General Aviation Solutions Setting the Course for Nextgen Air Navigation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mise En Page 1
Military EC725 002 EC725 EC725 003 EC725 DESIGNED FOR THE MOST DEMANDING MISSIONS A COMBAT PROVEN MULTI-ROLE HELICOPTER Introduced in 2005, the EC725 has proven itself in combat service worldwide: Afghanistan, Lybia and Mali. An evolution from the experience gained with the Cougar family, the EC725 is the latest version of this medium lift (11-ton class) helicopter. The EC725 is equipped with: • Two latest generation Turbomeca Makila 2A1 engines • A five-blade rotor providing high levels of maneuverability • A state-of the-art glass cockpit and avionics • The most advanced Automatic Flight Control System. The EC725 excels in a full range of military missions: • Special Operations • Combat Search and Rescue • Tactical transport • Casualty / medical evacuation. As well as in public service missions: • Search and Rescue • Firefighting • Coast Guard • Exclusive Economic Zone (EEZ) protection. The EC725 - a truly multi-purpose, versatile military asset – has the capability to operate both from ships and from ashore. 004 EC725 The most demanding missions Special Ops, Combat SAR and Personal Recovery missions require performance, precise navigation and survivability; qualities for which the EC725 is outstanding. The French Forces are successfully operating the EC725 in the harshest environments. The success of the EC725 demonstrated in Afghanistan and Libya, reflects its excellent capabilities as a Force Multiplier and the ability of this aircraft to offer decisive tactical advantage to any operator. EC725 005 Mission Capabilities Major mission -
E. Runway Length Analysis
JOSLIN FIELD, MAGIC VALLEY REGIONAL AIRPORT DECEMBER 2012 E. Runway Length Analysis This appendix describes the runway length analysis conducted for the Airport. Runway 7-25, the Airport’s primary runway, has a length of 8,700 feet and the existing crosswind runway (Runway 12-30) has a length of 3,207 feet. A runway length analysis was conducted to determine if additional runway length is required to meet the needs of aircraft forecasted to operate at the Airport through the planning period. The analysis was conducted according to Federal Aviation Administration (FAA) guidance contained in Advisory Circular (AC) 150/5325-4B, Runway Length Requirements for Airport Design. The runway length analysis set forth in AC 150/5325-4B relates to both arrivals and departures, although departures typically require more runway length. Runway length requirements were determined separately for Runway 7-25 and Runway 12-30. E.1 Primary Runway Length Requirements According to AC 150/5325-4B, the design objective for the primary runway is to provide a runway length for all aircraft without causing operational weight restrictions. The methodology used to determine required runway lengths is based on the MTOW of the aircraft types to be evaluated, which are grouped into the following categories: Small aircraft (MTOW of 12,500 pounds or less) – Aircraft in this category range in size from ultralight aircraft to small turboprop aircraft. Within this category, aircraft are broken out by approach speeds (less than 30 knots, at least 30 knots but less than 50 knots, and more than 50 knots). Aircraft with approach speeds of more than 50 knots are further broken out by passenger seat capacity (less than 10 passenger seats and 10 or more passenger seats). -
2021 AHNA Options Catalogue
OPTIONS CATALOGUE 2021 Return to the Table of Contents Contact and Order Information U.S.A: +1 800-COPTER-1 [email protected] Canada: +1 800-267-4999 [email protected] © July 2021 Airbus Helicopters, all rights reserved. 002 | Options Catalogue 2021 Options Catalogue INTRODUCTION At Airbus Helicopters in North America, our engineering excellence and completions capability is an integral part of meeting your operating requirements. We are committed to providing OEM approved equipment modifications that further enhance your experience with our product line. This catalogue illustrates a grouping of our most important and interesting options available for the H125, H130, H135, and H145 aircraft families. Airbus Helicopters, Inc. is a certified “Design Approval Organization” by the Federal Aviation Administration. Airbus Helicopters Canada is a certified “Design Approval Organization” by Transport Canada. As customer centers, we have also been recognized as an Authorized Design Organization by the Airbus Helicopters Group (AH Group). For more information, please visit Airbus World or see contact information on the next page. Airbus Helicopters' Airbus World customer portal simplifies customers’ daily operations and allows them to focus on what really matters: their business. Air- bus World is an innovative online platform for accessing technical publications, placing orders and quotations, managing fleet data as well as warranty claims, and receiving quick responses to support and services questions. Airbus Helicopters reserves the right to make configuration and data changes at any time without notice. Information contained in this document is expressed in good faith and does not constitute any offer or contract with Airbus Helicopters. -
Advanced Technology Aircraft Phase 1
Department of Transport Bureau of Air Safety Investigation Advanced Technology Aircraft Phase 1 SAB/IP/94/01 RP/91/04 Released by the Director of the Bureau of Air Safety Investigation under the provisions of Air Navigation Regulation 283 When the Bureau makes recommendations as a result of its investigations or research, safety (in accordance with its charter) is its primary consideration. However, the Bureau fully recognises that the implementation of recommendations arising from its investigations will in some cases incur a cost to the industry. ISBN no. 0 642 20225 7 April 1994 lhsreport was produced by the Bureau of Air Safety Investigation (BASI), PO Box 967, Civic Square ACT 2608. The Director of the Bureau authorised the investigation and the publication of this report pursuant to his delegated powers conferred by Air Navigation Regulations 278 and 283 respectively. Readers are advised that the Bureau investigates for the sole purpose of enhancing aviation safety. Consequently, Bureau reports are confined to matters of safety significance and may be misleading if used for any other purpose. As BASI believes that safety information is of greatest value if it is passed on for the use of others, copyright restrictions do not apply to material printed in this report. Readers are encouraged to copy or reprint for further distribution, but should acknowledge BASI as the source. ii CONTENTS Page Summary iv Abbreviations V 1 Introduction 1 1.1 Definition 1 1.2 Objectives 1 2 Safety Issues Pertinent to Advanced Technology Aircraft 3 2.1 -
Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis
NASA Contractor Report 4700 Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis Steven L. Baughcum, Terrance G. Tritz, Stephen C. Henderson, and David C. Pickett Contract NAS1-19360 Prepared for Langley Research Center April 1996 NASA Contractor Report 4700 Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis Steven L. Baughcum, Terrance G. Tritz, Stephen C. Henderson, and David C. Pickett Boeing Commercial Airplane Group • Seattle Washington National Aeronautics and Space Administration Prepared for Langley Research Center Langley Research Center • Hampton, Virginia 23681-0001 under Contract NAS1-19360 April 1996 Printed copies available from the following: NASA Center for AeroSpace Information National Technical Information Service (NTIS) 800 Elkridge Landing Road 5285 Port Royal Road Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171 (301) 621-0390 (703) 487-4650 Executive Summary This report describes the development of a database of aircraft fuel burned and emissions from scheduled air traffic for each month of 1992. In addition, the earlier results (NASA CR-4592) for May 1990 scheduled air traffic have been updated using improved algorithms. These emissions inventories were developed under the NASA High Speed Research Systems Studies (HSRSS) contract NAS1-19360, Task Assignment 53. They will be available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. A detailed database of fuel burned and emissions [NOx, carbon monoxide(CO), and hydrocarbons (HC)] for scheduled air traffic has been calculated for each month of 1992. In addition, the emissions for May 1990 have been recalculated using the same methodology. The data are on a 1° latitude x 1° longitude x 1 km altitude grid. -
Flight Deck Solutions, Technologies and Services Moving the Industry Forward Garmin Innovation Brings Full Integration to Business Flight Operations and Support
FLIGHT DECK SOLUTIONS, TECHNOLOGIES AND SERVICES MOVING THE INDUSTRY FORWARD GARMIN INNOVATION BRINGS FULL INTEGRATION TO BUSINESS FLIGHT OPERATIONS AND SUPPORT From web-based flight planning, fleet scheduling and tracking services to integrated flight display technology, head-up displays, advanced RNP navigation, onboard weather radar, Data Comm datalinks and much more — Garmin offers an unrivaled range of options to help make flying as smooth, safe, seamless and reliable as it can possibly be. Whether you operate a business jet, turboprop or hard-working helicopter, you can look to Garmin for industry-leading solutions scaled to fit your needs and your cockpit. The fact is, no other leading avionics manufacturer offers such breadth of capability — or such versatile configurability — in its lineup of flight deck solutions for aircraft manufacturers and aftermarket upgrades. When it comes to bringing out the best in your aircraft, Garmin innovation makes all the difference. CREATING A VIRTUAL REVOLUTION IN GLASS FLIGHT DECK SOLUTIONS By presenting key aircraft performance, navigation, weather, terrain routings and so on. The map function is designed to interface with a and traffic information, in context, on large high-resolution color variety of sensor inputs, so it’s easy to overlay weather, lightning, traffic, displays, today’s Garmin glass systems bring a whole new level of terrain, towers, powerlines and other avoidance system advisories, as clarity and simplicity to flight. The screens offer wide viewing angles, desired. These display inputs are selectable, allowing the pilot to add advanced backlighting and crystal-sharp readability, even in bright or deselect overlays to “build at will” the map view he or she prefers for sunlight. -
(EU) 2018/336 of 8 March 2018 Amending Regulation
13.3.2018 EN Official Journal of the European Union L 70/1 II (Non-legislative acts) REGULATIONS COMMISSION REGULATION (EU) 2018/336 of 8 March 2018 amending Regulation (EC) No 748/2009 on the list of aircraft operators which performed an aviation activity listed in Annex I to Directive 2003/87/EC on or after 1 January 2006 specifying the administering Member State for each aircraft operator (Text with EEA relevance) THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union, Having regard to Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/ EC (1), and in particular Article 18a(3)(b) thereof, Whereas: (1) Directive 2008/101/EC of the European Parliament and of the Council (2) amended Directive 2003/87/EC to include aviation activities in the scheme for greenhouse gas emission allowance trading within the Union. (2) Commission Regulation (EC) No 748/2009 (3) establishes a list of aircraft operators which performed an aviation activity listed in Annex I to Directive 2003/87/EC on or after 1 January 2006. (3) That list aims to reduce the administrative burden on aircraft operators by providing information on which Member State will be regulating a particular aircraft operator. (4) The inclusion of an aircraft operator in the Union’s emissions trading scheme is dependent upon the performance of an aviation activity listed in Annex I to Directive 2003/87/EC and is not dependent on the inclusion in the list of aircraft operators established by the Commission on the basis of Article 18a(3) of that Directive. -
Revisiting System's Pages in Engine Indication and Alerting System for Flight Crew Using the DSCU Architecture and the OQCR System Generic State Description
Revisiting system’s pages in engine indication and alerting system for flight crew using the DSCU architecture and the OQCR system generic state description Elodie Bouzekri, Alexandre Canny, Célia Martinie de Almeida, Philippe Palanque, Eric Barboni, David Navarre, Christine Gris, Yannick Deleris To cite this version: Elodie Bouzekri, Alexandre Canny, Célia Martinie de Almeida, Philippe Palanque, Eric Barboni, et al.. Revisiting system’s pages in engine indication and alerting system for flight crew using the DSCU architecture and the OQCR system generic state description. INCOSE International Conference on Human System Integration (INCOSE HSI 2019), Sep 2019, Biarritz, France. pp.1-9. hal-02450862 HAL Id: hal-02450862 https://hal.archives-ouvertes.fr/hal-02450862 Submitted on 23 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/24919 To cite this version: Bouzekri, Elodie and Canny, Alexandre and Martinie De Almeida, Celia and Palanque, Philippe and Barboni, Eric and Navarre, David and Gris, Christine and Deleris, Yannick Revisiting system's pages in engine indication and alerting system for flight crew using the DSCU architecture and the OQCR system generic state description. -
Small Airplane Issues List ( SAIL ), Q2 FY 2020 Release
Small Airplane Issues List (SAIL) Q2 FY 2020 Release This issues list is applicable to both international validation and domestic certification projects for which the Small Airplane Standards Branch oversees new and revised policy. At this time, this list is incomplete and represents only a portion of the issues that require additional policy besides the policy already available on the FAA’s Regulatory and Guidance Library. This issues list (the SAIL) will continually be updated with those issues as we develop more standardized policy. Not all of these issues have template issue papers or policy memos available to ease the perceived burden of industry compliance to such policy, but we are working toward that end. The Small Airplane Standards Branch relies on the submittal of the Certification Project Notification by the geographic aircraft certification office (ACO) for domestic certification projects to evaluate the need for additional policy and we communicate that need to the (ACO) through the CPN response. Note- The below listed published FAA Advisory Circulars, Policy, and guidance are located on RGL at the following link: https://rgl.faa.gov/ Common terms on this list: SASB – Small Airplane Standards Branch MOC – Means of Compliance 1080 V1.0 Special Class Products Airships, Gliders (Sailplanes), and Very Light Airplanes are certificated by the FAA under 14 CFR 21.17(b) as "special class" products. These special class products use airworthiness design criteria as their certification basis rather than the airworthiness standards under Title 14, Code of Federal Regulations (14 CFR), part 23 etc. The FAA has published accepted means of compliance (MOC) that establish the airworthiness criteria for Gliders (Sailplanes), Very Light Airplanes, and Airships. -
Transitioning to Glass Cockpit Primary Training Fleets: Implications
Journal of Aviation/Aerospace Education & Research Volume 15 Number 3 JAAER Spring 2006 Article 6 Spring 2006 Transitioning to Glass Cockpit Primary Training Fleets: Implications Mark Sherman Deak Arch Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Sherman, M., & Arch, D. (2006). Transitioning to Glass Cockpit Primary Training Fleets: Implications. Journal of Aviation/Aerospace Education & Research, 15(3). Retrieved from https://commons.erau.edu/ jaaer/vol15/iss3/6 This Forum is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Sherman and Arch: Transitioning to Glass Cockpit Primary Training Fleets: Implicati Transitioning to Glass FORUM TMSITIOhTNG TO GLASS COCgPIT P-Y TRAIMNG FLEET32 IMPLICATIONS Mark Sherman and Deak Arch In late July, 2004, Ohio University had the unique opportunity to become a hnt-runner in one of the most significant revolutions in Technically Advanced Aircraft (TAA) training by purchasing seven new Piper Warrior III aircraft equipped with Avidyne Entegra Integrated Flight Decks, a highly advanced avionics system. This technology combines computerized flight decks with multi-function displays, moving maps, and integrated flight instruments in basic trainers. Prior to integration of the new aircdi, initial questions arose addressing concerns about student pilot flight training conducted in Technically Advanced Aircrafl, instructors whom have little experience teaching Technically Advanced Aircraft, integrating new aircraft platforms into FAR 141 Training Course Outline (TCO) requirements, and use of these aircraft while WlingPractical Test Standards (PTS) requirements. -
Jul O 1 2004 Libraries
Evaluation of Regional Jet Operating Patterns in the Continental United States by Aleksandra L. Mozdzanowska Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of MASSACHUSETTS INSTIfUTE OF TECHNOLOGY Master of Science in Aerospace Engineering JUL O 1 2004 at the LIBRARIES MASSACHUSETTS INSTITUTE OF TCHNOLOGY AERO May 2004 @ Aleksandra Mozdzanowska. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. A uthor.............. ....... Ale andawMozdzanowska Department of Aeronautics and Astronautics A I ,,May 7, 2004 Certified by.............................................. R. John Hansman Professor of Aeronautics and Astronautics Thesis Supervisor Accepted by.......................................... Edward M. Greitzer H.N. Slater Professor of Aeronautics and Astronautics Chair, Department Committee on Graduate Students 1 * t eWe I 4 w 4 'It ~tI* ~I 'U Evaluation of Regional Jet Operating Patterns in the Continental United States by Aleksandra Mozdzanowska Submitted to the Department of Aeronautics and Astronautics on May 7th 2004, in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering Abstract Airlines are increasingly using regional jets to better match aircraft size to high value, but limited demand markets. The increase in regional jet usage represents a significant change from traditional air traffic patterns. To investigate the possible impacts of this change on the air traffic management and control systems, this study analyzed the emerging flight patterns and performance of regional jets compared to traditional jets and turboprops. This study used ASDI data, which consists of actual flight track data, to analyze flights between January 1998 and January 2003. -
737 NG TQ Pro / Motor
Version 1.2.9 FSC 737 TQ Pro Manual date: 2017-12-24 WELCOME TO 737 NG TQ Pro / Motor Version 1.2.9 – December 2017 INDEX 1 INTRODUCTION 2 2 INSTALLATION 3 3 USING THE TQ IN X-PLANE 5 4 USING THE TQ IN FS9, FSX, ESP AND Prepar3D 6 5 CONFIGURING TQ THROTTLE FOR FIRST TIME USE 7 6 USING TQ THROTTLE DEVICE 9 7 INSTALLING AND CONFIGURING THE TQ IN PROJECT MAGENTA 18 20 8 INSTALLING AND CONFIGURING THE TQ IN PROSIM 737 9 COMPATIBILITY NOTES 22 10 HOW TO CONFIGURE TQ CONNECTION WITH LAN INTERFACE 23 11 USING THE TQ IN X-PLANE 11 24 12 USING THE TQ WITH PMDG 777 X AND 747 QUEEN OF THE SKY II 25 13 HOW TO CONTACT SUPPORT 26 ! IMPORTANT ! Most of the functionalities of this product require registered FSUIPC if using MSFS related software and XPUIPC if using X-Plane. These products are not supplied with this driver and can be obtained from simmarket.com (FSUIPC) or from tosi-online.de (XPUIPC). The name of TQ program executable begins always with "MS173486 TQ" and may vary depending the release. If you are using the TQ in Project Magenta or Prosim 737 software, do not run the 737 NG TQ Pro Motor program (MS173486 TQ xxx.exe) since the TQ hardware can’t be used by two software running at the same time. Official website for information and support: http://www.flightsimulatorcenter.com Revision History : 1.2.9 : added configuration for PMDG 777 and 747 1.2.8 : added configuration for X-plane 11 737-800 1.2.7 : added configuration for LAN interface 1.2.6 : added configuration for Prosim737 1.2.5 : added configuration for Project Magenta www.flightsimulatorcenter.com page 1/26 Version 1.2.9 FSC 737 TQ Pro Manual date: 2017-12-24 1 - INTRODUCTION Welcome to 737 NG TQ Pro Metal.