Identification of Cancer-Specific Transcripts

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Cancer-Specific Transcripts Identification of cancer-specific transcripts: With emphasis on the hunt for fusion genes in colorectal cancer Marthe Eken Thesis for the master’s degree in Molecular Bioscience at Department of Molecular Bioscience (IMBV), Faculty of Mathematics and Natural sciences UNIVERSITY OF OSLO December 2008 2 Acknowledgements This work was carried out in the project Group of Genome Biology, at the Department of Cancer Prevention, Rikshospitalet-Radiumhospitalet Medical Center, from March 2007 to December 2008. First of all, I would like to thank my supervisor, Rolf I. Skotheim, for his great support throughout the project, for always taking the time to answer my many questions, and for his everlasting patience with my forgotten italics. I also wish to thank my co-supervisor and head of the department, Ragnhild A. Lothe, for giving me the opportunity to be part of such an excellent group. I greatly appreciate the other members of the department for making this a great place to work, especially Guro for being my lab-oracle, Anita for providing microarray data, Zere for helping me with the cloning, and Hilde for our many discussions. I am grateful to my mother for all her great advices through the years and for always being there for me, and to my father for telling me I could do anything. Finally, special thanks go to my fiancé, Joachim, for his overwhelming patience and support, for always believing in me, and for making me believe in myself. Oslo, December 2008 Marthe Eken Table of contents TABLE OF CONTENTS..................................................................................................................... 4 SUMMARY .......................................................................................................................................... 6 ABBREVIATIONS .............................................................................................................................. 8 GENE SYMBOLS ................................................................................................................................ 9 1. INTRODUCTION ................................................................................................................... 10 1.1 THE MOLECULAR PHENOTYPE OF CANCER ............................................................................. 10 1.2 TRANSCRIPT VARIATION IN CANCER ...................................................................................... 11 1.2.1 Alternative splicing .................................................................................................... 12 1.2.2 Alternative core promoter usage ................................................................................ 15 1.3 FUSION GENES IN CANCER ..................................................................................................... 16 1.3.1 Chromosomal rearrangements ................................................................................... 16 1.3.2 Creation of fusion genes from chromosomal rearrangements ................................... 19 1.3.3 Discovery and detection of fusion genes .................................................................... 21 1.3.4 Fusion gene targeting therapy ................................................................................... 22 1.4 COLORECTAL CANCER ........................................................................................................... 23 1.4.1 Developmental pathways ........................................................................................... 24 1.4.2 Dukes' staging, current treatment and outcome ........................................................ 25 1.5 OTHER CANCER DISEASES STUDIED ....................................................................................... 27 1.5.1 Malignant peripheral nerve sheath tumour ............................................................... 27 1.5.2 Leukaemia .................................................................................................................. 28 1.5.3 Testicular germ cell tumour ....................................................................................... 28 2. AIMS ......................................................................................................................................... 30 3. MATERIALS AND METHODS ............................................................................................ 31 3.1 MATERIALS ........................................................................................................................... 31 3.1.1 Cancer cell lines – colon cancer, testicular cancer, and leukaemia .......................... 31 3.1.2 Tissue samples – malignant peripheral nerve sheath tumours and colorectal carcinomas ................................................................................................................ 31 3.2 PUBLICLY AVAILABLE DATABASES ........................................................................................ 32 3.3 ESTABLISHMENT OF METHODOLOGICAL PROTOCOLS IN EXISTING PROJECTS ......................... 32 3.3.1 Analysis of BIRC5 transcipt variants in MPNST samples ......................................... 32 3.3.2 Validation of fusion gene microarray data ................................................................ 33 3.3.3 Analysis of putative fusion genes in a testicular cancer cell line ............................... 35 3.4 DESIGN OF A NOVEL STRATEGY FOR IDENTIFICATION OF FUSION GENES ................................ 36 4 3.4.1 Outlier expression profiles .......................................................................................... 36 3.4.2 Known and putative 3’ fusion gene partners .............................................................. 38 3.4.3 Exon microarray analysis ........................................................................................... 39 3.5 EXPERIMENTAL ASSAYS ......................................................................................................... 42 3.5.1 Polymerase chain reaction ......................................................................................... 42 3.5.2 Rapid Amplification of cDNA Ends ............................................................................ 44 3.5.3 Detection of PCR-products ......................................................................................... 47 3.5.4 Cloning........................................................................................................................ 48 3.5.5 DNA Sequencing ......................................................................................................... 50 4. RESULTS .................................................................................................................................. 52 4.1 BIRC5 TRANSCRIPT VARIANTS ............................................................................................... 52 4.2 FUSION GENE MICROARRAY ................................................................................................... 52 4.3 PUTATIVE FUSION GENES IN TGCT ........................................................................................ 53 4.4 NOVEL STRATEGY FOR IDENTIFICATION OF FUSION GENES ..................................................... 54 5. DISCUSSION ........................................................................................................................... 73 5.1 SPLICE VARIANTS OF BIRC5 IN CANCER ................................................................................. 73 5.2 VALIDATION OF A NOVEL MICROARRAY-BASED TOOL ............................................................ 74 5.3 PUTATIVE FUSION GENES IN TGCT ........................................................................................ 75 5.4 HUNT FOR FUSION GENES ....................................................................................................... 76 5.4.1 Methodological considerations ................................................................................... 76 5.4.2 Novel exons and transcripts ........................................................................................ 78 6. FUTURE PERSPECTIVES .................................................................................................... 85 7. REFERENCE LIST ................................................................................................................. 86 APPENDIX I – PRIMER INFORMATION .................................................................................... 98 APPENDIX II – RESULTS ............................................................................................................. 101 APPENDIX III – KNOWN FUSION GENES IN CANCER ........................................................ 110 APPENDIX IV – ABSTRACTS OF MANUSCRIPTS ................................................................. 118 5 Summary Cancer is a genetic and epigenetic disease where accumulation of alterations in the genome and epigenome of a cell eventually leads to malignancy. Detection and diagnosis of cancer are nevertheless not trivial issues, and furthermore, drugs intended to kill the cancer cells may as well exert their effects on normal cells. This may be due to the lack of specificity of the drugs toward their intended targets, or a lack of cancer-specificity of the drug targets themselves. Events like alternative splicing and chromosomal rearrangements can create cancer-specific transcripts, which themselves or their derived protein products can be considered
Recommended publications
  • Responses of Bats to White-Nose Syndrome and Implications for Conservation
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2020 Responses of Bats to White-Nose Syndrome and Implications for Conservation Meghan Stark University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Stark, Meghan, "Responses of Bats to White-Nose Syndrome and Implications for Conservation" (2020). Doctoral Dissertations. 2518. https://scholars.unh.edu/dissertation/2518 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESPONSES OF BATS TO WHITE-NOSE SYNDROME AND IMPLICATIONS FOR CONSERVATION BY MEGHAN A. STARK B.S., University of Alabama at Birmingham, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Genetics May 2020 i This dissertation was examined and approved in partial fulfillment of the requirements for the degree of Ph.D. in Genetics by: Dissertation Director, Matthew MacManes, Assoc. Prof. UNH MCBS Jeffrey T. Foster, Associate Professor, NAU PMI W. Kelley Thomas, Professor, UNH MCBS Rebecca Rowe, Associate Professor, UNH NREN Thomas Lee, Associate Professor Emeritus, UNH NREN On April 6, 2020 Approval signatures are on file with the University of New Hampshire Graduate School. ii DEDICATION I dedicate this work to all of the strong women in my life: Myra Michele Ange Heather Michelle Coons Kaitlyn Danielle Cagle Brindlee Michelle Coons Patricia Gail Miller Sarah Jean Lane “Here’s to strong women.
    [Show full text]
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • ABSTRACT MITCHELL III, ROBERT DRAKE. Global Human Health
    ABSTRACT MITCHELL III, ROBERT DRAKE. Global Human Health Risks for Arthropod Repellents or Insecticides and Alternative Control Strategies. (Under the direction of Dr. R. Michael Roe). Protein-coding genes and environmental chemicals. New paradigms for human health risk assessment of environmental chemicals emphasize the use of molecular methods and human-derived cell lines. In this study, we examined the effects of the insect repellent DEET (N, N-diethyl-m-toluamide) and the phenylpyrazole insecticide fipronil (fluocyanobenpyrazole) on transcript levels in primary human hepatocytes. These chemicals were tested individually and as a mixture. RNA-Seq showed that 100 µM DEET significantly increased transcript levels for 108 genes and lowered transcript levels for 64 genes and fipronil at 10 µM increased the levels of 2,246 transcripts and decreased the levels for 1,428 transcripts. Fipronil was 21-times more effective than DEET in eliciting changes, even though the treatment concentration was 10-fold lower for fipronil versus DEET. The mixture of DEET and fipronil produced a more than additive effect (levels increased for 3,017 transcripts and decreased for 2,087 transcripts). The transcripts affected in our treatments influenced various biological pathways and processes important to normal cellular functions. Long non-protein coding RNAs and environmental chemicals. While the synthesis and use of new chemical compounds is at an all-time high, the study of their potential impact on human health is quickly falling behind. We chose to examine the effects of two common environmental chemicals, the insect repellent DEET and the insecticide fipronil, on transcript levels of long non-protein coding RNAs (lncRNAs) in primary human hepatocytes.
    [Show full text]
  • Browsing Genes and Genomes with Ensembl
    The Bioinformatics Roadshow Tórshavn, The Faroe Islands 28-29 November 2012 BROWSING GENES AND GENOMES WITH ENSEMBL EXERCISES AND ANSWERS 1 BROWSER 3 BIOMART 8 VARIATION 13 COMPARATIVE GENOMICS 18 2 Note: These exercises are based on Ensembl version 69 (October 2012). After in future a new version has gone live, version 69 will still be available at http://e69.ensembl.org/. If your answer doesn’t correspond with the given answer, please consult the instructor. ______________________________________________________________ BROWSER ______________________________________________________________ Exercise 1 – Exploring a gene (a) Find the human F9 (coagulation factor IX) gene. On which chromosome and which strand of the genome is this gene located? How many transcripts (splice variants) have been annotated for it? (b) What is the longest transcript? How long is the protein it encodes? Has this transcript been annotated automatically (by Ensembl) or manually (by Havana)? How many exons does it have? Are any of the exons completely or partially untranslated? (c) Have a look at the external references for ENST00000218099. What is the function of F9? (d) Is it possible to monitor expression of ENST00000218099 with the ILLUMINA HumanWG_6_V2 microarray? If so, can it also be used to monitor expression of the other two transcripts? (e) In which part (i.e. the N-terminal or C-terminal half) of the protein encoded by ENST00000218099 does its peptidase activity reside? (f) Have any missense variants been discovered for the protein encoded by ENST00000218099? (g) Is there a mouse orthologue predicted for the human F9 gene? (h) If you have yourself a gene of interest, explore what information Ensembl displays about it! ______________________________________________________________ Answer (a) 8 Go to the Ensembl homepage (http://www.ensembl.org/).
    [Show full text]
  • Emerging Genetic Alterations Linked to Male Infertility: X-Chromosome Copy Number Variation and Spermatogenesis Regulatory Genes’ Expression
    Central Annals of Reproductive Medicine and Treatment Bringing Excellence in Open Access Research Article *Corresponding author Susana Fernandes, Department of Genetics, Faculty of Medicine of University of Porto, Al. Prof. Hernâni Emerging Genetic Alterations Monteiro, 4200 - 319 Porto, Portugal; Tel: 351 22 551 36 47; Email: Submitted: 12 October 2016 Linked to Male Infertility: Accepted: 10 February 2017 Published: 14 February 2017 X-Chromosome Copy Number Copyright © 2017 Fernandes et al. Variation and Spermatogenesis OPEN ACCESS Keywords Regulatory Genes’ Expression • Male infertility • Spermatogenesis Catarina Costa1, Maria João Pinho1,2, Alberto Barros1,2,3, and • DNA copy number variations • Gene expression Susana Fernandes1,2* 1Department of Genetics, Faculty of Medicine of University of Porto, Portugal 2i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal 3Centre for Reproductive Genetics A Barros, Portugal Abstract The etiopathogenesis of primary testicular failure remains undefined in 50% of cases. Most of these idiopathic cases probably result from genetic mutations/anomalies. Novel causes, like Copy Number Variation and gene expression profile, are being explored thanks to recent advances in the field of genetics. Our aim was to study Copy Number Variation (CNV) 67, a patient-specific CNV related to spermatogenic anomaly and evaluate the expression of regulatory genes AKAP4, responsible for sperm fibrous sheet assembly, and STAG3, essential for sister chromatid cohesion during meiosis. One hundred infertile men were tested for CNV67 with quantitative PCR (qPCR). Quantitative real-time PCR was performed to evaluate gene expression patterns of the two mentioned genes in testicular biopsies from 22 idiopathic infertile patients. CNV67 deletion was found in 2% of patients, with the same semen phenotype described in previous studies.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Reduced Transfer Coefficient of Carbon Monoxide in Pulmonary Arterial Hypertension Implicates Rare Protein-Truncating Variants I
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.11.871210; this version posted December 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Reduced transfer coefficient of carbon monoxide in pulmonary arterial hypertension implicates rare protein- truncating variants in KDR Genotype-phenotype inference reveals novel PAH risk genes Emilia M. Swietlik, M.D.[1], Daniel Greene, PhD[2,3], Na Zhu, PhD[4,5], Karyn Megy, PhD[2,3], Marcella Cogliano, M.Sc.[6], Smitha Rajaram, M.D.[7], Divya Pandya, M.Sc.[1], Tobias Tilly, M.Sc.[1], Katie A. Lutz, BS[8], Carrie C. L. Welch, PhD[4], Michael W. Pauciulo, BS, MBA[8,9], Laura Southgate, PhD[10], Jennifer M. Martin, M.St.[3], Carmen M. Treacy, B.Sc.[1], Harm J. Bogaard, M.D., PhD[11], Colin Church, PhD[12], Gerry Coghlan, M.D.[13], Anna W. Coleman, MS[8], Robin Condliffe, M.D.[14], Mélanie Eyries, PhD[15], Henning Gall, M.D., PhD[16], Stefano Ghio, M.D.[17], Simon Holden, PhD[18], Luke Howard, M.D., PhD.[19], David G. Kiely, M.D.[14], Gabor Kovacs, M.D.[20,21], Jim Lordan, PhD[22], Rajiv D. Machado, PhD[10], Robert V. MacKenzie Ross, M.B, B.Chir[23], Shahin Moledina, M.B.Ch.B.[24], David Montani, M.D., PhD[25], Horst Olschewski, M.D.[20,21], Joanna Pepke-Zaba, PhD[26], Christopher J.
    [Show full text]
  • The Genetic Bases of Uterine Fibroids; a Review
    Review Article The Genetic Bases of Uterine Fibroids; A Review Veronica Medikare 1, Lakshmi Rao Kandukuri 2, Venkateshwari Ananthapur 3, Mamata Deenadayal 4, Pratibha Nallari 1* 1- Department of Genetics, Osmania University, Hyderabad, India 2- Center for Cellular and Molecular Biology, Habsiguda, Hyderabad, India 3- Institute of Genetics and Hospital for Genetic Diseases, Begumpet, Hyderabad, India 4- Infertility Institute and research Center, Secunderabad, India Abstract Uterine leiomyomas/fibroids are the most common pelvic tumors of the female genital tract. The initiators remaining unknown, estrogens and progesterone are considered as promoters of fibroid growth. Fibroids are monoclonal tumors showing 40-50% karyo- typically detectable chromosomal abnormalities. Cytogenetic aberrations involving chromosomes 6, 7, 12 and 14 constitute the major chromosome abnormalities seen in leiomyomata. This has led to the discovery that disruptions or dysregulations of HMGIC and HMGIY genes contribute to the development of these tumors. Genes such as RAD51L1 act as translocation partners to HMGIC and lead to disruption of gene structure leading to the pathogenesis of uterine fibroids. The mechanism underlying * Corresponding Author: this disease is yet to be identified. The occurrence of PCOLCE amid a cluster of at Downloaded from http://www.jri.ir Pratibha Nallari, Department of Genetics, least eight Alu sequences is potentially relevant to the possible involvement of Osmania University, PCOLCE in the 7q22 rearrangements that occur in many leiomyomata. PCOLCE is Hyderabad, 500 007, implicated in cell growth processes. Involvement of Alu sequences in rearrangements India can lead to the disruption of this gene and, hence, loss of control for gene expression E-mail: leading to uncontrolled cell growth.
    [Show full text]
  • Homologous Recombination As a Potential Target for Ca€Eine
    Oncogene (2000) 19, 5788 ± 5800 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Homologous recombination as a potential target for caeine radiosensitization in mammalian cells: reduced caeine radiosensitization in XRCC2 and XRCC3 mutants Nesrin A Asaad1, Zhao-Chong Zeng1, Jun Guan1, John Thacker2 and George Iliakis*,1 1Department of Radiation Oncology of Kimmel Cancer Center, Jeerson Medical College, Philadelphia, Pennsylvania, PA 19107, USA; 2Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire, OX11 ORD, UK The radiosensitizing eect of caeine has been associated Introduction with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also Caeine (1,3,7-trimethylxanthine) at submillimolar implicate inhibition of DNA repair. The role of DNA concentrations exerts a wide variety of physiological repair inhibition in caeine radiosensitization remains eects on dierent organisms from bacteria to man uncharacterized, and it is unknown which repair process, (Garattini, 1993; Timson, 1977). At higher concentra- or lesion, is aected. We show that a radiosensitive cell tions (0.5 ± 10 mM), it strongly enhances the cytotoxic line, mutant for the RAD51 homolog XRCC2 and eect of ionizing radiation and other physical or defective in homologous recombination repair (HRR), chemical agents that act by inducing damage in DNA displays signi®cantly diminished caeine radiosensitiza- (Kihlman, 1977; Murnane, 1995; Timson, 1977; tion that can be restored by expression of XRCC2. Waldren and Rasko, 1978). Radiosensitization is Despite the reduced radiosensitization, caeine eec- manifest at non-cytotoxic concentrations and therefore tively abrogates checkpoints in S and G2 phases in caeine is considered a model radiosensitizer.
    [Show full text]
  • Anti-VPS4A Antibody (ARG43067)
    Product datasheet [email protected] ARG43067 Package: 50 μg anti-VPS4A antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes VPS4A Tested Reactivity Hu, Ms, Rat Tested Application FACS, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name VPS4A Antigen Species Human Immunogen Recombinant protein corresponding to M1-K71 of Human VPS4A. Conjugation Un-conjugated Alternate Names SKD2; SKD1; hVPS4; Protein SKD2; SKD1A; Vacuolar protein sorting-associated protein 4A; VPS4-1; EC 3.6.4.6; VPS4 Application Instructions Application table Application Dilution FACS 1:150 - 1:500 IHC-P 1:200 - 1:1000 WB 1:500 - 1:2000 Application Note IHC-P: Antigen Retrieval: Heat mediation was performed in EDTA buffer (pH 8.0). * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 49 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 4% Trehalose. Preservative 0.05% Sodium azide Stabilizer 4% Trehalose Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed www.arigobio.com 1/3 before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol VPS4A Gene Full Name vacuolar protein sorting 4 homolog A (S.
    [Show full text]
  • ZFYVE19 (E-14): Sc-165940
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . ZFYVE19 (E-14): sc-165940 BACKGROUND APPLICATIONS Zinc-finger proteins contain DNA-binding domains and have a wide variety of ZFYVE19 (E-14) is recommended for detection of ZFYVE19 of mouse, rat and functions, most of which encompass some form of transcriptional activation human origin by Western Blotting (starting dilution 1:200, dilution range or repression. ZFYVE19 (zinc finger, FYVE domain containing 19), also known 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range as MPFYVE (MLL partner containing FYVE domain), is a 471 amino acid pro - 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- tein that contains one FYVE-type zinc finger. Expressed in heart, brain, kid ney, 1:3000); non cross-reactive with other ZFYVE family members. skeletal muscle and liver, ZFYVE19 may participate in transcriptional regula - Suitable for use as control antibody for ZFYVE19 siRNA (h): sc-90097, tion events within the cell. Defects in the gene encoding ZFYVE19 are asso - ZFYVE19 siRNA (m): sc-155604, ZFYVE19 shRNA Plasmid (h): sc-90097-SH, ciated with acute myeloblastic leukemia (AML), a rapidly progressing cancer ZFYVE19 shRNA Plasmid (m): sc-155604-SH, ZFYVE19 shRNA (h) Lentiviral of the myeloid line of white blood cells that is characterized by fever, ane mia, Particles: sc-90097-V and ZFYVE19 shRNA (m) Lentiviral Particles: bone pain, shortness of breath and frequent infections. Three isoforms of sc-155604-V. ZFYVE19 exist due to alternative splicing events. Molecular Weight of ZFYVE19: 48 kDa. REFERENCES Positive Controls: PLC/PRF/5 whole cell lysate.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]