737 NG TQ Pro / Motor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DHC-8-402, G-FLBE No & Type of Engines
AAIB Bulletin G-FLBE AAIB-26260 SERIOUS INCIDENT Aircraft Type and Registration: DHC-8-402, G-FLBE No & Type of Engines: 2 Pratt & Whitney Canada PW150A turboprop engines Year of Manufacture: 2009 (Serial no: 4261) Date & Time (UTC): 14 November 2019 at 1950 hrs Location: In-flight from Newquay Airport to London Heathrow Airport Type of Flight: Commercial Air Transport (Passenger) Persons on Board: Crew - 4 Passengers - 59 Injuries: Crew - None Passengers - None Nature of Damage: Aileron cable broke Commander’s Licence: Airline Transport Pilot’s Licence Commander’s Age: 51 years Commander’s Flying Experience: 8,778 hours (of which 5,257 were on type) Last 90 days - 150 hours Last 28 days - 33 hours Information Source: AAIB Field Investigation Synopsis Shortly after takeoff in a strong crosswind, the pilots noticed that both handwheels1 were offset to the right in order to maintain wings level flight. The aircraft diverted to Exeter Airport where it made an uneventful landing. The handwheel offset was the result of a break in a left aileron cable that ran along the wing rear spar. In the course of this investigation it was discovered that the right aileron on G-FLBE, and other aircraft in the operator’s fleet, would occasionally not respond to the movement of the handwheels. Non-reversible filters were also fitted to the operator’s aircraft that meant that it was not always possible to reconstruct the actual positions of the control wheel, column or rudder pedals recorded by the Flight Data Recorder. The aircraft manufacturer initiated safety actions to improve the maintenance of control cables and to determine the extent of the unresponsive ailerons across the fleet. -
Mise En Page 1
Military EC725 002 EC725 EC725 003 EC725 DESIGNED FOR THE MOST DEMANDING MISSIONS A COMBAT PROVEN MULTI-ROLE HELICOPTER Introduced in 2005, the EC725 has proven itself in combat service worldwide: Afghanistan, Lybia and Mali. An evolution from the experience gained with the Cougar family, the EC725 is the latest version of this medium lift (11-ton class) helicopter. The EC725 is equipped with: • Two latest generation Turbomeca Makila 2A1 engines • A five-blade rotor providing high levels of maneuverability • A state-of the-art glass cockpit and avionics • The most advanced Automatic Flight Control System. The EC725 excels in a full range of military missions: • Special Operations • Combat Search and Rescue • Tactical transport • Casualty / medical evacuation. As well as in public service missions: • Search and Rescue • Firefighting • Coast Guard • Exclusive Economic Zone (EEZ) protection. The EC725 - a truly multi-purpose, versatile military asset – has the capability to operate both from ships and from ashore. 004 EC725 The most demanding missions Special Ops, Combat SAR and Personal Recovery missions require performance, precise navigation and survivability; qualities for which the EC725 is outstanding. The French Forces are successfully operating the EC725 in the harshest environments. The success of the EC725 demonstrated in Afghanistan and Libya, reflects its excellent capabilities as a Force Multiplier and the ability of this aircraft to offer decisive tactical advantage to any operator. EC725 005 Mission Capabilities Major mission -
Delta Air Lines Flight 1086 ALPA Submission
Submission of the Air Line Pilots Association, International to the National Transportation Safety Board Regarding the Accident Involving Delta Air Lines 1086 MD-88 DCA15FA085 New York, NY March 5, 2015 Air Line Pilots Association, International Delta Air Lines 1086 Submission Table of Contents Executive Summary ........................................................................................................................ 1 1.0 Factual Information ................................................................................................................. 3 1.1 History of Flight ............................................................................................................... 3 2.0 Operations .............................................................................................................................. 4 2.1 Weather ........................................................................................................................... 4 2.2 Regulations for Dispatching an Aircraft ........................................................................... 5 2.3 Crew Expectation of Runway Condition .......................................................................... 6 2.4 Approach ......................................................................................................................... 6 2.5 Landing Distance Assessment .......................................................................................... 7 2.6 Runway Condition on the Pier ........................................................................................ -
Aircraft Composite Spoiler Fitting Design Using the Variable Density Model
Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 65 ( 2015 ) 99 – 106 International Conference on Communication, Management and Information Technology (ICCMIT 2015) Aircraft composite spoiler fitting design using the variable density model V.A. Komarov*, E.A. Kishov, E.I. Kurkin, R.V. Charkviani Samara State Aerospace University (SSAU), 34, Moskovskoe shosse, Samara, 443086, Russia Abstract Present paper describes a problem of a fitting unit design for transferring the high concentrated forces to thin-walled layered composite airframe structures. The using of variable density model is offered as new mathematical model for the solution of topology optimization problems. The offered technique is illustrated by the fitting brought to production and carrying out its successful static and resource tests. The resulting optimized aircraft spoiler fitting design has weight twice less than its initial design version obtained without using the variable density model. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (©http://creativecommons.org/licenses/by-nc-nd/4.0/ 2015 The Authors. Published by Elsevier B.V. ). PeerPeer-review-review under under responsibility responsibility of Universal of Universal Society Society for Applied for AppliedResearch. Research Keywords: load trasferring path; topology optimization; design;spoiler fitting; airframe structures; variable density model. 1. Introduction The using of vacuum infusion or RTM technology is applied for elements of mechanization of aircraft structures1. Thus it is possible to get the finished structure ”in-one-shot”. The experience of the long-range passenger aircraft spoiler design showed that it can be made by the one integral detail using composite materials. -
2021 AHNA Options Catalogue
OPTIONS CATALOGUE 2021 Return to the Table of Contents Contact and Order Information U.S.A: +1 800-COPTER-1 [email protected] Canada: +1 800-267-4999 [email protected] © July 2021 Airbus Helicopters, all rights reserved. 002 | Options Catalogue 2021 Options Catalogue INTRODUCTION At Airbus Helicopters in North America, our engineering excellence and completions capability is an integral part of meeting your operating requirements. We are committed to providing OEM approved equipment modifications that further enhance your experience with our product line. This catalogue illustrates a grouping of our most important and interesting options available for the H125, H130, H135, and H145 aircraft families. Airbus Helicopters, Inc. is a certified “Design Approval Organization” by the Federal Aviation Administration. Airbus Helicopters Canada is a certified “Design Approval Organization” by Transport Canada. As customer centers, we have also been recognized as an Authorized Design Organization by the Airbus Helicopters Group (AH Group). For more information, please visit Airbus World or see contact information on the next page. Airbus Helicopters' Airbus World customer portal simplifies customers’ daily operations and allows them to focus on what really matters: their business. Air- bus World is an innovative online platform for accessing technical publications, placing orders and quotations, managing fleet data as well as warranty claims, and receiving quick responses to support and services questions. Airbus Helicopters reserves the right to make configuration and data changes at any time without notice. Information contained in this document is expressed in good faith and does not constitute any offer or contract with Airbus Helicopters. -
Advanced Technology Aircraft Phase 1
Department of Transport Bureau of Air Safety Investigation Advanced Technology Aircraft Phase 1 SAB/IP/94/01 RP/91/04 Released by the Director of the Bureau of Air Safety Investigation under the provisions of Air Navigation Regulation 283 When the Bureau makes recommendations as a result of its investigations or research, safety (in accordance with its charter) is its primary consideration. However, the Bureau fully recognises that the implementation of recommendations arising from its investigations will in some cases incur a cost to the industry. ISBN no. 0 642 20225 7 April 1994 lhsreport was produced by the Bureau of Air Safety Investigation (BASI), PO Box 967, Civic Square ACT 2608. The Director of the Bureau authorised the investigation and the publication of this report pursuant to his delegated powers conferred by Air Navigation Regulations 278 and 283 respectively. Readers are advised that the Bureau investigates for the sole purpose of enhancing aviation safety. Consequently, Bureau reports are confined to matters of safety significance and may be misleading if used for any other purpose. As BASI believes that safety information is of greatest value if it is passed on for the use of others, copyright restrictions do not apply to material printed in this report. Readers are encouraged to copy or reprint for further distribution, but should acknowledge BASI as the source. ii CONTENTS Page Summary iv Abbreviations V 1 Introduction 1 1.1 Definition 1 1.2 Objectives 1 2 Safety Issues Pertinent to Advanced Technology Aircraft 3 2.1 -
Numerical Simulation Around Wing Control Surfaces
24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES NUMERICAL SIMULATIONS AROUND WING CONTROL SURFACES Guillaume Fillola AIRBUS, Toulouse, Fr Marie-Claire Le Pape Marc Montagnac ONERA, Châtillon, Fr CERFACS, Toulouse, Fr Keywords: Aileron, Spoiler, Chimera Mesh, Patched Grid, Wall Law ABSTRACT ych Adimensioned coordinate y by half span, A study of wing control surface effectiveness =(y-yroot)/b was carried out using numerical simulations chz Local load in z direction with the advanced Reynolds Averaged Navier- Stokes solver elsA. Non-coincident meshing 1 INTRODUCTION techniques were used as to make the mesh generation process more flexible. The first The correct prediction of handling qualities application attempts to predict an aileron and hinge moments induced by the deployment effectiveness using the patched grid meshing of wing control surfaces (spoilers and ailerons) technique combined with a mesh deformation is a crucial point in the general aircraft sizing tool in order to operate the aileron deflection. process with a strong impact on the final aircraft The second one deals with spoiler deployment weight. The complexity of the aerodynamic and involves the Chimera technique, which flows around deployed control surfaces and the allows separating the spoiler meshing from the importance of the flight envelope to be covered wing meshing and so avoiding a complete mesh made difficult the use of CFD in the elaboration re-generation for each spoiler deflection. of Aerodynamic Data. Until now, only very time-consuming and costly wind tunnel tests and not very accurate semi-empirical methods NOMENCLATURE were used. For a long time, CFD has been intensively a Angle of attack used at Airbus for shape design and Sideslip angle b optimization. -
Trailing Vortex Attenuation Devices
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1985 Trailing vortex attenuation devices. Heffernan, Kenneth G. http://hdl.handle.net/10945/21590 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93^43 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS TRAILING VORTEX ATTENUATION DEVICES by Kenneth G. Heffernan June 1985 Thesis Advisor: T. Sarpkaya Approved for public release; distribution is unlimited, T223063 Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered) REPORT READ INSTRUCTIONS DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT A PERIOD COVERED Dual Master's Thesis; Trailing Vortex Attenuation Devices June 1985 S. PERFORMING ORG. REPORT NUMBER 7. AUTHORC»> 8. CONTRACT OR GRANT NUMBERC*.) Kenneth G. Heffernan 9. PERFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Postgraduate School Monterey, California 93943 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE June 1985 Naval Postgraduate Schodl 13. NUMBER OF PAGES Monterey, California 93943 109 U. MONITORING AGENCY NAME 4 ADDRESSf/f different from Controlling OHicm) 15. SECURITY CLASS, (ol (his report) Unclassified 15a. DECLASSIFICATION/ DOWNGRADING SCHEDULE 16. DISTRIBUTION ST ATEMEN T (of this Report) Approved for public release; distribution is unlimited. 17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide It necessary and Identify by block number) Trailing Vortices 20. ABSTRACT fConl/nu» on reverse side It necessary and Identity by block number) Trailing vortices generated by large aircraft pose a serious hazard to other planes. -
Flight Deck Solutions, Technologies and Services Moving the Industry Forward Garmin Innovation Brings Full Integration to Business Flight Operations and Support
FLIGHT DECK SOLUTIONS, TECHNOLOGIES AND SERVICES MOVING THE INDUSTRY FORWARD GARMIN INNOVATION BRINGS FULL INTEGRATION TO BUSINESS FLIGHT OPERATIONS AND SUPPORT From web-based flight planning, fleet scheduling and tracking services to integrated flight display technology, head-up displays, advanced RNP navigation, onboard weather radar, Data Comm datalinks and much more — Garmin offers an unrivaled range of options to help make flying as smooth, safe, seamless and reliable as it can possibly be. Whether you operate a business jet, turboprop or hard-working helicopter, you can look to Garmin for industry-leading solutions scaled to fit your needs and your cockpit. The fact is, no other leading avionics manufacturer offers such breadth of capability — or such versatile configurability — in its lineup of flight deck solutions for aircraft manufacturers and aftermarket upgrades. When it comes to bringing out the best in your aircraft, Garmin innovation makes all the difference. CREATING A VIRTUAL REVOLUTION IN GLASS FLIGHT DECK SOLUTIONS By presenting key aircraft performance, navigation, weather, terrain routings and so on. The map function is designed to interface with a and traffic information, in context, on large high-resolution color variety of sensor inputs, so it’s easy to overlay weather, lightning, traffic, displays, today’s Garmin glass systems bring a whole new level of terrain, towers, powerlines and other avoidance system advisories, as clarity and simplicity to flight. The screens offer wide viewing angles, desired. These display inputs are selectable, allowing the pilot to add advanced backlighting and crystal-sharp readability, even in bright or deselect overlays to “build at will” the map view he or she prefers for sunlight. -
C. Yeh – Airbus Fly-By-Wire Computers: A320-A350
Airbus Fly-By-Wire Computers A320 – A350 Ying Chin (Bob) Yeh, Ph. D., IEEE Fellow Technical Fellow Flight Controls Systems Boeing Commercial Airplanes IEEE ComSoc Technical Committee on Communication Quality & Reliability Emerging Technology Reliability Roundtable Stevenson, WA, USA, May 9, 2016 Non-technical / Administrative Data Only. Not subject to EAR or ITAR Export Regulations Airbus (and French) Organizations for Airbus FBW Computers ° Research In 1970, French government modeled SRI International and MIT DraperLabs to create LAAS CNRS research institute for Computing System Technology, with a work force of 750. A sub-group, Informatique crtique (dependable computing), has been the main research arm for Airbus FC, consisting of ~20 Ph.D researchers. This group is the computer architect for A320 FBW Computers. ° Platform Design After A320, Airbus creates EYY group to MAKE FBW Computers and being responsible for FBW Computers, Warning Electronics, and Maintenance. 2 Airbus Fly-By-Wire Computers Design Philosophy • Active-Standby control of an actuator for a control surface with multiple actuators, other actuators in By-Pass Mode • Active-Passive control of an actuator among Flight Control Computer channels: upon detecting loss of an active computer channel commands, the passive computer will become active • Self Monitor computer channel, with Command Lane and Monitor Lane 3 An example of Airbus FBW COM/MON-based Monitoring 4 Evolution of Airbus FBW Computers • A320 (Architect: LAAS, Platforms: Thompson CSF and Sfena, now Thales) Dual-Dual -
Approaches to Assure Safety in Fly-By-Wire Systems: Airbus Vs
APPROACHES TO ASSURE SAFETY IN FLY-BY-WIRE SYSTEMS: AIRBUS VS. BOEING Andrew J. Kornecki, Kimberley Hall Embry Riddle Aeronautical University Daytona Beach, FL USA <[email protected]> ABSTRACT The aircraft manufacturers examined for this paper are Fly-by-wire (FBW) is a flight control system using Airbus Industries and The Boeing Company. The entire computers and relatively light electrical wires to replace Airbus production line starting with A320 and the Boeing conventional direct mechanical linkage between a pilot’s 777 utilize fly-by-wire technology. cockpit controls and moving surfaces. FBW systems have been in use in guided missiles and subsequently in The first section of the paper presents an overview of military aircraft. The delay in commercial aircraft FBW technology highlighting the issues associated with implementation was due to the time required to develop its use. The second and third sections address the appropriate failure survival technologies providing an approaches used by Airbus and Boeing, respectively. In adequate level of safety, reliability and availability. each section, the nature of the FBW implementation and Software generation contributes significantly to the total the human-computer interaction issues that result from engineering development cost of the high integrity digital these implementations for specific aircraft are addressed. FBW systems. Issues related to software and redundancy Specific examples of software-related safety features, techniques are discussed. The leading commercial aircraft such as flight envelope limits, are discussed. The final manufacturers, such as Airbus and Boeing, exploit FBW section compares the approaches and general conclusions controls in their civil airliners. The paper presents their regarding the use of FBW technology. -
Revisiting System's Pages in Engine Indication and Alerting System for Flight Crew Using the DSCU Architecture and the OQCR System Generic State Description
Revisiting system’s pages in engine indication and alerting system for flight crew using the DSCU architecture and the OQCR system generic state description Elodie Bouzekri, Alexandre Canny, Célia Martinie de Almeida, Philippe Palanque, Eric Barboni, David Navarre, Christine Gris, Yannick Deleris To cite this version: Elodie Bouzekri, Alexandre Canny, Célia Martinie de Almeida, Philippe Palanque, Eric Barboni, et al.. Revisiting system’s pages in engine indication and alerting system for flight crew using the DSCU architecture and the OQCR system generic state description. INCOSE International Conference on Human System Integration (INCOSE HSI 2019), Sep 2019, Biarritz, France. pp.1-9. hal-02450862 HAL Id: hal-02450862 https://hal.archives-ouvertes.fr/hal-02450862 Submitted on 23 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/24919 To cite this version: Bouzekri, Elodie and Canny, Alexandre and Martinie De Almeida, Celia and Palanque, Philippe and Barboni, Eric and Navarre, David and Gris, Christine and Deleris, Yannick Revisiting system's pages in engine indication and alerting system for flight crew using the DSCU architecture and the OQCR system generic state description.