Reticulate Evolutionary History in a Recent Radiation of Montane
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reticulate Evolution and Phylogenetic Networks 6
CHAPTER Reticulate Evolution and Phylogenetic Networks 6 So far, we have modeled the evolutionary process as a bifurcating treelike process. The main feature of trees is that the flow of information in one lineage is independent of that in another lineage. In real life, however, many process- es—including recombination, hybridization, polyploidy, introgression, genome fusion, endosymbiosis, and horizontal gene transfer—do not abide by lineage independence and cannot be modeled by trees. Reticulate evolution refers to the origination of lineages through the com- plete or partial merging of two or more ancestor lineages. The nonvertical con- nections between lineages are referred to as reticulations. In this chapter, we introduce the language of networks and explain how networks can be used to study non-treelike phylogenetic processes. A substantial part of this chapter will be dedicated to the evolutionary relationships among prokaryotes and the very intriguing question of the origin of the eukaryotic cell. Networks Networks were briefly introduced in Chapter 4 in the context of protein-protein interactions. Here, we provide a more formal description of networks and their use in phylogenetics. As mentioned in Chapter 5, trees are connected graphs in which any two nodes are connected by a single path. In phylogenetics, a network is a connected graph in which at least two nodes are connected by two or more pathways. In other words, a network is a connected graph that is not a tree. All networks contain at least one cycle, i.e., a path of branches that can be followed in one direction from any starting point back to the starting point. -
Topology of Reticulate Evolution
Topology of Reticulate Evolution Kevin Joseph Emmett Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 ⃝c 2016 Kevin Joseph Emmett All Rights Reserved ABSTRACT Topology of Reticulate Evolution Kevin Joseph Emmett The standard representation of evolutionary relationships is a bifurcating tree. How- ever, many types of genetic exchange, collectively referred to as reticulate evolution, involve processes that cannot be modeled as trees. Increasing genomic data has pointed to the prevalence of reticulate processes, particularly in microorganisms, and underscored the need for new approaches to capture and represent the scale and frequency of these events. This thesis contains results from applying new techniques from applied and computa- tional topology, under the heading topological data analysis, to the problem of characterizing reticulate evolution in molecular sequence data. First, we develop approaches for analyz- ing sequence data using topology. We propose new topological constructions specific to molecular sequence data that generalize standard constructions such as Vietoris-Rips. We draw on previous work in phylogenetic networks and use homology to provide a quantitative measure of reticulate events. We develop methods for performing statistical inference using topological summary statistics. Next, we apply our approach to several types of molecular sequence data. First, we examine the mosaic genome structure in phages. We recover inconsistencies in existing morphology-based taxonomies, use a network approach to construct a genome-based repre- sentation of phage relationships, and identify conserved gene families within phage popu- lations. Second, we study influenza, a common human pathogen. -
Adaptive Radiation
ADAPTIVE RADIATION Rosemary G. Gillespie,* Francis G. Howarth,† and George K. Roderick* *University of California, Berkeley and †Bishop Museum I. History of the Concept ecological release Expansion of habitat, or ecological II. Nonadaptive Radiations environment, often resulting from release of species III. Factors Underlying Adaptive Radiation from competition. IV. Are Certain Taxa More Likely to Undergo Adap- founder effect Random genetic sampling in which tive Radiation Than Others? only a few ‘‘founders’’ derived from a large popula- V. How Does Adaptive Radiation Get Started? tion initiate a new population. Since these founders VI. The Processes of Adaptive Radiation: Case carry only a small fraction of the parental popula- Studies tion’s genetic variability, radically different gene VII. The Future frequencies can become established in the new colony. key innovation A trait that increases the efficiency with GLOSSARY which a resource is used and can thus allow entry into a new ecological zone. adaptive shift A change in the nature of a trait (mor- natural selection The differential survival and/or re- phology, ecology, or behavior) that enhances sur- production of classes of entities that differ in one or vival and/or reproduction in an ecological environ- more hereditary characteristics. ment different from that originally occupied. sexual selection Selection that acts directly on mating allopatric speciation The process of genetic divergence success through direct competition between mem- between geographically separated populations lead- bers of one sex for mates or through choices made ing to distinct species. between the two sexes or through a combination of character displacement Divergence in a morphological both modes. -
Horizontal Gene Transfer and Recombination Analysis of SARS-Cov-2 Genes Helps Discover Its Close Relatives and Shed Light on Its Origin
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410233; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Horizontal gene transfer and recombination analysis of SARS-CoV-2 genes helps discover its close relatives and shed light on its origin Vladimir Makarenkov1*, Bogdan Mazoure2*, Guillaume Rabusseau2,3 and Pierre Legendre4 1. Département d’informatique, Université du Québec à Montréal, Montréal, QC, Canada 2. Montreal Institute for Learning Algorithms (Mila), Montréal, QC, Canada 3. Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada 4. Département de sciences biologiques, Université de Montréal, C. P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7 Canada *Both authors contributed equally to this manuscript. Vladimir Makarenkov is the corresponding author of this manuscript (email: [email protected]) Abstract Background The SARS-CoV-2 pandemic is among the most dangerous infectious diseases that have emerged in recent history. Human CoV strains discovered during previous SARS outbreaks have been hypothesized to pass from bats to humans using intermediate hosts, e.g. civets for SARS-CoV and camels for MERS-CoV. The discovery of an intermediate host of SARS-CoV-2 and the identification of specific mechanism of its emergence in humans are topics of primary evolutionary importance. In this study we investigate the evolutionary patterns of 11 main genes of SARS-CoV-2. -
Graptoloid Diversity and Disparity Became Decoupled During the Ordovician Mass Extinction
Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction David W. Bapsta,b,1, Peter C. Bullockc, Michael J. Melchinc, H. David Sheetsd, and Charles E. Mitchellb aDepartment of the Geophysical Sciences, University of Chicago, Chicago, IL 60637; bDepartment of Geology, University at Buffalo, The State University of New York, Buffalo, NY 14260; cDepartment of Earth Sciences, St. Francis Xavier University, Antigonish, NS, Canada B2G 2W5; and dDepartment of Physics, Canisius College, Buffalo, NY 14208 Edited by Douglas H. Erwin, Smithsonian National Museum of Natural History, Washington, DC, and accepted by the Editorial Board January 19, 2012 (received for review August 31, 2011) The morphological study of extinct taxa allows for analysis of a HME (Fig. 1), they were driven to extinction during the Hir- diverse set of macroevolutionary hypotheses, including testing for nantian glaciation (7, 15). In contrast, the Neograptina simulta- change in the magnitude of morphological divergence, extinction neously speciated rapidly after the first extinction episode of the selectivity on form, and the ecological context of radiations. Late HME (15). Ordovician graptoloids experienced a phylogenetic bottleneck at The changes in morphological diversity during this interval have the Hirnantian mass extinction (∼445 Ma), when a major clade of not been studied quantitatively. Previous work suggests that only a graptoloids was driven to extinction while another clade simulta- single morphotype survived the HME (16, 17) and that the number neously radiated. In this study, we developed a dataset of 49 eco- of morphotypes recovered in the Silurian. Mitchell (18) demon- logically relevant characters for 183 species with which we tested strated that the Silurian Neograptina evolved a number of mor- i two main hypotheses: ( ) could the biased survival of one grapto- phologies that converged upon pre-Hirnantian diplograptine loid clade over another have resulted from morphological selectiv- forms. -
Reticulate Evolution Everywhere
Reticulate Evolution Everywhere Nathalie Gontier Abstract Reticulation is a recurring evolutionary pattern found in phylogenetic reconstructions of life. The pattern results from how species interact and evolve by mechanisms and processes including symbiosis; symbiogenesis; lateral gene transfer (that occurs via bacterial conjugation, transformation, transduction, Gene Transfer Agents, or the movements of transposons, retrotransposons, and other mobile genetic elements); hybridization or divergence with gene flow; and infec- tious heredity (induced either directly by bacteria, bacteriophages, viruses, pri- ons, protozoa and fungi, or via vectors that transmit these pathogens). Research on reticulate evolution today takes on inter- and transdisciplinary proportions and is able to unite distinct research fields ranging from microbiology and molecular genetics to evolutionary biology and the biomedical sciences. This chapter sum- marizes the main principles of the diverse reticulate evolutionary mechanisms and situates them into the chapters that make up this volume. Keywords Reticulate evolution · Symbiosis · Symbiogenesis · Lateral Gene Transfer · Infectious agents · Microbiome · Viriome · Virolution · Hybridization · Divergence with gene flow · Evolutionary patterns · Extended Synthesis 1 Reticulate Evolution: Patterns, Processes, Mechanisms According to the Online Etymology Dictionary (http://www.etymonline.com), the word reticulate is an adjective that stems from the Latin words “re¯ticulātus” (having a net-like pattern) and re¯ticulum (little net). When scholars identify the evolution of life as being “reticulated,” they first and foremost refer to a recurring evolutionary pattern. N. Gontier (*) AppEEL—Applied Evolutionary Epistemology Lab, University of Lisbon, Lisbon, Portugal e-mail: [email protected] © Springer International Publishing Switzerland 2015 1 N. Gontier (ed.), Reticulate Evolution, Interdisciplinary Evolution Research 3, DOI 10.1007/978-3-319-16345-1_1 2 N. -
Non-Genetic Inheritance: Evolution Above the Organismal Level
BioSystems 200 (2021) 104325 Contents lists available at ScienceDirect BioSystems journal homepage: http://www.elsevier.com/locate/biosystems Non-genetic inheritance: Evolution above the organismal level Anton V. Sukhoverkhov a,*, Nathalie Gontier b a Department of Philosophy, Kuban State Agrarian University, Kalinina St. 13, 350044, Krasnodar, Russia b Applied Evolutionary Epistemology Lab, Centro de Filosofia das Ci^encias, Departamento de Historia´ e Filosofia das Ci^encias, Faculdade de Ci^encias, Universidade de Lisboa, 1749-016, Lisboa, Portugal ARTICLE INFO ABSTRACT Keywords: The article proposes to further develop the ideas of the Extended Evolutionary Synthesis by including into Non-genetic inheritance evolutionary research an analysis of phenomena that occur above the organismal level. We demonstrate that the Social plasticity current Extended Synthesis is focused more on individual traits (genetically or non-genetically inherited) and less Community traits on community system traits (synergetic/organizational traits) that characterize transgenerational biological, Reticulate evolution ecological, social, and cultural systems. In this regard, we will consider various communities that are made up of Extended evolutionary synthesis interacting populations, and for which the individual members can belong to the same or to different species. Examples of communities include biofilms,ant colonies, symbiotic associations resulting in holobiont formation, and human societies. The proposed model of evolution at the level of communities revises classic theorizing on the major transitions in evolution by analyzing the interplay between community/social traits and individual traits, and how this brings forth ideas of top-down regulations of bottom-up evolutionary processes (collabo ration of downward and upward causation). The work demonstrates that such interplay also includes reticulate interactions and reticulate causation. -
Adaptive Radiation Versus ‘
Review Research review Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution Author for correspondence: Thomas J. Givnish Thomas J. Givnish Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA Tel: +1 608 262 5718 Email: [email protected] Received: 7 August 2014 Accepted: 1 May 2015 Summary New Phytologist (2015) 207: 297–303 Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within doi: 10.1111/nph.13482 a lineage. Recently, some researchers have begun to use ‘adaptive radiation’ or ‘radiation’ as synonymous with ‘explosive species diversification’. This essay aims to clarify distinctions Key words: adaptive radiation, ecological between these concepts, and the related ideas of geographic speciation, sexual selection, key keys, explosive diversification, geographic innovations, key landscapes and ecological keys. Several examples are given to demonstrate that speciation, key innovations, key landscapes, adaptive radiation and explosive diversification are not the same phenomenon, and that parallel adaptive radiations. focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some ‘radiations’ involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of ‘adaptive radiation’ appear to involve effects driven partly by geographic speciation, species’ dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. -
Exploring Reticulate Evolution and Its Consequences for Phylogenetic Reconstruction
phylogenetworks EXPLORING RETICULATE EVOLUTION AND ITS CONSEQUENCES FOR PHYLOGENETIC RECONSTRUCTION Bastienne Vriesendorp Promotor: Prof. dr. M.S.M. Sosef Hoogleraar Biosystematiek Wageningen Universiteit Co-promotoren: Dr. F.T. Bakker Universitair Docent, leerstoelgroep Biosystematiek Wageningen Universiteit Dr. R.G. van den Berg Universitair Hoofddocent, leerstoelgroep Biosystematiek Wageningen Universiteit Promotiecommissie: Prof. dr. J.A.M. Leunissen (Wageningen Universiteit) Prof. dr. E.F. Smets (Universiteit Leiden) Prof. dr. P.H. van Tienderen (Universiteit van Amsterdam) Dr. P.H. Hovenkamp (Universiteit Leiden) Dit onderzoek is uitgevoerd binnen de onderzoekschool Biodiversiteit phylogenetworks EXPLORING RETICULATE EVOLUTION AND ITS CONSEQUENCES FOR PHYLOGENETIC RECONSTRUCTION Bastienne Vriesendorp Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op woensdag 12 september 2007 des namiddags te vier uur in de Aula Bastienne Vriesendorp (2007) Phylogenetworks: Exploring reticulate evolution and its consequences for phylogenetic reconstruction PhD thesis Wageningen University, The Netherlands With references – with summaries in English and Dutch ISBN 978-90-8504-703-2 aan mijn ouders CONTENTS chapter 1 General Introduction 9 chapter 2 Hybridization: History, terminology and evolutionary significance 15 chapter 3 Reconstructing patterns of reticulate evolution in angiosperms: what can we do? 41 chapter 4 Mosaic DNA -
Living Organisms Author Their Read-Write Genomes in Evolution
biology Review Living Organisms Author Their Read-Write Genomes in Evolution James A. Shapiro ID Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA; [email protected]; Tel.: +1-773-702-1625 Academic Editor: Andrés Moya Received: 23 August 2017; Accepted: 28 November 2017; Published: 6 December 2017 Abstract: Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with “non-coding” DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called “non-coding” RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations. -
Phylogenetic Comparative Methods
Phylogenetic Comparative Methods Luke J. Harmon 2019-3-15 1 Copyright This is book version 1.4, released 15 March 2019. This book is released under a CC-BY-4.0 license. Anyone is free to share and adapt this work with attribution. ISBN-13: 978-1719584463 2 Acknowledgements Thanks to my lab for inspiring me, my family for being my people, and to the students for always keeping us on our toes. Helpful comments on this book came from many sources, including Arne Moo- ers, Brian O’Meara, Mike Whitlock, Matt Pennell, Rosana Zenil-Ferguson, Bob Thacker, Chelsea Specht, Bob Week, Dave Tank, and dozens of others. Thanks to all. Later editions benefited from feedback from many readers, including Liam Rev- ell, Ole Seehausen, Dean Adams and lab, and many others. Thanks! Keep it coming. If you like my publishing model try it yourself. The book barons are rich enough, anyway. Except where otherwise noted, this book is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit https: //creativecommons.org/licenses/by/4.0/. 3 Table of contents Chapter 1 - A Macroevolutionary Research Program Chapter 2 - Fitting Statistical Models to Data Chapter 3 - Introduction to Brownian Motion Chapter 4 - Fitting Brownian Motion Chapter 5 - Multivariate Brownian Motion Chapter 6 - Beyond Brownian Motion Chapter 7 - Models of discrete character evolution Chapter 8 - Fitting models of discrete character evolution Chapter 9 - Beyond the Mk model Chapter 10 - Introduction to birth-death models Chapter 11 - Fitting birth-death models Chapter 12 - Beyond birth-death models Chapter 13 - Characters and diversification rates Chapter 14 - Summary 4 Chapter 1: A Macroevolutionary Research Pro- gram Section 1.1: Introduction Evolution is happening all around us. -
Macroevolutionary Diversification with Limited Niche Disparity in a Species-Rich Lineage of Cold-Climate Lizards Ashley M
Reaney et al. BMC Evolutionary Biology (2018) 18:16 https://doi.org/10.1186/s12862-018-1133-1 RESEARCH ARTICLE Open Access Macroevolutionary diversification with limited niche disparity in a species-rich lineage of cold-climate lizards Ashley M. Reaney1,3 , Mónica Saldarriaga-Córdoba2 and Daniel Pincheira-Donoso1* Abstract Background: Life diversifies via adaptive radiation when natural selection drives the evolution of ecologically distinct species mediated by their access to novel niche space, or via non-adaptive radiation when new species diversify while retaining ancestral niches. However, while cases of adaptive radiation are widely documented, examples of non-adaptively radiating lineages remain rarely observed. A prolific cold-climate lizard radiation from South America (Phymaturus), sister to a hyper-diverse adaptive radiation (Liolaemus), has extensively diversified phylogenetically and geographically, but with exceptionally minimal ecological and life-history diversification. This lineage, therefore, may offer unique opportunities to investigate the non-adaptive basis of diversification, and in combination with Liolaemus, to cover the whole spectrum of modes of diversification predicted by theory, from adaptive to non-adaptive. Using phylogenetic macroevolutionary modelling performed on a newly created 58-species molecular tree, we establish the tempo and mode of diversification in the Phymaturus radiation. Results: Lineage accumulation in Phymaturus opposes a density-dependent (or ‘niche-filling’) process of diversification. Concurrently, we found that body size diversification is better described by an Ornstein-Uhlenbeck evolutionary model, suggesting stabilizing selection as the mechanism underlying niche conservatism (i.e., maintaining two fundamental size peaks), and which has predominantly evolved around two major adaptive peaks on a ‘Simpsonian’ adaptive landscape.