Universidade Nova De Lisboa the Role of Complex Chromosome

Total Page:16

File Type:pdf, Size:1020Kb

Universidade Nova De Lisboa the Role of Complex Chromosome Universidade Nova de Lisboa Faculdade de Ciências Médicas The Role of Complex Chromosome Translocations in Leukemia Luís Miguel Ramos Vieira Doutoramento em Ciências da Vida Especialidade de Biologia Molecular e Celular 2011 i The Role of Complex Chromosome Translocations in Leukemia ii iii Universidade Nova de Lisboa Faculdade de Ciências Médicas The Role of Complex Chromosome Translocations in Leukemia Luís Miguel Ramos Vieira Licenciado em Biologia pela Faculdade de Ciências da Universidade de Lisboa Dissertação Apresentada para Obtenção do Grau de Doutor em Ciências da Vida Especialidade de Biologia Molecular e Celular Professora Orientadora: Doutora Maria Gomes da Silva 2011 iv v Para os meus pais vi vii In this dissertation parts of text were transcribed from the following publications and manuscript: 1. Vieira L, Marques B, Cavaleiro C, Ambrósio AP, Jorge M, Neto A, Costa JM, Júnior EC, Boavida MG (2005) Molecular cytogenetic characterization of rearrangements involving 12p in leukemia. Cancer Genet Cytogenet 157 : 134-139. My contribution to this publication included selection of cosmid, bacterial artificial chromosome (BAC) and yeast artificial chromosome (YAC) clones, growth of clone colonies, preparation of DNA and labeling of clones for fluorescence in situ hybridization (FISH) analysis. I also performed reverse transcription-polymerase chain reaction (RT-PCR) studies and sequencing analysis of ETV6 -RUNX1 fusion transcripts. 2. Vieira L, Sousa AC, Matos P, Marques B, Alaiz H, Ribeiro MJ, Braga P, da Silva MG, Jordan P (2006) Three-way translocation involves MLL, MLLT3 and a novel cell cycle control gene, FLJ10374 , in the pathogenesis of acute myeloid leukemia with t(9;11;19)(p22;q23;p13.3). Genes Chromosomes Cancer 45 : 455-469. I have contributed to this publication through the identification of the CCDC94 -MLL genomic fusion by long distance inverse-polymerase chain reaction (LDI-PCR), detection of truncated CCDC94 transcripts by 3´ rapid amplification of cDNA ends (RACE), analysis of CCDC94 expression in leukemic cell lines and normal human tissues by RT-PCR, amplification and cloning of full-length CCDC94 cDNA in expression vectors, evaluation of CCDC94 suppression by RT-PCR in short interfering RNA (siRNA)- treated cells and computational sequence analysis, including design of primers and siRNA oligos, selection of restriction enzymes for LDI-PCR experiments, analysis of DNA, RNA and protein sequences, as well as selection of MLLT3 and CCDC94 clones for use as FISH probes. 3. Vieira L, Vaz A, Ambrósio AP, Nogueira M, Marques B, Silva E, Matos P, Pereira AM, Jordan P, da Silva MG. Three-way translocation (X;20;16)(p11;q13;q23) in essential thrombocythemia implicates NFATC2 in disregulation of GM-CSF expression and megakaryocyte proliferation (submitted). My contribution to this manuscript included delimitation of a chromosome 20q deletion by polymerase chain reaction (PCR) analysis of short tandem repeat polymorphisms, preparation of genomic DNA for whole-genome array study, analysis of array data, 5´ RACE analysis of NFATC2 transcripts, 3´ RACE analysis of WWOX transcripts, analysis of NFATC2 expression in normal human tissues by RT-PCR, detection of a transcribed single nucleotide polymorphism in NFATC2 by PCR, RT-PCR and sequencing analysis, mutational analysis of JAK2 and NFATC2 , evaluation of NFATC2 suppression in siRNA-treated cells by real-time quantitative PCR (Q-PCR), analysis of NFATC2 expression in patients and controls by Q-PCR, analysis of Q-PCR data in cell lines and human samples, and computational sequence analysis including design of primers and siRNA oligo, selection of YAC, BAC and P1-derived artificial chromosome (PAC) clones for FISH studies, as well as analysis of DNA, RNA and protein sequences. I also wrote the manuscripts and prepared all figures and tables. viii ix Acknowledgments I wish to acknowledge primarily Prof. Maria Gomes da Silva for accepting to be my thesis supervisor. Prof. M. Gomes da Silva provided the best moments in my career by believing in this project from the first minute and allowing it to become a reality. I also wish to acknowledge for her excellent discussions of experimental results and scientific contributions to this thesis, as well as for continuous motivation and sincere friendship for the last 6 years. I also wish to acknowledge all the researchers and clinicians who were co-authors of the publications included in this dissertation. Above all, I am sincerely indebted to Prof. Maria Guida Boavida for accepting me as her student at the Departamento de Genética (INSA) in October 1993 and for an inestimable teaching of the world of cancer genetics. I am also deeply grateful to Dr. Paula Ambrósio for priceless karyotype studies and to Dr. Bárbara Marques for notable FISH experiments. In addition, I am also trully grateful to Prof. Peter Jordan for providing outstanding scientific support. Finally, I wish to sincerely thank Elizabeth Silva for performing most of the molecular diagnostics of leukemia while I was committed to research work. At the institutional level I must thank Instituto Nacional de Saúde Dr. Ricardo Jorge for providing all the necessary laboratory facilities that made this thesis possible. This would not also been achieved without relevant financial support from Liga Portuguesa Contra o Cancro, Fundação para a Ciência e a Tecnologia and Associação Portuguesa Contra a Leucemia. My final acknowledgment is addressed to my wife Célia, to whom I am grateful for unrestricted love, companionship and endless support throughout the last 14 years. x xi Preface My interest in genetics began when I was a Biology student at Faculdade de Ciências da Universidade de Lisboa in the early 90´s. During the last 2 years of my graduation I worked as a volunteer at the Departamento de Biologia Vegetal in the genetics of microorganisms. When I graduated in 1993 my genetics teacher Prof. Graça Fialho recommended that I should pursue my professional interests in genetics at the Departamento de Genética of the Instituto Nacional de Saúde Dr. Ricardo Jorge (DG-INSA). At that time, Prof. Maria Guida Boavida, who was in charge of DG-INSA, was looking for a graduate student to initiate the molecular diagnosis of leukemias in the laboratory. Luckily, I was accepted for that assignment and together with my colleagues Paula Ambrósio and Bárbara Marques we constituted a small team developing conventional cytogenetics, fluorescence in situ hybridization and molecular techniques to interpret and report chromosomal abnormalities in leukemia patients. With time, however, I gradually become interested in pursuing a more research directed activity towards the characterization of novel chromosomal abnormalities in leukemia. I started this endeavour with a comprehensive retrospective analysis of leukemia karyotype registries at the DG-INSA and Laboratório de Hematologia of the Instituto Português de Oncologia de Francisco Gentil (LH-IPOFG) in Lisbon, under the guidance of Prof. Maria Guida Boavida and Prof. Maria Gomes da Silva, respectively. The purpose was to select samples carrying reciprocal chromosome translocations undescribed in the literature and potentially use them to pursue molecular investigation of novel breakpoint locations and associated fusion genes. After a first scrutiny, I subsequently focused my interest in translocations in which one of the breakpoint locations was already known to constitute a recurrent target site. Moreover, only cytogenetic records which were obtained at the time of initial diagnosis were considered. Both approaches increased the likelihood of identifying novel leukemogenic fusion genes. The final output of the review comprised a total of 5 different translocations, including 2 collected from DG-INSA database and 3 obtained from the LH- IPOFG database. Incidently, preliminary studies disclosed that at least one additional chromosome was involved in 4 out of the 5 selected translocations, thus revealing an unexpected complex nature. A fundamental question then rose to my mind: Is the role of extra breakpoint locations involved in complex translocations merely accessory or is it also relevant to the proliferation and survival of the leukemic clone? I then addressed Prof. Maria Gomes da Silva in 2005 with a tentative idea for a PhD project under her supervision involving the role of complex xii chromosome translocations in leukemogenesis. This project soon became a reality and 6 years later all I can say is that I have made the right choice. xiii Abstract Tumourigenesis is a multistep process which results from the accumulation of successive genetic mutations in a normal cell. In leukemia for instance, recurrent translocations play a part in this process by generating fusion genes which lead to the production of hybrid proteins with an oncogenic role. However, a minor subset of chromosomal translocations referred to as complex or variant involves extra breakpoints at variable genome locations in addition to those implicated in the formation of fusion genes. We aimed to describe in this work the role, if any, of genes located at extra breakpoint locations or which are affected by breakpoint-adjacent deletions through the study of 5 leukemia patients. Two of the patients presented with ETV6 (12p13)-RUNX1 (21q22) and MLL (11q23)- MLLT3 (9p22) fusion genes as a result of a t(12;21;5) and a t(9;11;19), respectively. Detailed molecular characterization of the extra breakpoint at chromosome 19 in the latter case revealed that a novel ubiquitously
Recommended publications
  • Responses of Bats to White-Nose Syndrome and Implications for Conservation
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2020 Responses of Bats to White-Nose Syndrome and Implications for Conservation Meghan Stark University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Stark, Meghan, "Responses of Bats to White-Nose Syndrome and Implications for Conservation" (2020). Doctoral Dissertations. 2518. https://scholars.unh.edu/dissertation/2518 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESPONSES OF BATS TO WHITE-NOSE SYNDROME AND IMPLICATIONS FOR CONSERVATION BY MEGHAN A. STARK B.S., University of Alabama at Birmingham, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Genetics May 2020 i This dissertation was examined and approved in partial fulfillment of the requirements for the degree of Ph.D. in Genetics by: Dissertation Director, Matthew MacManes, Assoc. Prof. UNH MCBS Jeffrey T. Foster, Associate Professor, NAU PMI W. Kelley Thomas, Professor, UNH MCBS Rebecca Rowe, Associate Professor, UNH NREN Thomas Lee, Associate Professor Emeritus, UNH NREN On April 6, 2020 Approval signatures are on file with the University of New Hampshire Graduate School. ii DEDICATION I dedicate this work to all of the strong women in my life: Myra Michele Ange Heather Michelle Coons Kaitlyn Danielle Cagle Brindlee Michelle Coons Patricia Gail Miller Sarah Jean Lane “Here’s to strong women.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Association Between Polymorphisms in FOXP3 and EBI3 Genes and The
    Human Immunology 73 (2012) 939–945 Contents lists available at SciVerse ScienceDirect www.ashi-hla.org journal homepage: www.elsevier.com/locate/humimm Association between polymorphisms in FOXP3 and EBI3 genes and the risk for development of allergic rhinitis in Chinese subjects ⇑ Yuan Zhang a,b,1, Su Duan a,1, Xin Wei a,c,1, Yanming Zhao a,b, Liping Zhao b, Luo Zhang a,b, a Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, PR China b Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education of China, Beijing Institute of Otorhinolaryngology, Beijing 100005, PR China c Department of Otolaryngology, Head and Neck Surgery, People’s Hospital of Hainan Province, Haikou 570311, PR China article info abstract Article history: Objective: To investigate whether polymorphisms in forkhead box protein 3 (FOXP3) and EBV-induced Received 1 March 2012 gene 3 (EBI3) genes are associated with allergic rhinitis (AR) in Chinese patients. Accepted 13 July 2012 Methods: A population-based case-control association study design was used to assess the risk of AR con- Available online 23 July 2012 ferred by single nucleotide polymorphisms (SNPs) in FOXP3 and EBI3 gene regions. DNA was extracted from 378 patients with AR and 330 healthy controls and analyzed for selected and tagged SNPs. Overall, 9 SNPs were selected and genotyped. Results: In the single-locus analyses of AR risk, the allele frequencies of rs428253 in EBI3 gene were sig- nificantly different between the AR patients and control subjects (P = 1.00E-04); even after 10,000 per- mutations (P < 0.05).
    [Show full text]
  • Genome-Wide Transcriptome Analysis of Laminar Tissue During the Early Stages of Experimentally Induced Equine Laminitis
    GENOME-WIDE TRANSCRIPTOME ANALYSIS OF LAMINAR TISSUE DURING THE EARLY STAGES OF EXPERIMENTALLY INDUCED EQUINE LAMINITIS A Dissertation by JIXIN WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Biomedical Sciences GENOME-WIDE TRANSCRIPTOME ANALYSIS OF LAMINAR TISSUE DURING THE EARLY STAGES OF EXPERIMENTALLY INDUCED EQUINE LAMINITIS A Dissertation by JIXIN WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Bhanu P. Chowdhary Committee Members, Terje Raudsepp Paul B. Samollow Loren C. Skow Penny K. Riggs Head of Department, Evelyn Tiffany-Castiglioni December 2010 Major Subject: Biomedical Sciences iii ABSTRACT Genome-wide Transcriptome Analysis of Laminar Tissue During the Early Stages of Experimentally Induced Equine Laminitis. (December 2010) Jixin Wang, B.S., Tarim University of Agricultural Reclamation; M.S., South China Agricultural University; M.S., Texas A&M University Chair of Advisory Committee: Dr. Bhanu P. Chowdhary Equine laminitis is a debilitating disease that causes extreme sufferring in afflicted horses and often results in a lifetime of chronic pain. The exact sequence of pathophysiological events culminating in laminitis has not yet been characterized, and this is reflected in the lack of any consistently effective therapeutic strategy. For these reasons, we used a newly developed 21,000 element equine-specific whole-genome oligoarray to perform transcriptomic analysis on laminar tissue from horses with experimentally induced models of laminitis: carbohydrate overload (CHO), hyperinsulinaemia (HI), and oligofructose (OF).
    [Show full text]
  • Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma
    Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma James Chen Submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in the Graduate School of Arts and Sciences Columbia University 2013 ! 2013 James Chen All rights reserved ABSTRACT Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma James Chen This dissertation reviews the development and implementation of integrative, systems biology methods designed to parse driver mutations from high- throughput array data derived from human patients. The analysis of vast amounts of genomic and genetic data in the context of complex human genetic diseases such as Glioblastoma is a daunting task. Mutations exist by the hundreds, if not thousands, and only an unknown handful will contribute to the disease in a significant way. The goal of this project was to develop novel computational methods to identify candidate mutations from these data that drive the molecular differentiation of glioblastoma into the mesenchymal subtype, the most aggressive, poorest-prognosis tumors associated with glioblastoma. TABLE OF CONTENTS CHAPTER 1… Introduction and Background 1 Glioblastoma and the Mesenchymal Subtype 3 Systems Biology and Master Regulators 9 Thesis Project: Genetics and Genomics 20 CHAPTER 2… TCGA Data Processing 23 CHAPTER 3… DIGGIn Part 1 – Selecting f-CNVs 33 Mutual Information 40 Application and Analysis 45 CHAPTER 4… DIGGIn Part 2 – Selecting drivers 52 CHAPTER 5… KLHL9 Manuscript 63 Methods 90 CHAPTER 5a… Revisions work-in-progress 105 CHAPTER 6… Discussion 109 APPENDICES… 132 APPEND01 – TCGA classifications 133 APPEND02 – GBM f-CNV list 136 APPEND03 – MES f-CNV candidate drivers 152 APPEND04 – Scripts 149 APPEND05 – Manuscript Figures and Legends 175 APPEND06 – Manuscript Supplemental Materials 185 i ACKNOWLEDGEMENTS I would like to thank the Califano Lab and my mentor, Andrea Califano, for their intellectual and motivational support during my stay in their lab.
    [Show full text]
  • Mrna Editing, Processing and Quality Control in Caenorhabditis Elegans
    | WORMBOOK mRNA Editing, Processing and Quality Control in Caenorhabditis elegans Joshua A. Arribere,*,1 Hidehito Kuroyanagi,†,1 and Heather A. Hundley‡,1 *Department of MCD Biology, UC Santa Cruz, California 95064, †Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and ‡Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405 ABSTRACT While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes. KEYWORDS Caenorhabditis elegans; splicing; RNA editing; RNA modification; polyadenylation; quality control; WormBook TABLE OF CONTENTS Abstract 531 RNA Editing and Modification 533 Adenosine-to-inosine RNA editing 533 The C. elegans A-to-I editing machinery 534 RNA editing in space and time 535 ADARs regulate the levels and fates of endogenous dsRNA 537 Are other modifications present in C.
    [Show full text]
  • Systematic Genome Editing of the Genes on Zebrafish Chromosome 1 by CRISPR/Cas9
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9 Yonghua Sun,1 Bo Zhang,2 Lingfei Luo,3 De-Li Shi,4 Han Wang,5 Zongbin Cui,1 Honghui Huang,3 Ying Cao,6 Xiaodong Shu,7 Wenqing Zhang,8 Jianfeng Zhou,9 Yun Li,9 Jiulin Du,10 Qingshun Zhao,11 Jun Chen,12 Hanbing Zhong,13 Tao P. Zhong,14 Li Li,3 Jing-Wei Xiong,15 Jinrong Peng,12 Wuhan Xiao,1 Jian Zhang,16 Jihua Yao,17 Zhan Yin,1 Xianming Mo,18 Gang Peng,19 Jun Zhu,20 Yan Chen,21 Yong Zhou,22 Dong Liu,13 Weijun Pan,22 Yiyue Zhang,8 Hua Ruan,3 Feng Liu,23 Zuoyan Zhu,1 Anming Meng,24 and The ZAKOC Consortium25 1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; 2Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China; 3School of Life Sciences, Southwest University, Chongqing, 400715, China; 4Guangdong Medical University, Zhanjiang, Guangdong, 524023, China; 5Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, 215123, China; 6School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China; 7Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China; 8Division of Cell, Developmental and Integrative
    [Show full text]
  • Downregulation of Carnitine Acyl-Carnitine Translocase by Mirnas
    Page 1 of 288 Diabetes 1 Downregulation of Carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion Mufaddal S. Soni1, Mary E. Rabaglia1, Sushant Bhatnagar1, Jin Shang2, Olga Ilkayeva3, Randall Mynatt4, Yun-Ping Zhou2, Eric E. Schadt6, Nancy A.Thornberry2, Deborah M. Muoio5, Mark P. Keller1 and Alan D. Attie1 From the 1Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; 2Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, New Jersey; 3Sarah W. Stedman Nutrition and Metabolism Center, Duke Institute of Molecular Physiology, 5Departments of Medicine and Pharmacology and Cancer Biology, Durham, North Carolina. 4Pennington Biomedical Research Center, Louisiana State University system, Baton Rouge, Louisiana; 6Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York. Corresponding author Alan D. Attie, 543A Biochemistry Addition, 433 Babcock Drive, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, (608) 262-1372 (Ph), (608) 263-9608 (fax), [email protected]. Running Title: Fatty acyl-carnitines enhance insulin secretion Abstract word count: 163 Main text Word count: 3960 Number of tables: 0 Number of figures: 5 Diabetes Publish Ahead of Print, published online June 26, 2014 Diabetes Page 2 of 288 2 ABSTRACT We previously demonstrated that micro-RNAs 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of micro-RNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including non-fuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT, Slc25a20) is a direct target of these miRNAs.
    [Show full text]
  • Spliceosomal Genes in the D. Discoideum Genome: a Comparison with Those in H
    Protein Cell 2011, 2(5): 395–409 Protein & Cell DOI 10.1007/s13238-011-1052-z RESEARCH ARTICLE Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae 1 2 2 4 4 2 Bing Yu , Petra✉ Fey , Karen E. Kestin-Pilcher , Alexei Fedorov , Ashwin Prakash , Rex L. Chisholm , Jane Y. Wu3 1 Department of Molecular and Clinical Genetics, Royal Prince Alfred Hospital and Sydney Medical School (Central), the University of Sydney, NSW 2006, Australia 2 dictyBase, Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA 3 Department of Neurology and Lurie Comprehensive Cancer Center, Center for Genetic Medicine, Northwestern University Feinberg Medical School, Chicago, IL 60611, USA 4 Department of Medicine and Program in Bioinformatics and Proteomics/Genomics, The University of Toledo, Toledo, OH 43614, USA ✉ Correspondence: [email protected] Received May 11, 2011 Accepted May 20, 2011 ABSTRACT KEYWORDS pre-mRNA splicing, spliceosomal genes, Dictyostelium discoideum, comparative genomics, splicing Little is known about pre-mRNA splicing in Dictyostelium regulators discoideum although its genome has been completely sequenced. Our analysis suggests that pre-mRNA spli- INTRODUCTION cing plays an important role in D. discoideum gene expression as two thirds of its genes contain at least one The amoeboid protozoan Dictyostelium discoideum is a intron. Ongoing curation of the genome to date has eukaryotic model organism that has been extensively used revealed 40 genes in D. discoideum with clear evidence in studying signal transduction, cell motility and cell differ- of alternative splicing, supporting the existence of entiation.
    [Show full text]
  • Gene-Expression and in Vitro Function of Mesenchymal Stromal Cells Are Affected in Juvenile Myelomonocytic Leukemia
    Myeloproliferative Disorders SUPPLEMENTARY APPENDIX Gene-expression and in vitro function of mesenchymal stromal cells are affected in juvenile myelomonocytic leukemia Friso G.J. Calkoen, 1 Carly Vervat, 1 Else Eising, 2 Lisanne S. Vijfhuizen, 2 Peter-Bram A.C. ‘t Hoen, 2 Marry M. van den Heuvel-Eibrink, 3,4 R. Maarten Egeler, 1,5 Maarten J.D. van Tol, 1 and Lynne M. Ball 1 1Department of Pediatrics, Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Med - ical Center, the Netherlands; 2Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; 3Dutch Childhood Oncology Group (DCOG), The Hague, the Netherlands; 4Princess Maxima Center for Pediatric Oncology, Utrecht, the Nether - lands; and 5Department of Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Hospital for Sick Children, University of Toronto, ON, Canada ©2015 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.126938 Manuscript received on March 5, 2015. Manuscript accepted on August 17, 2015. Correspondence: [email protected] Supplementary data: Methods for online publication Patients Children referred to our center for HSCT were included in this study according to a protocol approved by the institutional review board (P08.001). Bone-marrow of 9 children with JMML was collected prior to treatment initiation. In addition, bone-marrow after HSCT was collected from 5 of these 9 children. The patients were classified following the criteria described by Loh et al.(1) Bone-marrow samples were sent to the JMML-reference center in Freiburg, Germany for genetic analysis. Bone-marrow samples of healthy pediatric hematopoietic stem cell donors (n=10) were used as control group (HC).
    [Show full text]
  • Identification of Cancer-Specific Transcripts
    Identification of cancer-specific transcripts: With emphasis on the hunt for fusion genes in colorectal cancer Marthe Eken Thesis for the master’s degree in Molecular Bioscience at Department of Molecular Bioscience (IMBV), Faculty of Mathematics and Natural sciences UNIVERSITY OF OSLO December 2008 2 Acknowledgements This work was carried out in the project Group of Genome Biology, at the Department of Cancer Prevention, Rikshospitalet-Radiumhospitalet Medical Center, from March 2007 to December 2008. First of all, I would like to thank my supervisor, Rolf I. Skotheim, for his great support throughout the project, for always taking the time to answer my many questions, and for his everlasting patience with my forgotten italics. I also wish to thank my co-supervisor and head of the department, Ragnhild A. Lothe, for giving me the opportunity to be part of such an excellent group. I greatly appreciate the other members of the department for making this a great place to work, especially Guro for being my lab-oracle, Anita for providing microarray data, Zere for helping me with the cloning, and Hilde for our many discussions. I am grateful to my mother for all her great advices through the years and for always being there for me, and to my father for telling me I could do anything. Finally, special thanks go to my fiancé, Joachim, for his overwhelming patience and support, for always believing in me, and for making me believe in myself. Oslo, December 2008 Marthe Eken Table of contents TABLE OF CONTENTS..................................................................................................................... 4 SUMMARY .......................................................................................................................................... 6 ABBREVIATIONS .............................................................................................................................. 8 GENE SYMBOLS ...............................................................................................................................
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]