2012 Economic Impacts of Marine Invasive Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Cryptogenic Status of the Sea Squirt Didemnum Perlucidum (Tunicata, Ascidiacea) in Australia Based on a Molecular Study of Its Global Distribution
Aquatic Invasions (2016) Volume 11, Issue 3: 239–245 DOI: http://dx.doi.org/10.3391/ai.2016.11.3.02 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Investigating the cryptogenic status of the sea squirt Didemnum perlucidum (Tunicata, Ascidiacea) in Australia based on a molecular study of its global distribution P. Joana Dias1,2,*, Rosana Rocha3, Scott Godwin4, María Ana Tovar-Hernández5, Maria V. Delahoz6, Simon McKirdy7,8, Paul de Lestang7, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia 3Departamento de Zoologia, Universidade Federal do Paraná, C.P. 19020, 81.531-980, Curitiba, PR, Brazil 4National Oceanic and Atmospheric Administration, National Marine Sanctuaries, 1845 Wasp Blvd, Bldg 176, Honolulu 96818 Hawaii, USA 5Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Biosistemática, San Nicolás de los Garza, Nuevo León, México 6Instituto Latinoamericano de Ciencias Marinas y del Ambiente, Miami, USA 7Chevron Australia Pty Ltd, Dynons Plaza 905 hay Street, Perth 6000, Western Australia 8School of Veterinary and Life Sciences, Murdoch University, South St, Murdoch 6150, Western Australia *Corresponding author E-mail: [email protected] Received: 29 January 2016 / Accepted: 31 March 2016 / Published online: 28 April 2016 Handling editor: Noa Shenkar Abstract Didemnid species are assessed as species with a high invasive potential for Australia and as such are listed as target species for both state and national monitoring programs. The presence of the sea squirt Didemnum perlucidum (Monniot, 1983) was first documented in Australia in 2010 and has since then been detected extensively throughout the state of Western Australia and in the Northern Territory. -
Colonial Tunicates: Species Guide
SPECIES IN DEPTH Colonial Tunicates Colonial Tunicates Tunicates are small marine filter feeder animals that have an inhalant siphon, which takes in water, and an exhalant siphon that expels water once it has trapped food particles. Tunicates get their name from the tough, nonliving tunic formed from a cellulose-like material of carbohydrates and proteins that surrounds their bodies. Their other name, sea squirts, comes from the fact that many species will shoot LambertGretchen water out of their bodies when disturbed. Massively lobate colony of Didemnum sp. A growing on a rope in Sausalito, in San Francisco Bay. A colony of tunicates is comprised of many tiny sea squirts called zooids. These INVASIVE SEA SQUIRTS individuals are arranged in groups called systems, which form interconnected Star sea squirts (Botryllus schlosseri) are so named because colonies. Systems of these filter feeders the systems arrange themselves in a star. Zooids are shaped share a common area for expelling water like ovals or teardrops and then group together in small instead of having individual excurrent circles of about 20 individuals. This species occurs in a wide siphons. Individuals and systems are all variety of colors: orange, yellow, red, white, purple, grayish encased in a matrix that is often clear and green, or black. The larvae each have eight papillae, or fleshy full of blood vessels. All ascidian tunicates projections that help them attach to a substrate. have a tadpole-like larva that swims for Chain sea squirts (Botryloides violaceus) have elongated, less than a day before attaching itself to circular systems. Each system can have dozens of zooids. -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Vexillum, June 2018, No. 2
Research and news of the North American Vexillological Association June 2018 No. Recherche et nouvelles de l’Association nord-américaine de vexillologie Juin 2018 2 INSIDE Page Editor’s Note 2 President’s Column 3 NAVA Membership Anniversaries 3 The Flag of Unity in Diversity 4 Incorporating NAVA News and Flag Research Quarterly Book Review: "A Flag Worth Dying For: The Power and Politics of National Symbols" 7 New Flags: 4 Reno, Nevada 8 The International Vegan Flag 9 Regional Group Report: The Flag of Unity Chesapeake Bay Flag Association 10 Vexi-News Celebrates First Anniversary 10 in Diversity Judge Carlos Moore, Mississippi Flag Activist 11 Stamp Celebrates 200th Anniversary of the Flag Act of 1818 12 Captain William Driver Award Guidelines 12 The Water The Water Protectors: Native American Nationalism, Environmentalism, and the Flags of the Dakota Access Pipeline Protectors Protests of 2016–2017 13 NAVA Grants 21 Evolutionary Vexillography in the Twenty-First Century 21 13 Help Support NAVA's Upcoming Vatican Flags Book 23 NAVA Annual Meeting Notice 24 Top: The Flag of Unity in Diversity Right: Demonstrators at the NoDAPL protests in January 2017. Source: https:// www.indianz.com/News/2017/01/27/delay-in- nodapl-response-points-to-more.asp 2 | June 2018 • Vexillum No. 2 June / Juin 2018 Number 2 / Numéro 2 Editor's Note | Note de la rédaction Dear Reader: We hope you enjoyed the premiere issue of Vexillum. In addition to offering my thanks Research and news of the North American to the contributors and our fine layout designer Jonathan Lehmann, I owe a special note Vexillological Association / Recherche et nouvelles de l’Association nord-américaine of gratitude to NAVA members Peter Ansoff, Stan Contrades, Xing Fei, Ted Kaye, Pete de vexillologie. -
Establishment of a Taxonomic and Molecular Reference Collection to Support the Identification of Species Regulated by the Wester
Management of Biological Invasions (2017) Volume 8, Issue 2: 215–225 DOI: https://doi.org/10.3391/mbi.2017.8.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Proceedings of the 9th International Conference on Marine Bioinvasions (19–21 January 2016, Sydney, Australia) Research Article Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests P. Joana Dias1,2,*, Seema Fotedar1, Julieta Munoz1, Matthew J. Hewitt1, Sherralee Lukehurst2, Mathew Hourston1, Claire Wellington1, Roger Duggan1, Samantha Bridgwood1, Marion Massam1, Victoria Aitken1, Paul de Lestang3, Simon McKirdy3,4, Richard Willan5, Lisa Kirkendale6, Jennifer Giannetta7, Maria Corsini-Foka8, Steve Pothoven9, Fiona Gower10, Frédérique Viard11, Christian Buschbaum12, Giuseppe Scarcella13, Pierluigi Strafella13, Melanie J. Bishop14, Timothy Sullivan15, Isabella Buttino16, Hawis Madduppa17, Mareike Huhn17, Chela J. Zabin18, Karolina Bacela-Spychalska19, Dagmara Wójcik-Fudalewska20, Alexandra Markert21,22, Alexey Maximov23, Lena Kautsky24, Cornelia Jaspers25, Jonne Kotta26, Merli Pärnoja26, Daniel Robledo27, Konstantinos Tsiamis28,29, Frithjof C. Küpper30, Ante Žuljević31, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia; 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia; 3Chevron -
Aquatic Invasive Species of the Pacific Northwest Didemnum Vexillum
Aquatic Invasive Species of the Pacific Northwest Didemnum vexillum Colonial tunicate; ascidian; sea squirt Dejah L. Sanchez Aquatic Invasion Ecology: Julian Olden Autumn 2014 Figure 1. Didemnum vexillum growing on mussels in New Zealand, the originating location as described by P. Kott in 2002. (Photo US Geological Survey). Classification Order: Aplousobranchia Family: Didemnidae Genus: Didemnum Species: vexillum Identification Key Per the Kott 2002 description, the colony color is yellowish cream with a range of thin to thick shaped colonies. These extensive colonies can be either encrusting or lobed and have spicule-free dark bands between zooid groups. The Figure 3. Encrusting colony seen in spicule density is sparse and mostly limited Massachusetts. (Photo US Geological Survey). to the surface. Spicule shape stellate, with The zooids are about 1mm overall, the 9-11 conical rays in the optical transverse abdomen about twice the size of the section, and can be up to 58 μm (averaging contracted thorax. The branchial syphon is 30 μm per photo). Hypo abdominal lacunae short with six small pointed projections are absent. May be confused with encrusting around the rim of the aperture. A large sponges at times. spherical clump of crowded spicules from the lateral organ projects from the test each side of the posterior end of the large sessile atrial aperture, which exposes most of the branchial sac directly to the common cloacal cavity. Eight or nine stigmata are in the anterior row of the branchial sac. A short retractor muscle projects from halfway down the moderately long oesophageal neck (about the same length as the thorax). -
Assessing the Impact of Key Marine Invasive Non-Native Species on Welsh MPA Habitat Features, Fisheries and Aquaculture
Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. Bishop, J.D.D Marine Biological Association of the UK Report No. 454 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of -
The History of Florida's State Flag the History of Florida's State Flag Robert M
Nova Law Review Volume 18, Issue 2 1994 Article 11 The History of Florida’s State Flag Robert M. Jarvis∗ ∗ Copyright c 1994 by the authors. Nova Law Review is produced by The Berkeley Electronic Press (bepress). https://nsuworks.nova.edu/nlr Jarvis: The History of Florida's State Flag The History of Florida's State Flag Robert M. Jarvis* TABLE OF CONTENTS I. INTRODUCTION ........ .................. 1037 II. EUROPEAN DISCOVERY AND CONQUEST ........... 1038 III. AMERICAN ACQUISITION AND STATEHOOD ......... 1045 IV. THE CIVIL WAR .......................... 1051 V. RECONSTRUCTION AND THE END OF THE NINETEENTH CENTURY ..................... 1056 VI. THE TWENTIETH CENTURY ................... 1059 VII. CONCLUSION ............................ 1063 I. INTRODUCTION The Florida Constitution requires the state to have an official flag, and places responsibility for its design on the State Legislature.' Prior to 1900, a number of different flags served as the state's banner. Since 1900, however, the flag has consisted of a white field,2 a red saltire,3 and the * Professor of Law, Nova University. B.A., Northwestern University; J.D., University of Pennsylvania; LL.M., New York University. 1. "The design of the great seal and flag of the state shall be prescribed by law." FLA. CONST. art. If, § 4. Although the constitution mentions only a seal and a flag, the Florida Legislature has designated many other state symbols, including: a state flower (the orange blossom - adopted in 1909); bird (mockingbird - 1927); song ("Old Folks Home" - 1935); tree (sabal palm - 1.953); beverage (orange juice - 1967); shell (horse conch - 1969); gem (moonstone - 1970); marine mammal (manatee - 1975); saltwater mammal (dolphin - 1975); freshwater fish (largemouth bass - 1975); saltwater fish (Atlantic sailfish - 1975); stone (agatized coral - 1979); reptile (alligator - 1987); animal (panther - 1982); soil (Mayakka Fine Sand - 1989); and wildflower (coreopsis - 1991). -
A Study on the Distribution and Level of Cadmium in Scallop Bractechlamys Vexillum (Reeve 1853) from the Visayan Sea, Philippines
Perelonia et al. / The Philippine Journal of Fisheries 28(1): 33-43 January - June 2021 DOI: 10.31398/tpjf/28.1.2020A0008 RESEARCH ARTICLE A Study on the Distribution and Level of Cadmium in Scallop Bractechlamys vexillum (Reeve 1853) from the Visayan Sea, Philippines Karl Bryan S. Perelonia* , Riza Jane S. Banicod, Kathlene Cleah D. Benitez, Gezelle C. Tadifa, Bryan E. Tanyag, Flordeliza D. Cambia, Ulysses M. Montojo Fisheries Postharvest Research and Development Division – Seafood Quality and Safety Section National Fisheries Research and Development Institute, Quezon City, Philippines ABSTRACT Bivalves such as scallop Bractechlamys vexillum are considered an essential resource for livelihood and revenues in the Visayan Sea, central Philippines. To date, there are several reports that the local marine ecosystems are contaminated with heavy metals like cadmium; hence, these species are also susceptible to bioaccumulation of cadmium because they feed mainly by filtering particles from contaminated water. In recent studies, scallops are suggested to be a potential bioindicator for cadmium contamination due to their ability to accumulate and tolerate the metal. This research aims to examine the anatomical distribution of cadmium in B. vexillum and measure the relationship between shell weight and cadmium concentration. The sites for this study include Carles, Iloilo, Madridejos, Cebu, and Cawayan, Masbate. Five organs were analyzed: adductor muscle, digestive gland, gonad, gill, and mantle. The analysis for quantification of cadmium in the different scallop parts was carried out by Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES Model ICPE-9820, Shimadzu, Kyoto, Japan). Results showed that cadmium preferentially accumulates in the digestive gland, accounting for 76.39% of the total metal concentration. -
First Record of the Colonial Ascidian Didemnum Vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy)
BioInvasions Records (2012) Volume 1, Issue 4: 247–254 Open Access doi: http://dx.doi.org/10.3391/bir.2012.1.4.02 © 2012 The Author(s). Journal compilation © 2012 REABIC Research Article First record of the colonial ascidian Didemnum vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy) Davide Tagliapietra1*, Erica Keppel1, Marco Sigovini1 and Gretchen Lambert2 1 CNR - National Research Council of Italy, ISMAR - Marine Sciences Institute, Arsenale - Tesa 104, Castello 2737/F, I-30122 Venice, Italy 2 University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250. Mailing address: 12001 11th Ave. NW, Seattle, WA 98177, USA E-mail: [email protected] (DT), [email protected] (EK), [email protected] (MS), [email protected] (GL) *Corresponding author Received: 30 July 2012 / Accepted: 16 October 2012 / Published online: 23 October 2012 Abstract Numerous colonies of the invasive colonial ascidian Didemnum vexillum Kott, 2002 have been found in the Lagoon of Venice (Italy) in 2012, overgrowing fouling organisms on maritime structures such as docks, pilings, and pontoons. This is the first record for the Mediterranean Sea. A survey conducted in July 2012 revealed that D. vexillum is present in the euhaline and tidally well flushed zones of the lagoon, whereas it was absent at the examined estuarine tracts and at the zones surrounding the saltmarshes. Suitable climatic, physiographic and saline features together with a high volume of international maritime traffic make the Lagoon of Venice a perfect hub for the successful introduction of temperate non-native species. Key words: Didemnum vexillum, Mediterranean, Lagoon of Venice, ascidian, fouling, marinas, invasive species Introduction cold coasts of North America and Europe as well as from Japan where it is probably native Didemnum vexillum Kott, 2002 (Ascidiacea: (Bullard et al. -
Impact of the Invasive Colonial Tunicate Didemnum Vexillum on The
Aquatic Invasions (2009) Volume 4, Issue 1: 207-211 This is an Open Access article; doi: 10.3391/ai.2009.4.1.21 © 2009 The Author(s). Journal compilation © 2009 REABIC Special issue “Proceedings of the 2nd International Invasive Sea Squirt Conference” (October 2-4, 2007, Prince Edward Island, Canada) Andrea Locke and Mary Carman (Guest Editors) Research article Impact of the invasive colonial tunicate Didemnum vexillum on the recruitment of the bay scallop (Argopecten irradians irradians) and implications for recruitment of the sea scallop (Placopecten magellanicus) on Georges Bank James A. Morris, Jr.1*, Mary R. Carman2, K. Elaine Hoagland3, Emma R.M. Green-Beach4 4 and Richard C. Karney 1National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, 101 Pivers Island Road, Beaufort, North Carolina, 28516, USA, E-mail: [email protected] 2Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA, E-mail: [email protected] 3National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science 1315 East-West Highway, Silver Spring, Maryland, 20910, USA, E-mail: [email protected] 4Martha's Vineyard Shellfish Group, Inc., PO Box 1552, Oak Bluffs, Massachusetts, 02557, USA, E-mail: [email protected] * Corresponding author Received 16 January 2008; accepted for special issue 17 April 2008; accepted in revised form 16 December 2008; published online 16 January 2009 Abstract The invasive colonial tunicate Didemnum vexillum has become widespread in New England waters, colonizing large areas of shell-gravel bottom on Georges Bank including commercial sea scallop (Placopecten magellanicus) grounds. -
Flags and Banners
Flags and Banners A Wikipedia Compilation by Michael A. Linton Contents 1 Flag 1 1.1 History ................................................. 2 1.2 National flags ............................................. 4 1.2.1 Civil flags ........................................... 8 1.2.2 War flags ........................................... 8 1.2.3 International flags ....................................... 8 1.3 At sea ................................................. 8 1.4 Shapes and designs .......................................... 9 1.4.1 Vertical flags ......................................... 12 1.5 Religious flags ............................................. 13 1.6 Linguistic flags ............................................. 13 1.7 In sports ................................................ 16 1.8 Diplomatic flags ............................................ 18 1.9 In politics ............................................... 18 1.10 Vehicle flags .............................................. 18 1.11 Swimming flags ............................................ 19 1.12 Railway flags .............................................. 20 1.13 Flagpoles ............................................... 21 1.13.1 Record heights ........................................ 21 1.13.2 Design ............................................. 21 1.14 Hoisting the flag ............................................ 21 1.15 Flags and communication ....................................... 21 1.16 Flapping ................................................ 23 1.17 See also ...............................................