Managing Huanglongbing/Citrus Greening Disease. Issue Brief 4

Total Page:16

File Type:pdf, Size:1020Kb

Managing Huanglongbing/Citrus Greening Disease. Issue Brief 4 Subregional Office for the Caribbean ISSUE BRIEF #4 Managing Huanglongbing/Citrus Greening Disease in the Caribbean October 2013 KEY FACTS X Citrus Huanglongbing (HLB) or Citrus Greening Disease, caused by a bacterium (Candidatus Liberibacter asiaticus). X HLB is one of the most serious and devastating of all the diseases affecting citrus. Globally, HLB has destroyed more than 100 million trees. X In the Caribbean, Jamaica and Belize have been severely affected by the disease. FAO projects were implemented in both countries in 2011-2013 and have had some success in salvaging trees and increasing yields. Transboundary movement of plant diseases has always existed, presenting a constant threat and, in some instances, causing devastation to entire industries. But in an X A regional project for Latin increasingly globalized world with greater and more rapid flow of people and goods America and the Caribbean across borders, prevention of transboundary movement of diseases has become far was launched in November more difficult and requires the coordinated intervention of all stakeholders on national, 2012 and is establishing: regional and even international levels. – Standard Operating Procedures to One industry of great importance to several Latin American and Caribbean countries communicate risks, surveillance, is currently facing a potentially devastating disease. The regional citrus industry diagnostics and management provides products such as fresh limes, lemons, oranges, tangerines, grapefruit and other citrus as well concentrates and juices, contributing both to domestic – a Regional Information and food security as well as to foreign exchange earning via exports. The emerging Communication System threat comes in the form of Citrus Huanglongbing (HLB) or Citrus Greening Disease, caused by a bacterium (Candidatus Liberibacter asiaticus). – networking mechanisms among subregional plant health agencies HLB is one of the most serious and devastating of all the diseases affecting citrus. It is estimated that globally HLB has destroyed more than 100 million trees and – a proposal for a regional has spread to several continents including the Americas. Its high socio-economic programme on plant health impact is linked to the fact that all species of citrus are affected and there is no and management of emerging known cure. cross-border diseases The disease is spread by the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, – a panel of experts a tiny insect about 4 mm long, which feeds on the leaves of citrus trees. When the ACP feeds on an infected leaf for about 30 minutes, it can pick up the bacterium, 1 carrying it for many days and transferring It takes 6-8 years for citrus trees to reach in both countries and subsequently, it when feeding on an uninfected tree. peak production levels. The disease requests were made to FAO for technical This bacterium blocks the phloem and tends to target younger trees, making assistance to fill critical gaps. prevents the flow of nutrients, causing it difficult for growers to quickly replace loss of leaves, deformation of fruits plants that have been lost. In many Jamaica which can become bitter and hard, cases, farmers switch to the cultivation early fruit drop and the eventual death of other crops in order to salvage their The citrus industry is of vital of the tree. Grafting infected plant tissue livelihoods, rather than engage in the importance to Jamaica’s economy onto a healthy plant can also spread the costly and time consuming programme in terms of employment, exports and disease. of management required to revive their local production. The total value of orchards. The reduction and loss in citrus the industry is estimated at US$40 Management of the disease is production directly affects employment million, generating employment for compounded by the ubiquitous presence in the field and along the entire value approximately 19 500 persons at of citrus trees across the region, not only chain. Although to date there is no data the industry level (including on-farm on commercial orchards, but also in on social impact, preliminary estimates operations, processing, packaging backyards as a household fruit crop and in the case of Mexico indicate that, in the plant, wholesale and retail trades). Citrus as a particularly favoured ornamental absence of preventative action, direct yields have fluctuated over the last plant, Murraya paniculata or orange employment would be reduced by 14% several years largely due to the effect jasmine (a host for both the ACP and HLB), within 3 years and 39% within 5 years of of Citrus Tristeza Virus (CTV), adverse wherein subtle changes in the health of HLB taking hold. weather conditions, poor management the trees may go unnoticed. Symptoms practices, an ageing farming community may not begin to show until a year or Management of the disease may also and declining acreages. With the more after the tree has been infected, by bring with it a detrimental effect on industry in the midst of the steady which time several or all neighbouring the environment associated with the march to recovery following the mass trees may have become infected. disposal and burning of millions of replanting of trees between 5–15 years trees. Alternately, the intensive use of ago, the encroachment of HLB was a Impact pesticides can cause pollution of soils, source of grave concern. ground water resources and air, and Fruits affected by HLB lose their affect biodiversity. The TCP project, TCP/JAM/3302 commercial value. Along with the – Assistance to manage Citrus direct economic impact of losses in National projects Greening in Jamaica, was approved yield, volume and value of production, in October 2011 and implemented management of the disease is very Jamaica and Belize are two countries of between January 2011 and January costly. Estimates from Brazil, where HLB the Caribbean where the citrus industry 2013 in conjunction with the Ministry of was first discovered in 2004, place costs is socially and economically important Agriculture and Fisheries (MOAF), and at approximately US$403 per hectare, and where HLB was discovered in in close collaboration with the Jamaica too high for small and medium-sized 2009. National programmes for the Citrus Protection Agency (a national producers in the Caribbean to bear. management of HLB were initiated body with the mandate to regulate citrus nurseries in the country), and the Rural Agricultural Development Authority (RADA). The project resulted in: X an assessment of available HLB management options and methods suited to the Jamaican context and the determination of appropriate implementation mechanisms; X development and implementation of an Area-wide Integrated Management Strategy (AIMS), to facilitate a cooperative approach to HLB management by geographically connected farmers; X Training of Trainers (ToT) in HLB management and record keeping. Area-wide management strategies for the psyllid and HLB were implemented and reviewed 2 A total of 97 persons were trained under this component - Free of ACP and/or HLB ACP is present HLB is present 57 Extension Officers of RADA, 27 farmer leaders/key farmers, one nursery operator and one ‣ Launch public awareness ‣ Develop a National ‣ Reduce the vector Plant Quarantine Officer; and surveillance Action Plan for ACP psyllid through the campaigns. management to include: introduction of biological X improved national capability for control to slow the rate diagnosis and detection of HLB, ‣ Train technical staff – surveys / surveillance of spread of HLB. through structural renovation and in the identification activities to detect equipping of laboratory facilities of ACP and HLB. presence / spread ‣ Lengthen the life and and training of eight technicians of ACP (and HLB) productivity of the in disease management. ‣ Limit / eliminate trees through improved Participants were drawn from importation of – introduction of nutrition and weed / the Scientific Research Council citrus plants. biological control grove management. (SRC), MOAF’s Research and - the parasitoid Development Division, the ‣ Develop a Rapid Tamarixia radiata (if Jamaica Citrus Protection Response Plan, in the not already present) Agency (JCPA) and Trade Winds event that ACP (and Ltd (the largest private citrus HLB) are detected. producer and processor); Differentiated management approaches based on disease status X increased capacity to produce disease-free planting material Belize and materials for providing through the establishment of HLB testing service to a screen house for bud-wood The citrus industry is very important farmers and growers; production and an insect-proof to the economy of Belize in terms demonstration nursery; training of employment, livelihood of rural X identification of crop of 20 nursery operators in new communities, exports and local diversification opportunities for nursery management protocols; production. It is estimated that the former citrus growers and a training of 11 technicians and total value of the industry to the Belize review of institutional support officers to introduce new shoot- economy is approximately US$50 required for displaced farmers; tip/micro-grafting techniques million. Employment at the industry for the elimination of graft- level is estimated at 10 000 persons. X recommendations for sustainable transmissible pathogens of citrus; Like Jamaica, Belize went through the funding mechanisms for process of replanting citrus groves to nursery certification and X development of a public
Recommended publications
  • How to Fight Citrus Greening Disease (And It’S Not Through Genetic Engineering)
    William & Mary Environmental Law and Policy Review Volume 40 (2015-2016) Issue 3 Article 7 May 2016 Saving The Orange: How to Fight Citrus Greening Disease (And It’s Not Through Genetic Engineering) Evan Feely Follow this and additional works at: https://scholarship.law.wm.edu/wmelpr Part of the Agriculture Law Commons, and the Environmental Law Commons Repository Citation Evan Feely, Saving The Orange: How to Fight Citrus Greening Disease (And It’s Not Through Genetic Engineering), 40 Wm. & Mary Envtl. L. & Pol'y Rev. 893 (2016), https://scholarship.law.wm.edu/wmelpr/vol40/iss3/7 Copyright c 2016 by the authors. This article is brought to you by the William & Mary Law School Scholarship Repository. https://scholarship.law.wm.edu/wmelpr SAVING THE ORANGE: HOW TO FIGHT CITRUS GREENING DISEASE (AND IT’S NOT THROUGH GENETIC ENGINEERING) EVAN FEELY* INTRODUCTION The orange is dying. With Florida’s citrus industry already suffer- ing from the growing skepticism of an increasingly health-conscious American public as to orange juice’s benefits,1 the emergence of citrus greening disease over the past two decades has left the orange’s long-term future very much in doubt.2 A devastating virus first documented in China roughly one hundred years ago, citrus greening disease (or “HLB”), has only migrated to Florida in the past twenty years, but has quickly made up for lost time.3 Primarily transmitted by an insect known as the Asian citrus psyllid (“ACP”), the disease has devastated Florida growers in recent years, wiping out entire groves and significantly affecting trees’ overall yield.4 This past year, Florida growers experienced their least productive harvest in forty years, and current estimates of next year’s yield are equally dismal.5 * J.D.
    [Show full text]
  • Kettleman City, Kings County Please Read Immediately
    CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE OFFICIAL NOTICE FOR CITY OF KETTLEMAN CITY, KINGS COUNTY PLEASE READ IMMEDIATELY THE NOTICE OF TREATMENT FOR THE ASIAN CITRUS PSYLLID On September 18, 2020 the California Department of Food and Agriculture (CDFA) confirmed the presence of Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, a harmful exotic pest in the city of Kettleman City, Kings County. This detection indicate that a breeding population exists in the area. The devastating citrus disease Huanglongbing (HLB) is spread by the feeding action of ACP. The ACP infestation is sufficiently isolated and localized to be amenable to the CDFA’s ACP treatment work plan. A Program Environmental Impact Report (PEIR) has been certified which analyzes the ACP treatment program in accordance with Public Resources Code, Sections 21000 et seq. The PEIR is available at http://www.cdfa.ca.gov/plant/peir/. The treatment activities described below are consistent with the PEIR. In accordance with integrated pest management principles, CDFA has evaluated possible treatment methods and determined that there are no physical, cultural, or biological control methods available to eliminate the ACP from this area. Notice of Treatment is valid until September 18, 2021, which is the amount of time necessary to determine that the treatment was successful. The treatment plan for the ACP infestation will be implemented within a 50-meter radius of each detection site, as follows: • Tempo® SC Ultra (cyfluthrin), a contact insecticide for controlling the adults and nymphs of ACP, will be applied from the ground using hydraulic spray equipment to the foliage of host plants; and • Merit® 2F or CoreTect™ (imidacloprid), a systemic insecticide for controlling the immature life stages of ACP, will be applied to the soil underneath host plants.
    [Show full text]
  • TRISTEZA the Worldwide Threat from Destructive Isolates of Citrus
    TRISTEZA The Worldwide Threat from Destructive Isolates of Citrus Tristeza Virus-A Review C. N. Roistacher and P. Moreno ABSTRACT. This paper reviews the effects of extremely destructive forms of citrus tristeza virus (CTV) which poses serious threats to citrus industries worldwide. These include Capao Bonito CTV in Brazil, navel orange stem pitting CTV in Peru, stem pitting 12B CTV found in the university orchards in Southern California, severe grapefruit stem pitting CTV found in South Africa, recent forms of CTV responsible for decline of sweet orange on sour orange rootstock in Florida and Israel and other severe CTV isolatesreported from Spainand elsewhere. Many ofthesedestructive CTVisolates are transmitted by Toxoptera citricidus but most can be transmitted by Aphis gossypii at relatively high levels of efficiency. The impact of recent changes in aphid transmissibility and population dynamics, and the threat of movement of T. citricidus into new regions of the world are reviewed. The appearance and impact of new strains or mutants of CTV differing in pathogenic capacities or in aphid transmissibility are discussed. Methods for the identification of new or destructive isolates of CTV are also reviewed. Concepts for prevention which include quarantine, eradication and education are presented. The immediate need is to test for presence of CTV in those countries where sour orange is the predominant rootstock. Also, to test for and eliminate very destructive forms of CTV, to strengthen quarantine laws and regulations, and to educate scientists, nurseryman and growers to the dangers involved in budwood importation and virus or vector spread. Tristeza, caused by the citrus ravages of tristeza once it begins to tristeza virus (CTV) remains today as spread.
    [Show full text]
  • Citrus Bacterial Canker Disease and Huanglongbing (Citrus Greening)
    PUBLICATION 8218 Citrus Bacterial Canker Disease and Huanglongbing (Citrus Greening) MARYLOU POLEK, Citrus Tristeza Virus Program, California Department of Food and Agriculture, Tulare; GEORGIOS VIDALAKIS, Citrus Clonal Protection Program (CCPP), Department of Plant Pathology, University of California, Riverside; and KRIS GODFREY, UNIVERSITY OF Biological Control Program, California Department of Food and Agriculture, Sacramento CALIFORNIA Division of Agriculture INTroduCTioN and Natural Resources Compared with the rest of the world, the California citrus industry is relatively free of http://anrcatalog.ucdavis.edu diseases that can impact growers’ profits. Unfortunately, exotic plant pathogens may become well established before they are recognized as such. This is primarily because some of the initial symptoms mimic other diseases, mineral deficiencies, or toxicities. In addition, development of disease symptoms caused by some plant pathogenic organisms occurs a long time after initial infection. This long latent period results in significantly delayed disease diagnosis and pathogen detection. Citrus canker (CC) and huanglong- bing (HLB, or citrus greening) are two very serious diseases of citrus that occur in many other areas of the world but are not known to occur in California. If the pathogens caus- ing these diseases are introduced into California, it will create serious problems for the state’s citrus production and nursery industries. CiTrus BACTerial CaNker Disease Citrus bacterial canker disease (CC) is caused by pathotypes or variants of the bacterium Xanthomonas axonopodis (for- merly campestris) pv. citri (Xac). This bacterium is a quaran- tine pest for many citrus-growing countries and is strictly regulated by international phytosanitary programs. Distinct pathotypes are associated with different forms of the disease (Gottwald et al.
    [Show full text]
  • Cinnamon Kumquats
    Preserve Today, Relish Tomorrow UCCE Master Food Preservers of El Dorado County 311 Fair Lane, Placerville CA 95667 Helpline (530) 621-5506 • Email: edmfp@ucanr.edu • Visit us on Facebook and Twitter! Cinnamon Kumquats “How about a kumquat, my little chickadee?” (W.C. Fields, My Little Chickadee,1940) Say what? Yes, I said kumquats. Those adorable little kumquats. You know, those “things” that you have been so curious about. Another idea for using citrus that is not a marmalade. Vive la différence! That said, a kumquat marmalade is nothing short of marvelous. Honestly. “A kumquat is not an orange though it wants to be one, especially when they’re around other kumquats. (W.C. Fields, It’s A Gift, 1934) Kumquats are native to China, and their name comes from the Cantonese kam kwat, which means "golden orange." They are a symbol of prosperity and a traditional gift at Lunar New Year. Unlike other citrus, kumquats are eaten whole, including the skin. They have a tart-bitter-sweet taste that is boldly refreshing. Ya gotta try one. Really. Just pop one in your mouth and go for it. Fresh kumquats are wonderful in salads and in savory dishes. They are also great in chutneys and relishes. We canned them in a sweet cinnamon syrup. They can then be eaten right out of the jar like candy or used in desserts such as pound cakes or cheesecakes. The syrup is wonderful for drizzles, too. Savory ideas: use them in salads (use the syrup in your dressing!), they would be perfect with ham, maybe as a glaze for chicken wings (I would add some hot sauce, too).
    [Show full text]
  • Tropical Horticulture: Lecture 32 1
    Tropical Horticulture: Lecture 32 Lecture 32 Citrus Citrus: Citrus spp., Rutaceae Citrus are subtropical, evergreen plants originating in southeast Asia and the Malay archipelago but the precise origins are obscure. There are about 1600 species in the subfamily Aurantioideae. The tribe Citreae has 13 genera, most of which are graft and cross compatible with the genus Citrus. There are some tropical species (pomelo). All Citrus combined are the most important fruit crop next to grape. 1 Tropical Horticulture: Lecture 32 The common features are a superior ovary on a raised disc, transparent (pellucid) dots on leaves, and the presence of aromatic oils in leaves and fruits. Citrus has increased in importance in the United States with the development of frozen concentrate which is much superior to canned citrus juice. Per-capita consumption in the US is extremely high. Citrus mitis (calamondin), a miniature orange, is widely grown as an ornamental house pot plant. History Citrus is first mentioned in Chinese literature in 2200 BCE. First citrus in Europe seems to have been the citron, a fruit which has religious significance in Jewish festivals. Mentioned in 310 BCE by Theophrastus. Lemons and limes and sour orange may have been mutations of the citron. The Romans grew sour orange and lemons in 50–100 CE; the first mention of sweet orange in Europe was made in 1400. Columbus brought citrus on his second voyage in 1493 and the first plantation started in Haiti. In 1565 the first citrus was brought to the US in Saint Augustine. 2 Tropical Horticulture: Lecture 32 Taxonomy Citrus classification based on morphology of mature fruit (e.g.
    [Show full text]
  • Citrus Canker in California
    Ex ante Economics of Exotic Disease Policy: Citrus Canker in California Draft prepared for presentation at the Conference: “Integrating Risk Assessment and Economics for Regulatory Decisions,” USDA, Washington, DC, December 7, 2000 Karen M. Jetter, Daniel A. Sumner and Edwin L. Civerolo Jetter is a post-doctoral fellow at the University of California, Agricultural Issues Center (AIC). Sumner is director of AIC and a professor in the Department of Agricultural and Resource Economics, University of California, Davis. Civerolo is with the USDA, Agricultural Research Service and the Department of Plant Pathology, University of California, Davis. This research was conducted as a part of a larger AIC project that dealt with a number of exotic pests and diseases and a variety of policy issues. Ex ante Economics of Exotic Disease Policy: Citrus Canker in California 1. Introduction This paper investigates the economic effects of an invasion of citrus canker in California. We consider the costs and benefits of eradication under alternatives including the size of the infestation, whether it occurs in commercial groves or in urban areas, and various economic and market conditions. The impacts of various eradication scenarios are compared to the alternative of allowing the disease to become established again under various conditions, including the potential for quarantine. We do not consider here the likelihood of an infestation or the specifics of exclusion policies. Rather we focus on economic considerations of eradication versus establishment. 2. A background on the disease, its prevalence, and spread Citrus canker is a bacterial disease of most commercial Citrus species and cultivars grown around the world, as well as some citrus relatives (Civerolo, 1984; Goto 1992a; Goto, Schubert 1992b; and Miller, 1999).
    [Show full text]
  • Cooperatives in the U.S.-Citrus Industry
    Agriculture Cooperatives in the Rural Business and Cooperative Development U.S.-Citrus Industry Service RBCDS Research Report 137 Abstract Cooperatives in the U.S. Citrus Industry James A. Jacobs Agricultural Economist U.S. Department of Agriculture Rural Business and Cooperative Development Service Citrus is one of the leading fruit crops produced in the United States. Cooperatives play an important role in the handling and marketing of both fresh and processed citrus products. This report examines the development and posi- tion of cooperatives in the citrus industry, their functions and operating prac- tices, and the impact of changes in production practices and industry structure on cooperatives. Cooperatives range from small, local fresh packinghouse associations to large cooperative federations with comprehensive marketing and sales pro- grams in both fresh and processed markets. Cooperatives are among the lead- ing marketers in all producing areas, and are the dominant marketing organiza- tion in California and Arizona. Citrus cooperatives use the pooling method to market and allocate returns. This cooperative practice of averaging price and sharing risk is commonly used by some private citrus firms as well, reflecting the inherent volatility of citrus production. Keywords: Cooperative, grove, grower-member, fresh citrus, processed citrus, frozen-concentrated orange juice, packinghouse, processor, marketing federa- tion, sales agency, marketing agreement, pooling, grove care, freezes, box, eliminations. RBCDS Research Report 137 December 1994 Preface This report describes the position and functions of cooperatives in the U.S. citrus industry. It is the first known detailed examination of its kind on citrus cooperative activities and operating practices. The report is intended as a reference for cooperative managers and mem- bers, professional advisors, and anyone involved in professional activities or research in the citrus industry.
    [Show full text]
  • Facts About Citrus Fruits and Juices: Grapefruit1 Gail C
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. FSHN02-6 Facts About Citrus Fruits and Juices: Grapefruit1 Gail C. Rampersaud2 Grapefruit is a medium- to large-sized citrus fruit. It is larger than most oranges and the fruit may be flattened at both ends. The skin is mostly yellow but may include shades of green, white, or pink. Skin color is not a sign of ripeness. Grapefruit are fully ripe when picked. Popular varieties of Florida grapefruit include: Did you know… Marsh White - white to amber colored flesh and almost seedless. Grapefruit was first Ruby Red - pink to reddish colored flesh with few seeds. discovered in the West Flame - red flesh and mostly seedless. Indies and introduced to Florida in the 1820s. Most grapefruit in the U.S. is still grown in Florida. Compared to most citrus fruits, grapefruit have an extended growing season and several Florida Grapefruit got its name because it grows in varieties grow from September through June. clusters on the tree, just like grapes! Fresh citrus can be stored in any cool, dry place but will last longer if stored in the refrigerator. Do Imposter!! not store fresh grapefruit in plastic bags or film- wrapped trays since this may cause mold to grow on the fruit. Whether you choose white or pink grapefruit or grapefruit juice, you’ll get great taste and a variety of health benefits! Read on…. 1. This document is FSHN026, one of a series of the Food Science and Human Nutrition Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • Florida's Citrus Canker Eradication Program (CCEP): Annual Economic Impact on Florida's Processed Orange Industry1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. FE533 Florida's Citrus Canker Eradication Program (CCEP): Annual Economic Impact on Florida's Processed Orange Industry1 Thomas H. Spreen, Marisa L. Zansler and Ronald P. Muraro2 Rapid expansion and integration of international establish guidelines for averting the spread of the trade, increased tourism, and changes in methods of disease. Currently there is no biological or chemical production in recent decades have increased the cure for citrus canker. All infected trees and citrus likelihood of the introduction of invasive species to trees within a radius of 1900 feet of an infected tree U.S. (United States) agriculture. Invasive species can must be eradicated (1900-foot rule). On-site have adverse environmental and/or economic impacts decontamination of grove workers, field equipment, when introduced into a region. Economic impacts and packinghouses is also mandatory. include marketing, production, and trade implications. The current effort to eradicate citrus canker from the industry, the CCEP, has been mired in One such invasive species imposing adverse controversy associated with public opinion and legal economic impacts to the Florida citrus industry is a action. A benefit-cost analysis was conducted to bacterial disease known as citrus canker (caused by determine whether the CCEP is, indeed, a useful Xanthomonas axanopodis pv. citri). Citrus canker policy tool in combating the economic ramifications causes lesions on the leaves, stems, and fruit of citrus associated with citrus canker. trees. The disease adversely affects the proportion of fruit intended for the fresh market, serves to weaken A model of the world orange juice market was citrus trees, and leads to a reduction in yields and originally developed at the University of Florida in higher costs of production.
    [Show full text]
  • Canker Resistance: Lesson from Kumquat by Naveen Kumar, Bob Ebel the Development of Asiatic Citrus Throughout Their Evolution, Plants and P.D
    Canker resistance: lesson from kumquat By Naveen Kumar, Bob Ebel The development of Asiatic citrus Throughout their evolution, plants and P.D. Roberts canker in kumquat leaves produced have developed many defense mecha- anthomonas citri pv. citri (Xcc) localized yellowing (5 DAI) or necro- nisms against pathogens. One of the is the causal agent of one of sis (9-12 DAI) that was restricted to most characteristic features associated the most serious citrus diseases the actual site of inoculation 7-12 DAI with disease resistance against entry X (Fig. 2). of a pathogen is the production of worldwide, Asiatic citrus canker. In the United States, Florida experienced In contrast, grapefruit epidermis hydrogen peroxide (H2O2). Hydrogen three major outbreaks of Asiatic citrus became raised (5 DAI), spongy (5 peroxide is toxic to both plant and canker in 1910, 1984 and 1995, and it DAI) and ruptured from 7 to 8 DAI. pathogen and thus restricts the spread is a constant threat to the $9 billion On 12 DAI, the epidermis of grape- by directly killing the pathogen and citrus industry. fruit was thickened, corky, and turned the infected plant tissue. Hydrogen Citrus genotypes can be classified brown on the upper side of the leaves. peroxide concentrations in Xcc-in- into four broad classes based on sus- Disease development and popula- fected kumquat and grapefruit leaves ceptibility to canker. First, the highly- tion dynamics studies have shown that were different. Kumquat produces susceptible commercial genotypes are kumquat demonstrated both disease more than three times the amount of Key lime, grapefruit and sweet lime.
    [Show full text]
  • The Asian Citrus Psyllid and the Citrus Disease Huanglongbing
    TheThe AsianAsian CitrusCitrus PsyllidPsyllid andand thethe CitrusCitrus DiseaseDisease HuanglongbingHuanglongbing Psyllid Huanglongbing The psyllid (pronounced síl - lid) is a small insect, about the size of an aphid The pest insect It has an egg stage, 5 wingless intermediate stages called nymphs, and winged adults Adult The pest insect Egg 5 Nymphs (insects molt to grow bigger) Adult psyllids usually feed on the underside of leaves and can feed on either young or mature leaves. This allows adults to survive year -round. The pest insect When feeding, the adult leans forward on its elbows and tips its rear end up in a very characteristic 45 o angle. The eggs are yellow -orange, tucked into the tips of tiny new leaves, and they are difficult to see because they are so small The pest insect The nymphs produce waxy tubules that direct the honeydew away from their bodies. These waxy tubules are unique and easy to recognize. Nymphs can only survive by living on young, tender The leaves and stems. pest insect Thus, nymphs are found only when the plant is producing new leaves. As Asian citrus psyllid feeds, it injects a salivary toxin that causes the tips of new leaves to easily break off. If the leaf survives, then it twists as it grows. Twisted leaves can be a sign that the psyllid has been there. The pest insect What plants can the psyllid attack? All types of citrus and closely related plants in the Rutaceae family • Citrus (limes, lemons, oranges, grapefruit, mandarins…) • Fortunella (kumquats) • Citropsis (cherry orange) • Murraya paniculata (orange jasmine) • Bergera koenigii (Indian curry leaf) • Severinia buxifolia (Chinese box orange) Plants • Triphasia trifolia (limeberry) • Clausena indica (wampei) affected • Microcitrus papuana (desert-lime) • Others….
    [Show full text]