Captive Breeding of a Recently Described Endemic Barbin

Total Page:16

File Type:pdf, Size:1020Kb

Captive Breeding of a Recently Described Endemic Barbin Science, Technology and Development ISSN : 0950-0707 Captive breeding of a recently described endemic barbin, Neolissochilus tamiraparaniensis (Cypriniformes: Cyprinidae) from Kalakad Mudanthurai Tiger Reserve, Tamil Nadu, India. Chinniyan Vijayakumar1*, Lucas Agnes flora2, Jonnada A.V.Prasada Rao3, and Muthukumarasamy Arunachalam4 1Department of Zoology, St. Andrew's College, Gorakhpur- 273 001, Uttar Pradesh, India 2Department of Zoology, St. Joseph’s College for Women, Civil Lines, Gorakhpur – 273009, Uttar Pradesh, India. 3Molecular Biology Laboratory, Department of Biotechnology, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh, India. 4Department of Animal Science, School of Biological Science, Central University of Kerala, Tejaswini Hills, Periye- 671316, Kasaragod District, Kerala, India. Corresponding author: *E-mail: [email protected] ABSTRACT Nilgiri rainbow trout (Gopalakrishnan et Neolissochilus tamiraparaniensis is al.,1999). described very recently from a east flowing The captive breeding study of an river, Tamiraparani River basin, from the endemic fish species, Neolissochilus Kalakad Mundanthurai Tiger Reserve of the tamiraparaniensis is first of its kind. In Agasthyamalai Biosphere of peninsular India. southern India, carps naturally spawn during This big sized barbin attains 40 cm in length the south-west monsoon (July – August) and and 1.5 kg in weight which showed its spawning was induced by manipulation of distribution so far from the Tamiraparani River water levels. Ovulation can be induced during and its tributaries. This endemic species is non- spawning season not only by attempted for induced to spawning by a environmental manipulation but also by intramuscular injection of hormone ovaprim, hormonal stimulation. Like members of the HCG and Pituitary separately. Spawning was family Cyprinidae, final maturation and complete in 10 - 11.5hr after hormone injection. ovulation normally do not occur under captive The maximum eggs number and fertilization conditions in the wild carp, N. rate (84.67 %) were shown in Ovaprim injected tamiraparaniensis. The most advanced method fishes. of ovulation stimulation is used more and more frequently in fish hatcheries, replacing the Keyword: Captive breeding, fertilization rate, traditional hypophysation treatment. hatching rate, human chorionic gonadotropin Neolissochilus tamiraparaniensis is a hormone, Neolissochilus tamiraparaniensis , recently described barbin from the ovaprim, pituitary gland extract, ovulation rate. Tamiraparani River basin of southern Western Ghat regions of Tamil Nadu (Arunachalam et INTRODUCTION al., 2017). Viable populations of this species are in the up streams of Manimuthar River, Captive propagation and restocking Tamiraparani main stream at Inchikuzhi and in programmes for threatened fishes have been Gadana River tributaries of the basin. All the up started or proposed in several countries streams are in the Protected Areas of Kalakad (Budihna and Ocvirk, 1990). Recently, Mundanthurai Tiger Reserve. Currently, the up however, several captive propagation and streams of Tamiraparani iRiver and two reintroduction are successful for, Zacco tributaries under Kalakad Mundanthurai Tiger pachycephalus (Wang et al., 1995), Mahseer, Reserve are well protected and can be a fish Tor khudree (Kulkarni and Ogale, 1978, 1979; sanctuary under this Protected Area Tor putitora (Hamilton) (Shrestha, 1998; (Arunachalam, 1998). This herbivorous fish is characterized by its rapid growth, larger size Volume IX Issue IX SEPTEMBER 2020 Page No : 35 Science, Technology and Development ISSN : 0950-0707 and tasty flesh. The maximum size (38.4cm) is from the net, sometimes even by cutting the noted. (personal observation Arunachalam). meshes of nets, to avoid injury to the fish. Then The male has attractive (golden yellowish) they were placed in flow-through concrete tank colour than female. of 10 m 6 m 1.5 m size for acclimatization for each species. The tank was covered with net MATERIALS AND METHODS of 90% light occluding monofilament mesh. Live specimens were collected from up Stock maintenance streams of Tamiraparani River and their After acclimatization, both male and tributaries such as Manimuthar and Gadana (5 female fishes were released into the earthen km from Sri Paramakalyani Centre for pond (size 15.5 m 10 m 2.5 m) for six Environmental Sciences of Manonmaniam months, after that they were segregated based Sundaranar University, senior author’s doctoral on the identification character. study) below the Gadana Reservoir and were Bloodstocks management and selection transported to the laboratory of the Centre for Initially brood fishes were kept in a Environmental Science and also in the areas of earthen pool having water area of 15.5 m 10 breeding ponds by the Government Fisheries m 2.5 m. At the advent of breeding season, Farm. Fishes were stocked in cement tanks of the brood fishes were checked by observing 10 m 6 m 1.5 m size for acclimatization, gonadal condition (Linhart et. al., 1995) and using river water from Gadana Reservoir. manipulated for better management aspects. To During the period of acclimatization (20 days), provide plentiful sustained supply of plankton supplementary feed was given as daily ration and benthic organisms, brood ponds were and it was placed in the tank at the rate of 5% fertilized at recommended dose using inorganic body weight of the fish. The body of adult N. and organic fertilizers. Three weeks prior to tamiraparaniensis is shiny yellowish with spawning externally matured female and male distinct pale-yellow fins; and the body of fishes were segregated and kept in a small juvenile is silvery white in colour. Present round earthen pond (10 10 2 m3 size). The distribution of N. tamiraparaniensis is known pelleted feed was administered twice daily at only from Tamiraparani River basin, South the rate of 5% body weight of the total biomass Tamil Nadu, India. Viable populations exist in during the experimental period. Pampar, Kallar and Iluppaiyar streams of Fertilization of the pond was carried Gadana River. It is also found in Manimuthar out two times (1st week and 4th week) during River of Tamiraparani basin (Arunachalam, the experimental period. After segregating, the 2000). male and female fishes were transferred into Reproductive characters of N. cement tanks of 10 m 6 m 1.5 m size each tamiraparaniensis were studied by for conducting the induced breeding Arunachalam and Sankaranarayanan (1998) experiments. Females and males were finally and showed that the peaks occur during the post selected examining their stage of ripeness monsoon seasons [after south–west monsoon among the collected brood and transferred into (July–August) and north–east monsoon rectangular breeding hapa (2 m 1 m 0.75 m (October – November)] and they also found out size) suspended into the chosen back pool along the sexual characters in mature males, horny the course of the river. Ripe females were tubercles present in the snout of males during recognized by palpating the female’s abdomen breeding seasons. Adult males have 40–78 which is bulging and soft to touch and swollen. tubercles which are present below the orbit up The genital papilla is slightly reddish and blunt to the tip snout region. with a reddish dot. Males, on the other hand Collection of fishes have deep-pit-like vent and more slender body The number of fishes collected was and ooze out milt when it is gently pressed. twenty five females and 33 males. Fishes were Induced breeding collected from (size 12 to 23 cm) Gadana River The segregated fishes were fed with and from Pabanasam upstream in Tamiraparani artificial diets contain optimal protein on daily River, by using wide mesh gillnet and cast net ration basis (at 5% body weight) until the brood during February to March (Plate a). These nets stock reached an age of one year. Sexual are usually spread at dusk in the study area near maturity of fish was determined by visual the inflowing streams and are inspected every examination of the gonad i.e. whether or not the hour. These were gently and carefully removed Volume IX Issue IX SEPTEMBER 2020 Page No : 36 Science, Technology and Development ISSN : 0950-0707 fish oozed milt or hand ripe eggs during the Experimental design spawning period (May – Jul.) (Oct. – Dec.). The breeding design is shown in Table One day before each experiment, required 1. The hapa for N. tamiraparaniensis was made fishes were transferred to cement tank in female out of fine meshed marlin cloth which allows to male ratio of 1:2. flowing of water through it. The width lid net The substratum has mixed gravel bed hapa was fixed at the back pools along the with vegetations in tanks and hapa to induce length of the river and small smooth river breeding. In addition, spawning substrates like, pebbles (size 24 cm in diameter) and gravels slabs of black plexiglas, section of PVC pipe, were spread on bottom of the hapa (2 m x 1 m cobbles, and vegetations were provided as x 0.75 m). Aquatic macrophytes like Hydrilla cover objects. Three types of natural and verticiellata, Eichhornia crassipes and fibre synthetic hormones (pituitary extract, human mesh were introduced into the hapa (1 m x 0.5 chorionic gonadotropin, ovaprim) were used for m x 0.25 m). induce spawning. For hypophysation, acetone Breeding dried carp pituitaries were obtained from a Immediately after administering the commercial fish farm, Dindugal, Tamil Nadu. hormone injections, the breeding pairs were Ovaprim was purchased from Glaxo India transferred to the breeding hapa/tank for Limited, Chennai and HCG are obtained from spawning (Plate 1). Sex ratios and substrates Agarivet farm Care Glaxo India Ltd., Mumbai. mentioned in experimental design were Pituitary extracts were injected in two tabulated (Table 1). Courtship behaviour like instalments for females with an interval of 6 hr pair swimming smoothly, chasing of females by between the injections and one dose for males the male and jumping little up the surface of the whereas the other two hormones (HCG and water were observed before spawning. As per ovaprim) were injected in a single dose to both expectation hormone induced breeders the sexes (Table 1).
Recommended publications
  • Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA)
    Challenges in Responsible Production of Aquatic Species Proceedings of the International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA) Maria Rowena R. Romana-Eguia Fe D. Parado-Estepa Nerissa D. Salayo Ma. Junemie Hazel Lebata-Ramos Editors Southeast Asian Fisheries Development Center AQUACULTURE DEPARTMENT Tigbauan, Iloilo, Philippines www.seafdec.org.ph Challenges in Responsible Production of Aquatic Species Proceedings of the International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA) August 2015 ISBN: 978-971-9931-04-1 Copyright © 2015 Southeast Asian Fisheries Development Center Aquaculture Department Tigbauan, Iloilo, Philippines ALL RIGHTS RESERVED No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without the permission in writing from the publisher. For inquiries SEAFDEC Aquaculture Department Tigbauan 5021, Iloilo, Philippines Tel (63-33) 330 7030; Fax (63-33) 330 7031 E-mail: [email protected] Website: www.seafdec.org.ph On the cover Logo design courtesy of Mr. Demy D. Catedral of SEAFDEC/AQD International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia (2014: Iloilo City, Philippines). Resource enhancement and sustainable aquaculture practices in Southeast Asia: challenges in responsible production of aquatic species : proceedings of the international workshop on resource enhancement and sustainable aquaculture practices in Southeast Asia 2014 (RESA) / Maria Rowena R. Romana-Eguia, Fe D. Parado-Estepa, Nerissa D. Salayo, Ma. Junemie Hazel L. Ramos, editors. -- Tigbauan, Iloilo, Philippines : Aquaculture Dept., Southeast Asian Fisheries Development Center, 2015, ©2015.
    [Show full text]
  • Download Download
    :ŽƵƌŶĂůŽĨdŚƌĞĂƚĞŶĞĚdĂdžĂͮǁǁǁ͘ƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐͮϮϲDĂLJϮϬϭϰͮϲ;ϱͿ͗ϱϲϴϲʹϱϲϵϵ ®ÝãÙ®çã®ÊÄ͕ã«ÙãÝÄÊÄÝÙòã®ÊÄÝããçÝʥ㫠ÊÃÃçÄ®ã®ÊÄ tùÄD«ÝÙ͕Eʽ®ÝÝÊ«®½çÝóùÄÄÝ®Ý;ù͕ϭϴϳϯͿ /^^E ;d½ÊÝã®͗ùÖٮĮͿ͗ÄÄî½Ù¦Ùʥ㫠KŶůŝŶĞϬϵϳϰʹϳϵϬϳ WƌŝŶƚϬϵϳϰʹϳϴϵϯ tÝãÙÄ'«ãÝ͕/Ä® KWE^^ ŶǀĂƌůŝϭ͕EĞĞůĞƐŚĂŚĂŶƵŬĂƌϮ͕^ŝďLJWŚŝůŝƉϯ͕<͘<ƌŝƐŚŶĂŬƵŵĂƌϰΘZĂũĞĞǀZĂŐŚĂǀĂŶϱ ϭ͕ϯ͕ϰ͕ϱŽŶƐĞƌǀĂƟŽŶZĞƐĞĂƌĐŚ'ƌŽƵƉ;Z'Ϳ͕^ƚ͘ůďĞƌƚ͛ƐŽůůĞŐĞ͕<ŽĐŚŝ͕<ĞƌĂůĂϲϴϮϬϭϴ͕/ŶĚŝĂ Ϯ/ŶĚŝĂŶ/ŶƐƟƚƵƚĞŽĨ^ĐŝĞŶĐĞĚƵĐĂƟŽŶĂŶĚZĞƐĞĂƌĐŚ;//^ZͿ͕ƌ͘,ŽŵŝŚĂďŚĂZŽĂĚ͕WĂƐŚĂŶ͕WƵŶĞ͕ DĂŚĂƌĂƐŚƚƌĂϰϭϭϬϬϴ͕/ŶĚŝĂ Ϯ͕ϱ^LJƐƚĞŵĂƟĐƐ͕ĐŽůŽŐLJΘŽŶƐĞƌǀĂƟŽŶ>ĂďŽƌĂƚŽƌLJ͕ŽŽKƵƚƌĞĂĐŚKƌŐĂŶŝnjĂƟŽŶ;KKͿ͕ϵϲ<ƵŵƵĚŚĂŵEĂŐĂƌ͕ sŝůĂŶŬƵƌŝĐŚŝZŽĂĚ͕ŽŝŵďĂƚŽƌĞ͕dĂŵŝůEĂĚƵϲϰϭϬϯϱ͕/ŶĚŝĂ ϯĞƉĂƌƚŵĞŶƚŽĨŽŽůŽŐLJ͕EŝƌŵĂůĂŐŝƌŝŽůůĞŐĞ͕<ŽŽƚŚƵƉĂƌĂŵďƵ͕<ĂŶŶƵƌ͕<ĞƌĂůĂϲϳϬϳϬϭ͕/ŶĚŝĂ ϱDĂŚƐĞĞƌdƌƵƐƚ͕ĐͬŽdŚĞ&ƌĞƐŚǁĂƚĞƌŝŽůŽŐŝĐĂůƐƐŽĐŝĂƟŽŶ͕ĂƐƚ^ƚŽŬĞZŝǀĞƌ>ĂďŽƌĂƚŽƌLJ͕tĂƌĞŚĂŵ͕ ŽƌƐĞƚ͕,ϮϬϲ͕hŶŝƚĞĚ<ŝŶŐĚŽŵ ϭĂŶǀĂƌĂůŝŝĨΛŐŵĂŝů͘ĐŽŵ͕ϮŶ͘ĚĂŚĂŶƵŬĂƌΛŝŝƐĞƌƉƵŶĞ͘ĂĐ͘ŝŶ͕ϯƉŚŝůŝƉƐŝďLJΛŐŵĂŝů͘ĐŽŵ͕ϰŬŬĂƋƵĂΛŐŵĂŝů͘ĐŽŵ͕ ϱƌĂũĞĞǀƌĂƋΛŚŽƚŵĂŝů͘ĐŽŵ;ĐŽƌƌĞƐƉŽŶĚŝŶŐĂƵƚŚŽƌͿ ďƐƚƌĂĐƚ͗dŚĞtĂLJĂŶĂĚDĂŚƐĞĞƌNeolissochilus wynaadensis ;ĂLJ͕ϭϴϳϯͿŝƐĂŶĞŶĚĞŵŝĐĐLJƉƌŝŶŝĚĮƐŚƚŚĂƚŽĐĐƵƌƐŝŶƚŚĞƵƉůĂŶĚƐƚƌĞĂŵƐ ĂŶĚƌŝǀĞƌƐŽĨƚŚĞƐŽƵƚŚĞƌŶƌĞŐŝŽŶŽĨƚŚĞtĞƐƚĞƌŶ'ŚĂƚƐ͘dŚŝƐƐƉĞĐŝĞƐŚĂƐďĞĞŶůŝƐƚĞĚĂƐ͚ƌŝƟĐĂůůLJŶĚĂŶŐĞƌĞĚ͛ŽŶƚŚĞ/hEZĞĚ>ŝƐƚŽĨ dŚƌĞĂƚĞŶĞĚ^ƉĞĐŝĞƐĚƵĞƚŽŝƚƐƌĞƐƚƌŝĐƚĞĚĚŝƐƚƌŝďƵƟŽŶĂŶĚŚĞĂǀLJĚĞĐůŝŶĞƐŝŶƉŽƉƵůĂƟŽŶƐ͘>ŝŬĞŵĂŶLJůĂƌŐĞĐLJƉƌŝŶŝĚƐŽĨƚŚĞtĞƐƚĞƌŶ'ŚĂƚƐ͕ N. wynaadensis ŝƐƉŽŽƌůLJŬŶŽǁŶĂŶĚĚŽĐƵŵĞŶƚĞĚ͕ǁŝƚŚǀĞƌLJĨĞǁǀĞƌŝĮĞĚƌĞĐŽƌĚƐĂŶĚǀŽƵĐŚĞƌƐƉĞĐŝŵĞŶƐ͘ĂƐĞĚŽŶƐƉĞĐŝŵĞŶƐƌĞĐĞŶƚůLJ ĐŽůůĞĐƚĞĚ ĨƌŽŵ tĂLJĂŶĂĚ͕ <ĞƌĂůĂ͕ ƚŚĞ ƚLJƉĞ ůŽĐĂůŝƚLJ͕ĂƐ ǁĞůů ĂƐ ƚǁŽ ĂĚĚŝƟŽŶĂů ůŽĐĂƟŽŶƐ ŝŶ ƚŚĞ <ŽĚĂŐƵ ŝƐƚƌŝĐƚ ŽĨ <ĂƌŶĂƚĂŬĂ͖ ǁĞ ƉƌŽǀŝĚĞ ŝŶĨŽƌŵĂƟŽŶŽŶƚŚĞĐƵƌƌĞŶƚĚŝƐƚƌŝďƵƟŽŶ͕ƉŚLJůŽŐĞŶĞƟĐƉŽƐŝƟŽŶ͕ƚŚƌĞĂƚƐĂŶĚĐŽŶƐĞƌǀĂƟŽŶ͘ŶƵƉĚĂƚĞĚĐŽŶƐĞƌǀĂƟŽŶĂƐƐĞƐƐŵĞŶƚŽĨƚŚŝƐ
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • English, Burmese and Thai Names for This Forest Are All Derived from the Fact That a Few Species of the Family Dipterocarpacea Dominate the Landscape
    128 >> Khoe Kay Khoe Kay: Biodiversity in Peril by Karen Environmental and Social Action Network Biodiversity in Peril << 1 Khoe Kay: Biodiversity in Peril ISBN 978-974-16-6406-1 CopyrightÓ 2008 Karen Environmental and Social Action Network P.O.Box 204 Prasingha Post Office Chiang Mai Thailand 50205 email: [email protected] 1st Printing: July 2008, 1,000 Copies Layout and Cover Design by: Wanida Press, Chaingmai Thailand. 2 >> Khoe Kay Acknowledgments ESAN and the Research Team would like to thank K all of the people who assisted with this research. In particular, university and NGO experts provided significant help in identifying species. Many of the plants species were identified by Prof. J. Maxwell of Chiang Mai University. Richard Burnett of the Upland Holistic Development Project helped identify rattan species. Dr. Rattanawat Chaiyarat of Mahidol Universitys Kanchanaburi Research Station assisted with frog identification. Pictures of the fish species, including endemic and unknown species, were sent to Dr. Chavalit Witdhayanon of World Wildlife Fund - Thailand and examined by his students. Prof. Philip Round of Mahidol University identified one bird from a fuzzy picture, and John Parr, author of A Guide to the Large Mammals of Thailand, gave comments on an early draft of this report. Miss Prapaporn Pangkeaw of Southeast Asia Rivers Network also made invaluable contributions. E-Desk provided invaluable resources and encouragement. Finally, we must give our greatest thanks to the local people of Khoe Kay and Baw Ka Der villages, who shared their time, knowledge, experience and homes with us while we recorded our findings.
    [Show full text]
  • Endemic Animals of India
    ENDEMIC ANIMALS OF INDIA Edited by K. VENKATARAMAN A. CHATTOPADHYAY K.A. SUBRAMANIAN ZOOLOGICAL SURVEY OF INDIA Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata-700 053 Phone: +91 3324006893, +91 3324986820 website: www.zsLgov.in CITATION Venkataraman, K., Chattopadhyay, A. and Subramanian, K.A. (Editors). 2013. Endemic Animals of India (Vertebrates): 1-235+26 Plates. (Published by the Director, Zoological Survey ofIndia, Kolkata) Published: May, 2013 ISBN 978-81-8171-334-6 Printing of Publication supported by NBA © Government ofIndia, 2013 Published at the Publication Division by the Director, Zoological Survey of India, M -Block, New Alipore, Kolkata-700053. Printed at Hooghly Printing Co., Ltd., Kolkata-700 071. ~~ "!I~~~~~ NATIONA BIODIVERSITY AUTHORITY ~.1it. ifl(itCfiW I .3lUfl IDr. (P. fJJa{a~rlt/a Chairman FOREWORD Each passing day makes us feel that we live in a world with diminished ecological diversity and disappearing life forms. We have been extracting energy, materials and organisms from nature and altering landscapes at a rate that cannot be a sustainable one. Our nature is an essential partnership; an 'essential', because each living species has its space and role', and performs an activity vital to the whole; a 'partnership', because the biological species or the living components of nature can only thrive together, because together they create a dynamic equilibrium. Nature is further a dynamic entity that never remains the same- that changes, that adjusts, that evolves; 'equilibrium', that is in spirit, balanced and harmonious. Nature, in fact, promotes evolution, radiation and diversity. The current biodiversity is an inherited vital resource to us, which needs to be carefully conserved for our future generations as it holds the key to the progress in agriculture, aquaculture, clothing, food, medicine and numerous other fields.
    [Show full text]
  • Mahseer in India: an Overview on Research Status and Future Priorities U
    J. Ecophysiol. Occup. Hlth. 15(1 & 2), 2015, 45–52 ©2015 The Academy of Environmental Biology, India DOI : 10.15512/joeoh/2015/v15i1&2/91183 Mahseer in India: An Overview on Research Status and Future Priorities U. K. Sarkar *, B. K. Mahapatra1, S. Roy Saxena2 and A. K. Singh3 ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata (West Bengal), India - 700120 1ICAR- Central Institute of Fisheries Education, Kolkata Centre, Kolkata (West Bengal), India - 700091 2Barktullah University, Bhopal (M.P.), India - 462026 3ICAR-Directorate of Coldwater Fisheries Research, Bhimtal (Uttarakhand), India - 263136 Abstract: The population of mahseers are declining very fast in different parts of India due to indiscriminate fishing of brood stock and juveniles, fast degradation of aquatic ecosystems, construction of dams, barrages and weirs under river valley projects etc and therefore the species deserves high conservation values in India. To save this prized resource, effective conservation and rehabilitation strategies need to be planned and implemented in the country. This requires knowledge of current status of fish, declining trend, aquaculture potential and population structure in the wild habitats, which is yet not carryout comprehensively. In the present paper, an attempt has been made to review evolutionary history, present status and role of conservation biology for their conservation, sustainable utilization and enhancement. Based on the review, discussed potential promising plans, priorities and suggestions, which would help saving mighty mahseers across the country. Keywords: Mahseer, Rehabilitation, Aquaculture. Introduction is so famous between anglers that some used to call it “Majestic Goddess” and several Fishes represent half of all extant vertebrates organizations are working for its conservation with more than 32,000 recognized species by organizing various angling programmes in (Eschmeyer et al., 2014) which have different Himalayas and Western ghats in India (Islam morphology, behavior and habitat (Nelson, and Tanaka, 2007).
    [Show full text]
  • Supplementary 1
    Supplementary 1 List of selected complete COX1 gene sequences of Tor and Neolissochilus species samples obtained from NCBI No Accession No. Species Name Sequence Origin of Authors Ref. Length and Sample Size or Position 1. AP011372.1 T. tambroides Complete Unknown Miya, M. [1] (bases 6408 to 7958) 2. KJ880044.1 T. tambra Complete Malaysia Mohamed [2] (bases 6408 Yunus, N., to 7958) Mohd Nor, S.A., Mat Isa, M.N., Lay Kek, T. and Salleh, M.Z. 3. KP795444.1 T. tor Complete India Sahoo, P.K., [3] (bases 5479 Goel, C., to 7029) Kumar, R. and Barat, A. 4. KC914620.1 T. putitora Complete India Patiyal, R.S., [4] (bases 5480 Sati, J., Barat, to 7030) A., Sahoo, P.K., Singh, V.K. and Goel, C. 5. KJ880045.1 T. douronensis Complete Malaysia Mohamed [5] (bases 6410 Yunus, N., to 7960) Mohd Nor, S.A., Mat Isa, M.N., Lay Kek, T. and Salleh, M.Z. 6. KF305826.1 T. sinensis Complete China Huang, F.J. [6] (bases 5482 to 7032) 7. JX444718.1 T. tambroides Complete Malaysia Norfatimah, [7] (bases 6677 M.Y. to 7954) 8. MN378521.1 N. hexastichus Complete Unknown Shubra, S., [8] (bases 5479 Pavan-Kumar, to 7029) A., Archana, M. and Nagpure, N.S. 9. MN598560.1 N. benasi Complete China Gu, W., Xu, G., [9] (bases 5481 Huang, T. and to 7031) Wang, B. 10. NC_031555.1 N. stracheyi Complete Unknown Miya, M. [10] (bases 5481 to 7031) 11. AP011314.1 N. soroides Complete Unknown Miya, M. [10] (bases 5479 to 7029) 12.
    [Show full text]
  • Download Download
    ISSN 0974-7907 (Online) OPEN ACCESS ISSN 0974-7893 (Print) 26 July 2018 (Online & Print) Vol. 10 | No. 8 | 11999–12146 10.11609/jott.2018.10.8.11999-12146 www.threatenedtaxa.org Building evidence for conservationJ globally TTJournal of Threatened Taxa What is the first impression that we get when we see a snake? Fear! Art, childhood stories, movies, and mythology have always depicted them as evil, inducing more fear. The reducing population of snakes—from rich green forest due to farming, the industrial revolution, the skin trade for bags, urbanization, road kills and hunting—the animal kingdom’s most persecuted group! Here is an attempt to look at the snake beyond its first impression. The beauty of it, the color, the pattern. The digital art is of the innocent non- venomous Wolf Snake which is usually misunderstood and killed by humans just because it resembles the Common Krait. ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Published by Typeset and printed at Wildlife Information Liaison Development Society Zoo Outreach Organization No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: 0 938 533 9863 Email: [email protected], [email protected] www.threatenedtaxa.org EDITORS Christoph Kueffer, Institute of Integrative Biology, Zürich, Switzerland Founder & Chief Editor Christoph Schwitzer, University of the West of England, Clifton, Bristol, BS8 3HA Dr. Sanjay Molur, Coimbatore, India Christopher L. Jenkins, The Orianne Society, Athens, Georgia Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines Managing Editor Colin Groves, Australian National University, Canberra, Australia Mr. B. Ravichandran, Coimbatore, India Crawford Prentice, Nature Management Services, Jalan, Malaysia C.T.
    [Show full text]
  • Cyprinid Fishes of the Genus Neolissochilus in Peninsular Malaysia
    Zootaxa 3962 (1): 139–157 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3962.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:774A52BB-DD78-467E-ADA0-785B75E48558 Cyprinid fishes of the genus Neolissochilus in Peninsular Malaysia M. Z. KHAIRONIZAM1, M. ZAKARIA-ISMAIL & JONATHAN W. ARMBRUSTER2 1School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia. E-mail: [email protected] 2Department of Biological Sciences, 101 Life Sciences Building, Auburn University, Auburn, AL 36849, USA. E-mail: [email protected]. Email of Corresponding Author: [email protected] Abstract Meristic, morphometric and distributional patterns of cyprinid fishes of the genus Neolissochilus found in Peninsular Ma- laysia are presented. Based on the current concept of Neolissochilus, only two species are present: N. soroides and N. hen- dersoni. Neolissochilus hendersoni differs from N. soroides by having lower scale and gill raker counts. Neolissochilus soroides has three mouth types (normal with a rounded snout, snout with a truncate edge, and lobe with a comparatively thick lower lip). A PCA of log-transformed measurements did not reveal significant differences between N. hendersoni and N. soroides, or between any of the morphotypes of N. soroides; however, a CVA of log-transformed measurements successfully classified 87.1% of all specimens. Removing body size by running a CVA on all of the principal components except PC1 (which was correlated with length) only slightly decreased the successful classification rate to 86.1%. Differ- ences in morphometrics were as great between the three morphotypes of N.
    [Show full text]
  • TROPICAL AGRICULTURAL SCIENCE Habitat Use and Movement
    Pertanika J. Trop. Agric. Sci. 44 (3): 503 - 526 (2021) TROPICAL AGRICULTURAL SCIENCE Journal homepage: http://www.pertanika.upm.edu.my/ Habitat Use and Movement Activity of Neolissochilus soroides and Channa lucius during Post Inundation of Tembat Reservoir, Hulu Terengganu Shazana Sharir1,2, Nurfatin Zulkipli2,6, Azhari Mohamad2, Farah Ayuni Farinordin3, Shafiq Zakeyuddin4, Abdullah Samat2, Amir Shah Ruddin Md Sah5 and Shukor Md Nor2* 1Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21300, Kuala Nerus, Terengganu, Malaysia 2Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 3Faculty of Applied Sciences, Universiti Teknologi MARA (Jengka Campus), 26400 Jengka, Pahang, Malaysia 4Tenaga Nasional Berhad Research, Jalan Ayer Itam, 43600 Bangi, Selangor, Malaysia 5School of Biological Science, Universiti Sains Malaysia, 11800, Georgetown Pulau Pinang, Malaysia 6University of Debrecen, Department of HydrobiologyDebrecen, Hajdú-Bihar, 4032, Hungary ABSTRACT The drastic changes in hydroelectric reservoir development created a completely new ecosystem that affects the river, particularly in the inundated area. In this study, five Neolissochilus soroides and Channa lucius were surgically implanted with a unique coded acoustic transmitter to observe the habitat utilisation and movement activity in Tembat Reservoir after the inundation process. All of the individuals were released into the transition zone of the reservoir and observed using passive and active acoustic tracking devices ARTICLE INFO from April to December 2018. Kruskal- Article history: Walis test showed no significant difference Received: 27 August 2020 between the average size of core area for Accepted: 10 June 2021 Published: 20 August 2021 N. soroides and C. lucius, x2(1) = 1.320, DOI: https://doi.org/10.47836/pjtas.44.3.01 p = 0.251.
    [Show full text]
  • Spawning Period and Fecundity of Neolissochilus Soroides (Duncker, 1904) (Pisces, Teleostei, Cyprinidae) from a Small Malaysian Stream
    Turkish Journal of Zoology Turk J Zool (2013) 37: 65-72 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1201-10 Spawning period and fecundity of Neolissochilus soroides (Duncker, 1904) (Pisces, Teleostei, Cyprinidae) from a small Malaysian stream 1, 2 Md. Zain KHAIRONIZAM *, Mohd ZAKARIA-ISMAIL 1 School of Biological Sciences, University of Science Malaysia, 11800 Penang, Malaysia 2 Faculty of Agriculture and Biotechnology, University of Sultan Zainal Abidin, 21300 Kuala Terenganu, Terenganu, Malaysia Received: 10.01.2012 Accepted: 24.06.2012 Published Online: 24.12.2012 Printed: 21.01.2013 Abstract: Spawning and fecundity aspects of a cyprinid fish, Neolissochilus soroides (Duncker, 1904), from the Gombak River of Peninsular Malaysia were studied from November 2009 to October 2010. Results show that the fish reproduced year-round, but 2 peaks of fecundity were observed, coinciding with high rainfall distribution during November and April. The gonadosomatic index for both sexes was comparatively higher in the wet seasons. The high numbers of ripening and ripe oocytes observed during the wet seasons and the oocyte diameter distribution indicate that the species is a total spawner, with batches of ripe oocytes that are released over an extended time period. Absolute fecundity is highly related to ovary weight rather than body weight and total length. Key words: Gonadosomatic index, oocyte development, Gombak River 1. Introduction reported. As the species has high market demand in the Cyprinid fishes of the genus Neolissochilus Rainboth, 1985 aquarium trade and is one of the popular freshwater game are naturally found throughout tropical and subtropical fishes in Malaysia (Khaironizam, 2010), information areas of southern and southeastern Asia (Rainboth, 1985).
    [Show full text]
  • Phylogenetic Classification of Extant Genera of Fishes of the Order Cypriniformes (Teleostei: Ostariophysi)
    Zootaxa 4476 (1): 006–039 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4476.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:C2F41B7E-0682-4139-B226-3BD32BE8949D Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi) MILTON TAN1,3 & JONATHAN W. ARMBRUSTER2 1Illinois Natural History Survey, University of Illinois Urbana-Champaign, 1816 South Oak Street, Champaign, IL 61820, USA. 2Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA. E-mail: [email protected] 3Corresponding author. E-mail: [email protected] Abstract The order Cypriniformes is the most diverse order of freshwater fishes. Recent phylogenetic studies have approached a consensus on the phylogenetic relationships of Cypriniformes and proposed a new phylogenetic classification of family- level groupings in Cypriniformes. The lack of a reference for the placement of genera amongst families has hampered the adoption of this phylogenetic classification more widely. We herein provide an updated compilation of the membership of genera to suprageneric taxa based on the latest phylogenetic classifications. We propose a new taxon: subfamily Esom- inae within Danionidae, for the genus Esomus. Key words: Cyprinidae, Cobitoidei, Cyprinoidei, carps, minnows Introduction The order Cypriniformes is the most diverse order of freshwater fishes, numbering over 4400 currently recognized species (Eschmeyer & Fong 2017), and the species are of great interest in biology, economy, and in culture. Occurring throughout North America, Africa, Europe, and Asia, cypriniforms are dominant members of a range of freshwater habitats (Nelson 2006), and some have even adapted to extreme habitats such as caves and acidic peat swamps (Romero & Paulson 2001; Kottelat et al.
    [Show full text]