciennes, 1846 Decapterus maraudsi , (of authors). FAO Names En - Japanese scad, Fr - Comète japonaise, Sp - Macarela japonesa. 3Alpha Code: RSA Taxonomic Code: 1702304307 Diagnostic Features Body elongate, fusiform, moderately compressed. Upper jaw reaching to just below front margin eye. Teeth in jaws in a single series, those of upper jaw confined to anterior end of jaw; vomerine teeth in a transverse strip; palatines toothed. First dorsal fin with 7-8 spines; second dorsal fin with one spine and 32-33 soft rays. Pectoral fins falcate, tips reaching to below origin of second dorsal fin. Anal fin with 2 detached spines, followed by I + 28-29 soft rays. A single finlet behind dorsal and anal fins. Lateral line slightly arched, becoming straight below 12th to 13th dorsal fin rays; curved portion longer than straight portion; 32 to 38 moderate scutes. Colour green to blue-green above, silvery white below; dorsal, pectoral and caudal fins pale yellow; anterior apex of 2nd dorsal fin withe; a black spot on edge of operculum; pupil black. Geographical Distribution FAO Fisheries and Aquaculture Department Launch the Aquatic Species Distribution map viewer Eastern Indian Ocean and Western Central Pacific; throughout most warm coastal waters. Habitat and Biology Inhabits coastal waters, normally down to 20 meters.In Guam, it is encountered in large numbers around fish aggregating devices, buoys anchored offshore to attract pelagic gamefishes.Feeds on pelagic and bottom-living animals.
    [Show full text]
  • Reproductive Biology of Parona Signata (Actinopterygii: Carangidae), a Valuable Economic Resource, in the Coastal Area of Mar Del Plata, Buenos Aires, Argentina
    Neotropical Ichthyology Original article https://doi.org/10.1590/1982-0224-2019-0133 Reproductive biology of Parona signata (Actinopterygii: Carangidae), a valuable economic resource, in the coastal area of Mar del Plata, Buenos Aires, Argentina Correspondence: Mariano González-Castro 1 1,2 [email protected] Santiago Julián Bianchi and Mariano González-Castro The reproductive biology and life cycle of Parona leatherjacket, Parona signata, present in Mar del Plata (38°00’S 57°33’W) coast, was studied. Samples were obtained monthly since January 2018 to February 2019 from the artisanal fishermen and the commercial fleet of Mar del Plata. A histological analysis was carried out and the main biologic-reproductive parameters were estimated: fecundity, oocyte frequency distribution and gonadosomatic index (GSI). Both the macroscopic and microscopic analyses showed reproductive activity in March and November. Mature females were recorded, which showed hydrated oocytes, as was evidenced by the histological procedures. Both, the histological and the oocyte diameter distribution analyses showed the presence of all oocyte Submitted December 11, 2019 maturation stages in ovaries in active-spawning subphase, indicating that Accepted July 9, 2020 P. signata is a multiple spawner with indeterminate annual fecundity. Batch by Fernando Gibran fecundity ranged between 36,426 and 126,035 hydrated oocytes/ female. Relative Epub October 09, 2020 fecundity ranged between 42 and 150 oocytes/ g female ovary free. Keywords: Fecundity, Gonad histology, Life cycle, Pampo solteiro, Reproductive ecology. Online version ISSN 1982-0224 Print version ISSN 1679-6225 1 Laboratorio de Biotaxonomía Morfológica y Molecular de Peces (BIMOPE). Instituto de Investigaciones Marinas y Costeras, Neotrop.
    [Show full text]
  • Sharkcam Fishes a Guide to Nekton at Frying Pan Tower by Erin J
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Information Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 3rd edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2018. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 3rd edition. Los Angeles: Explore.org Ocean Frontiers. 169 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 3.0. 26 January 2018. 2 Table of Contents Identification Images Species Profiles Additional Information Index TABLE OF CONTENTS FOREWORD AND INTRODUCTION.................................................................................. 8 IDENTIFICATION IMAGES .......................................................................................... 11 Sharks and Rays ................................................................................................................................... 11 Table: Relative frequency of occurrence and relative size ....................................................................
    [Show full text]
  • The Ecology of Coral Reef Top Predators in the Papahanaumoku¯ Akea¯ Marine National Monument
    Hindawi Publishing Corporation Journal of Marine Biology Volume 2011, Article ID 725602, 14 pages doi:10.1155/2011/725602 Review Article The Ecology of Coral Reef Top Predators in the Papahanaumoku¯ akea¯ Marine National Monument Jonathan J. Dale,1, 2 Carl G. Meyer,1 and Christian E. Clark1 1 Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P.O. Box 1346, Coconut Island, Kaneohe, HI 96744, USA 2 Department of Zoology, Edmonson Hall, University of Hawaii at Manoa, Honolulu, HI 96822, USA Correspondence should be addressed to Jonathan J. Dale, [email protected] Received 16 June 2010; Accepted 5 October 2010 Academic Editor: Robert J. Toonen Copyright © 2011 Jonathan J. Dale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Coral reef habitats in the Papahanaumoku¯ akea¯ Marine National Monument (PMNM) are characterized by abundant top-level predators such as sharks and jacks. The predator assemblage is dominated both numerically and in biomass by giant trevally (Caranx ignobilis) and Galapagos sharks (Carcharhinus galapagensis). A lower diversity of predatory teleosts, particularly groupers and snappers, distinguishes the PMNM from other remote, unfished atolls in the Pacific. Most coral reef top predators are site attached to a “home” atoll, but move extensively within these atolls. Abundances of the most common sharks and jacks are highest in atoll fore reef habitats. Top predators within the PMNM forage on a diverse range of prey and exert top-down control over shallow-water reef fish assemblages.
    [Show full text]