Exploring Reticulate Evolution and Its Consequences for Phylogenetic Reconstruction

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Reticulate Evolution and Its Consequences for Phylogenetic Reconstruction phylogenetworks EXPLORING RETICULATE EVOLUTION AND ITS CONSEQUENCES FOR PHYLOGENETIC RECONSTRUCTION Bastienne Vriesendorp Promotor: Prof. dr. M.S.M. Sosef Hoogleraar Biosystematiek Wageningen Universiteit Co-promotoren: Dr. F.T. Bakker Universitair Docent, leerstoelgroep Biosystematiek Wageningen Universiteit Dr. R.G. van den Berg Universitair Hoofddocent, leerstoelgroep Biosystematiek Wageningen Universiteit Promotiecommissie: Prof. dr. J.A.M. Leunissen (Wageningen Universiteit) Prof. dr. E.F. Smets (Universiteit Leiden) Prof. dr. P.H. van Tienderen (Universiteit van Amsterdam) Dr. P.H. Hovenkamp (Universiteit Leiden) Dit onderzoek is uitgevoerd binnen de onderzoekschool Biodiversiteit phylogenetworks EXPLORING RETICULATE EVOLUTION AND ITS CONSEQUENCES FOR PHYLOGENETIC RECONSTRUCTION Bastienne Vriesendorp Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op woensdag 12 september 2007 des namiddags te vier uur in de Aula Bastienne Vriesendorp (2007) Phylogenetworks: Exploring reticulate evolution and its consequences for phylogenetic reconstruction PhD thesis Wageningen University, The Netherlands With references – with summaries in English and Dutch ISBN 978-90-8504-703-2 aan mijn ouders CONTENTS chapter 1 General Introduction 9 chapter 2 Hybridization: History, terminology and evolutionary significance 15 chapter 3 Reconstructing patterns of reticulate evolution in angiosperms: what can we do? 41 chapter 4 Mosaic DNA sequences and their effect on phylogenetic tree reconstruction: simulations involving recombination and hybridization 57 chapter 5 Exploring network methods performance using angiosperm species-level DNA sequence data sets 83 chapter 6 AFLPs and hybrid detection – a case study of Solanum 103 chapter 7 Towards species trees 127 chapter 8 General discussion 143 literature cited 151 summary 173 samenvatting 175 nawoord 179 curriculum vitae 181 Chapter 1 Reticulate evolution is the collective name for processes such as hybridization, recombination or other events involving gene transfer between individual organisms or lineages. This thesis is about reticulate evolution and its implications for phylogenetic reconstruction. Reticulate evolution comes from the Latin reticulum, a diminutive for net. So, literally it means net-like evolution, which describes evolutionary events where independent lineages exchange genetic information, causing branches in an evolutionary tree to come together, i.e. forming a “net” (or network). This is in contrast with bifurcating evolution, where branches in an evolutionary tree split into new lineages and evolve independently from another. Reticulation, hence the exchange of genetic information, can occur at multiple levels: chromosomal level (meiotic recombination), organism level, population level and species level, but the focus in this work is on reticulation at species-level. Evolution at species-level is normally seen as the accumulation of mutational changes within evolutionary lineages (i.e. substitutions, deletions, insertions, etc.) that are passed on to the new generation leading to a bifurcating evolutionary pattern. However, reticulate evolution implies genetic changes that may also arise from gene transfer between different lineages. The most obvious reticulate processes that may occur at species-level are related to hybridization (such as hybrid speciation, introgression, introgressive hybridization) and horizontal gene transfer (the exchange of genetic material via an external vector such as a virus). Other evolutionary processes can mimic species-level reticulation and will produce the same signature, such as incomplete lineage sorting of ancestral alleles and recombination (i.e. reticulation at lower levels). Whereas a large body of literature has been published to build up insights in the evolutionary and ecological significance of hybrids, the same cannot be said for the general phenomenon of reticulate evolution. Naturally, underlying processes are often discussed in terms of hybridization and throughout this thesis most data sets are based on studies that include putative hybrid species. However, when reticulate phylogenetic patterns are discussed and evaluated in this thesis, this relates to the general case of reticulate evolution and not solely to underlying hybridization events. While many studies focus on processes, e.g. study the frequency and mechanisms of hybrid speciation, others focus on the resulting character patterns. Also, in phylogenetic reconstruction it can be important to recognize these patterns either before or after an analysis. 10 General introduction When reticulation has occurred, one may expect specific character patterns in the involved species. The “signature” of reticulate evolution may be an “average” of its parents as expected for morphological characters (e.g. pink flowers from a white- and red-flowered parent or sparsely hairy plants from a glabrous and a hairy one), where probably several different genes are involved in the expression of the character. However, characters may also reveal a conflicting signal, when an organism has obtained some characters from one and some from the other parent. Alternatively, additive patterns can be observed, e.g. multiple copies of nrDNA genes may result in the identification of polymorphic sites that represent the base positions of either parent. Also, markers such as AFLPs are expected to reveal an additive pattern, where both unique band positions of the parents might be observed in the hybrid. Therefore, it seems good to concentrate on what patterns may evolve from reticulate evolution and how to properly interpret them given the data. The main focus in this thesis is on data incongruence as representation for an underlying reticulate pattern, using different parts of DNA sequence alignments that are incompatible with each other. A reticulate pattern does of course not necessarily implicate underlying reticulate historical processes. Different sources of data error or random noise may cause the same pattern of incongruence, such as taxonomic and character sampling artefacts, random error in site readings, compositional bias, etc. Based on the variety of reticulate patterns and their causes, a range of different methods exist to detect and/or represent reticulation. In phylogenetic reconstruction at species-level, hybrids are often left out of the analysis, because they are considered to disrupt the reconstruction of (bifurcating) phylogenetic trees that do not allow for reticulate patterns. However, specific network methods have been developed that may detect reticulation between lineages and may represent the (reticulate) evolutionary relationships in a graphical way. These methods allow conflicting phylogenetic signals to be displayed in a network and are mainly based on the incongruence between different molecular markers. While most of these network methods were originally applied at population-level to simplify the non-hierarchical relationships, they can also be applied to species-level to represent the reticulate phylogenetic patterns. This thesis is aimed at describing the different aspects of reticulate evolution, the patterns in the data and the resulting phylogeny that may emerge from it, and its consequences for phylogeny reconstruction in general. 11 Chapter 1 In plant systematics, reticulate evolution usually involves hybridization. To first clarify the possible confusion in terminology related to hybrids and hybridization processes, the first part of the introductory Chapter 2 presents an overview of the terminology. The second part provides a brief history on studies related to hybrids and describes the different views on the evolutionary significance of plant hybridization. The rest of the thesis is outlined as follows: the third chapter treats the implications of plant hybrids for systematics and phylogeny reconstruction, describing the treatment of hybrids in recent phylogenetic studies, possible problems, and providing a conceptual framework for hybrid terminology. Testing of the actual influence of hybrid terminals (represented by mosaic terminals) on phylogenetic analysis is performed in Chapter 4, while Chapter 5 involves testing of the performance of a selection of network methods. In the following Chapter 6 the behaviour and suitability of AFLPs in hybrid studies is explored using an ancient hybrid species of Solanum plus its re-synthesized F1 hybrid. Chapter 7 explores the possibilities of methods that reconcile gene trees into a species tree to contribute to the representation of organisms instead of character-level networks. Finally, Chapter 8 provides a summary of the most important conclusions and describes the consequences of reticulate evolution for taxonomy and classification. 12 General introduction 13 Chapter 2 INTRODUCTION Hybrids are being studied in various contexts, such as speciation processes, population genetics, molecular evolution of characters in hybrids, occurrence of hybrids in phylogenies, or within crossing experiments, with applications across many different fields of expertise (i.e. genetics, ecology and systematics). Accordingly, it is not surprising that the concepts and terminology relating to hybrids is not uniform across these fields and therefore not always straightforward. Here I will first give an overview of the wealth of definitions and concepts that are used to describe hybrids or implicitly implied in studies
Recommended publications
  • Hairy Braya (Braya Pilosa)
    SPECIES STATUS REPORT Hairy Braya (Braya pilosa) in the Northwest Territories Threatened December 2012 Status of Hairy Braya in the NWT Species at Risk Committee status reports are working documents used in assigning the status of species suspected of being at risk in the Northwest Territories (NWT). Suggested citation: Species at Risk Committee. 2012. Species Status Report for Hairy Braya (Braya pilosa) in the Northwest Territories. Species at Risk Committee, Yellowknife, NT. © Government of the Northwest Territories on behalf of the Species at Risk Committee ISBN: 978-0-7708-0202-8 Production note: The drafts of this report were prepared by James G. Harris, prepared under contract with the Government of the Northwest Territories, and edited by Joanna Wilson and Michelle Henderson. For additional copies contact: Species at Risk Secretariat c/o SC6, Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Tel.: (855) 783-4301 (toll free) Fax.: (867) 873-0293 E-mail: [email protected] www.nwtspeciesatrisk.ca ABOUT THE SPECIES AT RISK COMMITTEE The Species at Risk Committee was established under the Species at Risk (NWT) Act. It is an independent committee of experts responsible for assessing the biological status of species at risk in the NWT. The Committee uses the assessments to make recommendations on the listing of species at risk. The Committee uses objective biological criteria in its assessments and does not consider socio-economic factors. Assessments are based on species status reports that include the best available Aboriginal traditional knowledge, community knowledge and scientific knowledge of the species.
    [Show full text]
  • Breve Análise Da Polinização De Passiflora Actinia (Passifloraceae) No Parque Nacional Da Serra Dos Órgãos, Teresópolis, Rj
    6º Simpósio de Gestão Ambiental e Biodiversidade (20 a 23 de junho 2017) ISSN 2525-4928 http://itr.ufrrj.br/sigabi/anais BREVE ANÁLISE DA POLINIZAÇÃO DE PASSIFLORA ACTINIA (PASSIFLORACEAE) NO PARQUE NACIONAL DA SERRA DOS ÓRGÃOS, TERESÓPOLIS, RJ Ana Carolina Oliveira1, Julia Oliveira1, Luiza Helena L. Moraes1, Nathália Romanelli1, Yan Giovanni1 e Michaele Alvim Milward-de-Azevedo2 (Universidade Federal Rural do Rio de Janeiro, Instituto Três Rios, Av. Pref. Alberto da Silva Lavinas, 1847, Centro, Três Rios, RJ, Cep- 25804-100, [email protected], 1Discentes do Curso de Bacharelado em Gestão Ambiental, 2Professor Adjunto Departamento de Ciências do Meio Ambiente) RESUMO Uma breve análise de Passiflora actinia Hooker (Passifloraceae) foi realizada no Parque Nacional Serra dos Órgãos, localizado no estado do Rio de Janeiro, cujo objetivo foi analisar a ocorrência e a frequência de polinização da P. actinia, e o modo com que a mesma realiza esse processo. O estudo foi realizado em cinco flores presentes na estrada principal do PARNASO, próximas as entradas das trilhas Primavera e Cartão Postal, sendo realizada as anotações dos horários dos visitantes. Passiflora actinia apresenta flores vistosas alvas com corona de filamentos em cinco séries, bandeados em branco e violeta, tornando-se avermelhadas em direção à base, o que atrai os polinizadores. As flores foram visitadas principalmente por moscas, abelhas, mamangabas e besouros, e apenas uma vez por beija-flor. No período entre as 14h00min e 15h00min, houve um aumento significativo na frequência de agentes polinizadores nas flores, provavelmente devido ao período de aumento de néctar na flor. Palavras-chave: Biologia reprodutiva, visitantes florais, corona de filamentos.
    [Show full text]
  • Passifloraceae)
    Juliana Castelo Branco Brasileiro Morfologia foliar comparada de Passiflora L. (Passifloraceae) Comparative leaf morphology of Passiflora L. (Passifloraceae) Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Ciências Biológicas, na Área de Botânica. Orientador(a): Gladys Flávia Albuquerque Melo de Pinna São Paulo 2014 Brasileiro, Juliana Morfologia e anatomia comparada de espécies do gênero Passiflora L. (Passifloraceae). 88 páginas. Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica. 1. Anatomia foliar 2. Passiflora 3. Glândulas foliares 4. Estípulas I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. Comissão Julgadora: ________________________ _______________________ Prof(a). Dr(a). Prof(a). Dr(a). ______________________ Prof(a). Dr.(a). Orientador(a) Aos meus pais, Francisco e Adalgisa, que sempre me apoiaram e incentivaram. A FLOR DO MARACUJÁ “A pois intonce eu lhes conto, A história que eu vim contar, Pruque razão nasce roxa, a flor do maracujá. Maracujá já foi branco, Eu posso inté lhe jurar, Mais branco do que a Paiaba, Mais branco do que o luar. Quando as fror brotava nele, Lá pras banda do sertão, Maracujá parecia, Um ninho de algodão. Mas um dia, há muito tempo, Num mês que inté não me alembro se foi Maio, se foi Junho, se foi Janeiro se foi Dezembro, Nosso Senhor Jesus Cristo foi condenado a morrer, Numa cruz cruchificado, Longe daqui, como o que, E havia junto da cruz, aos pé de Nosso Senhor, Um pé de maracujá, Carregadinho de frô. Pregaram Cristo a martelo, E ao ver tamanha crueza, A natureza inteira, Pôs se a chorar de tristeza.
    [Show full text]
  • Nomenclatural Notes on Cruciferae Номенклатурные
    Turczaninowia 22 (4): 210–219 (2019) ISSN 1560–7259 (print edition) DOI: 10.14258/turczaninowia.22.4.18 TURCZANINOWIA http://turczaninowia.asu.ru ISSN 1560–7267 (online edition) УДК 582.683.2:581.961 Nomenclatural notes on Cruciferae D. A. German1, 2 1 South-Siberian Botanical Garden, Altai State University, Lenina Ave., 61, Barnaul, 656049, Russian Federation 2 Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 345; Heidelberg, D-69120, Germany E-mail: [email protected] Keywords: Arabidopsis, Brassicaceae, Dvorakia, Erophila, Eunomia, new combination, Noccaea, Peltariopsis, Pseu- docamelina, taxonomy, typification, validation. Summary. A generic name Dvorakia and combinations Arabidopsis amurensis, A. media, A. multijuga, A. sep- tentrionalis, Dvorakia alaica, D. alyssifolia, Erophila acutidentata, E. aquisgranensis, E. kohlscheidensis, and E. strigosula are validated. Places of valid publication and (except for the first combination) authorship forErysimum krynitzkii, Eunomia bourgaei, E. rubescens, Pseudocamelina aphragmodes, P. campylopoda, and Thlaspi hastulatum are corrected. For Pseudocamelina and Peltariopsis, information on the types is clarified. Some further minor nomen- clatural items are commented. Номенклатурные заметки о крестоцветных (Cruciferae) Д. А. Герман1, 2 1 Южно-Сибирский ботанический сад, Алтайский государственный университет, просп. Ленина, 61, г. Барнаул, 656049, Россия 2 Кафедра биоразнообразия и систематики растений, Центр исследований организмов, Гейдельбергский университет, Им Нойенхаймер Фельд, 345, Гейдельберг, D-69120, Германия Ключевые слова: действительное обнародование, новая комбинация, систематика, типификация, Arabidopsis, Brassicaceae, Dvorakia, Erophila, Eunomia, Noccaea, Peltariopsis, Pseudocamelina. Аннотация. Обнародовано родовое название Dvorakia, а также комбинации Arabidopsis amurensis, A. media, A. multijuga, A. septentrionalis, Dvorakia alaica, D. alyssifolia, Erophila acutidentata, E. aquisgranensis, E. kohlscheidensis и E.
    [Show full text]
  • Reticulate Evolution and Phylogenetic Networks 6
    CHAPTER Reticulate Evolution and Phylogenetic Networks 6 So far, we have modeled the evolutionary process as a bifurcating treelike process. The main feature of trees is that the flow of information in one lineage is independent of that in another lineage. In real life, however, many process- es—including recombination, hybridization, polyploidy, introgression, genome fusion, endosymbiosis, and horizontal gene transfer—do not abide by lineage independence and cannot be modeled by trees. Reticulate evolution refers to the origination of lineages through the com- plete or partial merging of two or more ancestor lineages. The nonvertical con- nections between lineages are referred to as reticulations. In this chapter, we introduce the language of networks and explain how networks can be used to study non-treelike phylogenetic processes. A substantial part of this chapter will be dedicated to the evolutionary relationships among prokaryotes and the very intriguing question of the origin of the eukaryotic cell. Networks Networks were briefly introduced in Chapter 4 in the context of protein-protein interactions. Here, we provide a more formal description of networks and their use in phylogenetics. As mentioned in Chapter 5, trees are connected graphs in which any two nodes are connected by a single path. In phylogenetics, a network is a connected graph in which at least two nodes are connected by two or more pathways. In other words, a network is a connected graph that is not a tree. All networks contain at least one cycle, i.e., a path of branches that can be followed in one direction from any starting point back to the starting point.
    [Show full text]
  • Allopolyploidy and Root Nodule Symbiosis in Glycine
    TWO TO TANGO: ALLOPOLYPLOIDY AND ROOT NODULE SYMBIOSIS IN GLYCINE SUBGENUS GLYCINE A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Adrian Federico Powell January 2017 © 2017 Adrian Federico Powell TWO TO TANGO: ALLOPOLYPLOIDY AND ROOT NODULE SYMBIOSIS IN GLYCINE SUBGENUS GLYCINE Adrian Federico Powell, Ph.D. Cornell University 2017 Polyploidy (or whole genome duplication) and root nodule symbioses with bacteria (termed ‘rhizobia’) have both been important phenomena in the evolutionary history of the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the development or refinement of nodulation. Given the varied potential impacts of polyploidy, effects on biotic interactions are plausible. However, direct studies of the interactions between these phenomena in symbiotic, nodule-forming species are lacking. In this dissertation, using a complex of recently formed allopolyploids in Glycine subgenus Glycine, the perennial relatives of soybean, we examined (1) the root metabolites and symbiotic signaling capacity of multiple allopolyploid species relative to the diploid progenitor species that hybridized to form each allopolyploid, (2) the nodulation-related responses of allopolyploids and diploid progenitors to rhizobia and (3) the transcriptome-level responses to inoculation in allopolyploid G. dolichocarpa (T2) and its diploid progenitors. These objectives were pursued using a variety of approaches including root metabolite profiling, inoculation trials, and RNA sequencing. We found that, while there were no common transgressive patterns in the root metabolite profiles of allopolyploids in the complex, one of the progenitors of T2 had distinctive root metabolite and exudate profiles; profiles of symbiotic signaling metabolites were also altered in the allopolyploid.
    [Show full text]
  • Topology of Reticulate Evolution
    Topology of Reticulate Evolution Kevin Joseph Emmett Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 ⃝c 2016 Kevin Joseph Emmett All Rights Reserved ABSTRACT Topology of Reticulate Evolution Kevin Joseph Emmett The standard representation of evolutionary relationships is a bifurcating tree. How- ever, many types of genetic exchange, collectively referred to as reticulate evolution, involve processes that cannot be modeled as trees. Increasing genomic data has pointed to the prevalence of reticulate processes, particularly in microorganisms, and underscored the need for new approaches to capture and represent the scale and frequency of these events. This thesis contains results from applying new techniques from applied and computa- tional topology, under the heading topological data analysis, to the problem of characterizing reticulate evolution in molecular sequence data. First, we develop approaches for analyz- ing sequence data using topology. We propose new topological constructions specific to molecular sequence data that generalize standard constructions such as Vietoris-Rips. We draw on previous work in phylogenetic networks and use homology to provide a quantitative measure of reticulate events. We develop methods for performing statistical inference using topological summary statistics. Next, we apply our approach to several types of molecular sequence data. First, we examine the mosaic genome structure in phages. We recover inconsistencies in existing morphology-based taxonomies, use a network approach to construct a genome-based repre- sentation of phage relationships, and identify conserved gene families within phage popu- lations. Second, we study influenza, a common human pathogen.
    [Show full text]
  • Retail Location List
    RETAIL NURSERY AVAILABILITY LIST & Plant Locator: Updated 9/24/21 Here at Annie’s we grow thousands of different plant species right on site. We grow from seeds, cuttings and plugs and offer all plants in 4” containers. Plants available in our retail nursery will differ than those we offer online, and we generally have many more varieties available at retail. If a plant is listed here and not available online, it is not ready to ship or in some cases we are unable to ship certain plants. PLEASE NOTE: This list is updated every Friday and is the best source of information about what is in stock. However, some plants are only grown in small quantities and thus may sell quickly and not be available on the day you arrive at our nursery. The location codes indicate the section and row where the plant is located in the nursery. If you have questions or can’t find a plant, please don’t hesitate to ask one of our nursery staff. We are happy to help you find it. 9/24/2021 ww S ITEM NAME LOCATION Abutilon 'David's Red' 25-L Abutilon striatum "Redvein Indian Mallow" 21-E Abutilon 'Talini's Pink' 21-D Abutilon 'Victor Reiter' 24-H Acacia cognata 'Cousin Itt' 28-D Achillea millefolium 'Little Moonshine' 35-B ww S Aeonium arboreum 'Zwartkop' 3-E ww S Aeonium decorum 'Sunburst' 11-E ww S Aeonium 'Jack Catlin' 12-E ww S Aeonium nobile 12-E Agapanthus 'Elaine' 30-C Agapetes serpens 24-G ww S Agastache aurantiaca 'Coronado' 16-A ww S Agastache 'Black Adder' 16-A Agastache 'Blue Boa' 16-A ww S Agastache mexicana 'Sangria' 16-A Agastache rugosa 'Heronswood Mist' 14-A ww S Agave attenuata 'Ray of Light' 8-E ww S Agave bracteosa 3-E ww S Agave ovatifolia 'Vanzie' 7-E ww S Agave parryi var.
    [Show full text]
  • Beneficial Neuro-Pharmacological Effect of Passion Flower (Passiflora Incarnate L)
    ARC Journal of Neuroscience Volume 4, Issue 1 2019, PP 22-26 ISSN 2456-057X http://dx.doi.org/10.20431/2456-057X.0401003 www.arcjournals.org Beneficial Neuro-Pharmacological Effect of Passion Flower (Passiflora Incarnate L) Farah Al-Mamoori1, Salah Al-windy2, Hayder M. Al-kuraishy3*, Ali I. Al-Gareeb4 1Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan 2Department of medical microbiology, College of science, Baghdad University, Iraq /Baghdad 3,4Professor in Department of Pharmacology, Toxicology and Medicine College of Medicine Al-Mustansiriya University, Iraq /Baghdad *Corresponding Author: Hayder M. Al-kuraishy, Professor in Department of Pharmacology, Toxicology and Medicine College of Medicine Al-Mustansiriya University, Iraq /Baghdad, Email: [email protected] Abstract Background: The Passiflora incarnata plant, belonging to the Passifloraceae family and commonly known as passion fruit, is widespread in tropical areas around the world and used in traditional medicine for the treatment of anxiety, nervousness, and neuralgia. Methods: Evidences from experimental, preclinical and clinical studies are evaluated for bidirectional relationships between Passiflora incarnata and neuropharmacological effects are discussed and opportunities for elaborating these models briefly alluded to. Given the nature of the subject area, it remains clear that this literature search cannot be regarded as mini review. A multiplicity of search strategies took on and assumed which included electronic database searches of Medline and Pubmed using MeSH terms, keywords and title words during the search. Conclusion: Passiflora incarnate is effective herbal medicine for anxiety, depression, sleep disorders and various types of addictions Keywords: Passiflora incarnate, anxiety, depression, sleep disorders, addictions 1. INTRODUCTION withdrawal, insomnia, attention deficit hyperactivity disorder and cancer [2].
    [Show full text]
  • Reticulate Evolutionary History in a Recent Radiation of Montane
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426362; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Reticulate Evolutionary History in a Recent Radiation of Montane 2 Grasshoppers Revealed by Genomic Data 3 4 VANINA TONZO1, ADRIÀ BELLVERT2 AND JOAQUÍN ORTEGO1 5 6 1 Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC); Avda. 7 Américo Vespucio, 26 – 41092; Seville, Spain 8 2 Department of Evolutionary Biology, Ecology and Environmental Sciences, and 9 Biodiversity Research Institute (IRBio), Universitat de Barcelona; Av. Diagonal, 643 – 10 08028; Barcelona, Spain 11 12 13 Author for correspondence: 14 Vanina Tonzo 15 Estación Biológica de Doñana, EBD-CSIC, 16 Avda. Américo Vespucio 26, E-41092 Seville, Spain 17 E-mail: [email protected] 18 Phone: +34 954 232 340 19 20 21 22 Running title: Reticulate evolution in a grasshopper radiation bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426362; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Abstract 24 Inferring the ecological and evolutionary processes underlying lineage and phenotypic 25 diversification is of paramount importance to shed light on the origin of contemporary 26 patterns of biological diversity. However, reconstructing phylogenetic relationships in 27 recent evolutionary radiations represents a major challenge due to the frequent co- 28 occurrence of incomplete lineage sorting and introgression.
    [Show full text]
  • DRAFT 25/10/90; Plant List Updated Oct. 1992; Notes Added June 2021
    DRAFT 25/10/90; plant list updated Oct. 1992; notes added June 2021. PRELIMINARY REPORT ON THE CONSERVATION VALUES OF OPEN COUNTRY PADDOCK, BOOLARDY STATION Allan H. Burbidge and J.K. Rolfe INTRODUCTION Boolardy Station is situated about 150 km north of Yalgoo and 140 km west-north-west of Cue, in the Shire of Murchison, Western Australia. Open Country Paddock (about 16 000 ha) is in the south-east corner of the station, at 27o05'S, 116o50'E. The most prominent named feature is Coolamooka Hill, near the eastern boundary of the paddock. There are no conservation reserves in this region, although there are some small reserves set aside for various other purposes. Previous biological data for the station consist of broad scale vegetation mapping and land system mapping. Beard (1976) mapped the entire Murchison region at 1: 1 000 000. The Open Country Paddock area was mapped as supporting mulga woodlands and shrublands. More detailed mapping of land system units for rangeland assessment purposes has been carried out more recently at a scale of 1: 40 000 (Payne and Curry in prep.). Seven land systems were identified in open Country Paddock (Fig. 1). Apart from these studies, no detailed biological survey work appears to have been done in the area. Open Country Paddock has been only lightly grazed by domestic stock because of the presence of Kite-leaf Poison (Gastrolobium laytonii) and a lack of fresh water. Because of this and the generally good condition of the paddock and presence of a wide range of plant species, P.J.
    [Show full text]
  • The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution
    The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution Dissertation submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Liza Paola Ding born in Mosbach, Baden-Württemberg, Germany Oral examination: 22.12.2014 Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar Table of contents INTRODUCTION ............................................................................................................. 18 1 THE MUSTARD FAMILY ....................................................................................... 19 2 THE TRIBAL SYSTEM OF THE BRASSICACEAE ........................................... 22 3 CHALCONE SYNTHASE ........................................................................................ 23 PART 1: TROUBLE WITH THE OUTGROUP............................................................ 27 4 MATERIAL AND METHODS ................................................................................. 28 4.1 Experimental set-up ......................................................................................................................... 28 4.1.1 Plant material and data composition .............................................................................................. 28 4.1.2 DNA extraction and PCR amplification ........................................................................................
    [Show full text]