Aquatic Invasive Species of the Pacific Northwest Didemnum Vexillum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Cryptogenic Status of the Sea Squirt Didemnum Perlucidum (Tunicata, Ascidiacea) in Australia Based on a Molecular Study of Its Global Distribution
Aquatic Invasions (2016) Volume 11, Issue 3: 239–245 DOI: http://dx.doi.org/10.3391/ai.2016.11.3.02 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Investigating the cryptogenic status of the sea squirt Didemnum perlucidum (Tunicata, Ascidiacea) in Australia based on a molecular study of its global distribution P. Joana Dias1,2,*, Rosana Rocha3, Scott Godwin4, María Ana Tovar-Hernández5, Maria V. Delahoz6, Simon McKirdy7,8, Paul de Lestang7, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia 3Departamento de Zoologia, Universidade Federal do Paraná, C.P. 19020, 81.531-980, Curitiba, PR, Brazil 4National Oceanic and Atmospheric Administration, National Marine Sanctuaries, 1845 Wasp Blvd, Bldg 176, Honolulu 96818 Hawaii, USA 5Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Biosistemática, San Nicolás de los Garza, Nuevo León, México 6Instituto Latinoamericano de Ciencias Marinas y del Ambiente, Miami, USA 7Chevron Australia Pty Ltd, Dynons Plaza 905 hay Street, Perth 6000, Western Australia 8School of Veterinary and Life Sciences, Murdoch University, South St, Murdoch 6150, Western Australia *Corresponding author E-mail: [email protected] Received: 29 January 2016 / Accepted: 31 March 2016 / Published online: 28 April 2016 Handling editor: Noa Shenkar Abstract Didemnid species are assessed as species with a high invasive potential for Australia and as such are listed as target species for both state and national monitoring programs. The presence of the sea squirt Didemnum perlucidum (Monniot, 1983) was first documented in Australia in 2010 and has since then been detected extensively throughout the state of Western Australia and in the Northern Territory. -
Colonial Tunicates: Species Guide
SPECIES IN DEPTH Colonial Tunicates Colonial Tunicates Tunicates are small marine filter feeder animals that have an inhalant siphon, which takes in water, and an exhalant siphon that expels water once it has trapped food particles. Tunicates get their name from the tough, nonliving tunic formed from a cellulose-like material of carbohydrates and proteins that surrounds their bodies. Their other name, sea squirts, comes from the fact that many species will shoot LambertGretchen water out of their bodies when disturbed. Massively lobate colony of Didemnum sp. A growing on a rope in Sausalito, in San Francisco Bay. A colony of tunicates is comprised of many tiny sea squirts called zooids. These INVASIVE SEA SQUIRTS individuals are arranged in groups called systems, which form interconnected Star sea squirts (Botryllus schlosseri) are so named because colonies. Systems of these filter feeders the systems arrange themselves in a star. Zooids are shaped share a common area for expelling water like ovals or teardrops and then group together in small instead of having individual excurrent circles of about 20 individuals. This species occurs in a wide siphons. Individuals and systems are all variety of colors: orange, yellow, red, white, purple, grayish encased in a matrix that is often clear and green, or black. The larvae each have eight papillae, or fleshy full of blood vessels. All ascidian tunicates projections that help them attach to a substrate. have a tadpole-like larva that swims for Chain sea squirts (Botryloides violaceus) have elongated, less than a day before attaching itself to circular systems. Each system can have dozens of zooids. -
Didemnidae Didemnum Granulatum Tokioka, 1954
SOME ASCIDIANS (TUNICATA, ASCIDIACEA) FROM PARANA STATE, SOUTHERN BRAZIL 1 Rosana Moreira da Rocha 2 Cinthia Margareth Nasser 2 ABSTRACT. The records ofeleven species from the Parana State coast are presented. One ofthem, Ascidia curvata (Traustedt, 1882), is first registered in the Brazilian coast. Six other species had their geographic distribution extended to the south in West Atlantic waters. KEY WORDS. Ascidiacea, taxonomy, Parana, Brazil The coast of Parana State is one ofthe shortest in Brazil and the few rocky substrates are almost restricted to a few small islands near the coast. The invertebrate fauna of these islands is very poorly known, as well as the ascidians. The only publication on the ascidians ofParana (MOURE et at. 1954) registered the presence of three species: Didemnum candidum (probably a mixture of many species), Polysyncraton amethysteum (really abundant in the intertidal region), and Styela plicata (common species on piers and artificial substrate). In this paper we deal with specimens which were given to us for identification and some material collected during sporadic visits to the coast. This is probably the reason that most species are very common ones and will not be further described, though it is important to register them, because of the extension of the southern limit of distribution in the western Atlantic for most species. We chose not to present the whole synonymy of the species, but only previous references on Brazilian records. Other references are provided at "Distribution and Habitat" section. The specimens examined are deposited in the collection of the first author at Zoology Department ofUniversidade Federal do Parana (codes of vouchers are provided under the item "examined material"). -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Establishment of a Taxonomic and Molecular Reference Collection to Support the Identification of Species Regulated by the Wester
Management of Biological Invasions (2017) Volume 8, Issue 2: 215–225 DOI: https://doi.org/10.3391/mbi.2017.8.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Proceedings of the 9th International Conference on Marine Bioinvasions (19–21 January 2016, Sydney, Australia) Research Article Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests P. Joana Dias1,2,*, Seema Fotedar1, Julieta Munoz1, Matthew J. Hewitt1, Sherralee Lukehurst2, Mathew Hourston1, Claire Wellington1, Roger Duggan1, Samantha Bridgwood1, Marion Massam1, Victoria Aitken1, Paul de Lestang3, Simon McKirdy3,4, Richard Willan5, Lisa Kirkendale6, Jennifer Giannetta7, Maria Corsini-Foka8, Steve Pothoven9, Fiona Gower10, Frédérique Viard11, Christian Buschbaum12, Giuseppe Scarcella13, Pierluigi Strafella13, Melanie J. Bishop14, Timothy Sullivan15, Isabella Buttino16, Hawis Madduppa17, Mareike Huhn17, Chela J. Zabin18, Karolina Bacela-Spychalska19, Dagmara Wójcik-Fudalewska20, Alexandra Markert21,22, Alexey Maximov23, Lena Kautsky24, Cornelia Jaspers25, Jonne Kotta26, Merli Pärnoja26, Daniel Robledo27, Konstantinos Tsiamis28,29, Frithjof C. Küpper30, Ante Žuljević31, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia; 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia; 3Chevron -
2012 Economic Impacts of Marine Invasive Species
Final Report to the Prince William Sound Regional Citizens’ Advisory Council Marine Invasive Species Program Contract No. 952.11.04 FINAL REPORT: July 19, 2011 – July 31, 2012 Submitted July 31, 2012 The opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC Project Overview Non-Indigenous Species (NIS) may specifically be classified as invasive when ecologically or economically damaging and/or causing harm to human health. We see the economic consequences of invasions in other states and regions. Alaska has not experienced significant impacts to date but examples tell us it may only be a matter of time, and all the more assured if we do nothing or little to prevent and mitigate invasions. To date, we as a state have not undertaken an economic assessment to estimate how severe an economic impact could be due to marine invasive species. Without this economic analysis the environmental arguments supporting action for an Alaska Council on Invasive Species become mute. There may be impacts, there may be environmental consequences, but a louder voice echoing the economic impacts may be required to get the ear of the Legislature. To this end we proposed to work in collaboration with the University of Alaska Anchorage’s Institute of Social and Economic Research (ISER) to assess economic benefits and costs of taking action versus no action on invasive species in Alaska. This project is a result of the Marine Invasive Species Workshop held in 2010 by the Marine Subcommittee of the Alaska Invasive Species Working Group. Workshop participants discussed the status of marine invasive species in Alaska, the state’s invasive species policies and management, and the potential impacts of marine invasive species on Alaska’s commercial, recreation, and subsistence economies. -
Assessing the Impact of Key Marine Invasive Non-Native Species on Welsh MPA Habitat Features, Fisheries and Aquaculture
Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. Bishop, J.D.D Marine Biological Association of the UK Report No. 454 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of -
Ascidiacea, Didemnidae): a Re-Examination of Some Specimens and Descriptions of Three New Species
European Journal of Taxonomy 519: 1–25 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.519 www.europeanjournaloftaxonomy.eu 2019 · Oliveira L.M. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:D9E64DD6-D675-4E25-B9B8-A44C14CE0B22 Polysyncraton (Ascidiacea, Didemnidae): a re-examination of some specimens and descriptions of three new species Livia M. OLIVEIRA 1,*, Bert W. HOEKSEMA 2 & Rosana M. ROCHA 3 1,3 Laboratório de Sistemática e Ecologia de Invertebrados Marinhos, Departamento de Zoologia, Universidade Federal do Paraná, CP 19020, 81531-980 Curitiba, Brazil. 2 Department of Taxonomy and Systematics, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:2058206A-50D4-4956-8888-358701793D7F 2 urn:lsid:zoobank.org:author:548DBAFD-040B-4773-A043-6FCC466160A1 3 urn:lsid:zoobank.org:author:E170DE7A-DB70-4E5B-8488-45FA680812DA Abstract. Polysyncraton Nott, 1892 is the second largest genus of didemnid ascidians; it has a wide distribution ranging from temperate to tropical waters. Seventy-one specimens of Polysyncraton from eight museum collections and recently collected samples were analyzed. This resulted in the description of three new species (P. cabofriense Oliveira & Rocha sp. nov. from Brazil, P. globosum Oliveira & Rocha sp. nov. from Australia and P. snelliusi Oliveira & Rocha sp. nov. from Suriname) and emended descriptions of three further species (P. amethysteum (Van Name, 1902), P. magnilarvum (Millar, 1962) and P. -
First Record of the Colonial Ascidian Didemnum Vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy)
BioInvasions Records (2012) Volume 1, Issue 4: 247–254 Open Access doi: http://dx.doi.org/10.3391/bir.2012.1.4.02 © 2012 The Author(s). Journal compilation © 2012 REABIC Research Article First record of the colonial ascidian Didemnum vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy) Davide Tagliapietra1*, Erica Keppel1, Marco Sigovini1 and Gretchen Lambert2 1 CNR - National Research Council of Italy, ISMAR - Marine Sciences Institute, Arsenale - Tesa 104, Castello 2737/F, I-30122 Venice, Italy 2 University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250. Mailing address: 12001 11th Ave. NW, Seattle, WA 98177, USA E-mail: [email protected] (DT), [email protected] (EK), [email protected] (MS), [email protected] (GL) *Corresponding author Received: 30 July 2012 / Accepted: 16 October 2012 / Published online: 23 October 2012 Abstract Numerous colonies of the invasive colonial ascidian Didemnum vexillum Kott, 2002 have been found in the Lagoon of Venice (Italy) in 2012, overgrowing fouling organisms on maritime structures such as docks, pilings, and pontoons. This is the first record for the Mediterranean Sea. A survey conducted in July 2012 revealed that D. vexillum is present in the euhaline and tidally well flushed zones of the lagoon, whereas it was absent at the examined estuarine tracts and at the zones surrounding the saltmarshes. Suitable climatic, physiographic and saline features together with a high volume of international maritime traffic make the Lagoon of Venice a perfect hub for the successful introduction of temperate non-native species. Key words: Didemnum vexillum, Mediterranean, Lagoon of Venice, ascidian, fouling, marinas, invasive species Introduction cold coasts of North America and Europe as well as from Japan where it is probably native Didemnum vexillum Kott, 2002 (Ascidiacea: (Bullard et al. -
Policy Drafting Template SE-NIS-1 HLMO Living Through
Policy drafting template SE-NIS-1 HLMO Living through Sub bullet(s) Our oceans support environmental limits viable populations of representative, rare, vulnerable, and valued species. Grouping Invasive non-native Code SE-NIS-1 species Policy SE-NIS-1 Proposals that reduce the risk of spread and/or introduction of non-native invasive species within the south east marine plan area and adjacent plan areas should be supported. Proposals must put in place appropriate measures to avoid or minimise significant adverse impacts that would arise through the introduction and transport of non-native invasive species, particularly when: 1) moving equipment, boats or livestock (for example fish or shellfish) from one water body to another 2) introducing structures suitable for settlement of non-native invasive species, or the spread of non-native invasive species known to exist in the area. What are non-native and non-native invasive species? 1. Non-native (sometimes referred to as non-indigenous) species are those introduced outside of their natural past or present distribution which might survive and subsequently reproduce. In many cases non-native species do not cause harm to the local environment or economy. The Great Britain Non-Native Species Secretariat describes non-native invasive species as any non-native species that has the ability to spread, causing damage to the environment, economy, human health or the way we live. Non-native species can become ‘invasive’ when they cause significant adverse impacts. For example, the carpet sea squirt (Didemnum vexillum) was confirmed in British waters in 2008. It spreads quickly and smothers equipment, boat hulls, fishing equipment and native habitats, such as mussel beds. -
Notes / Notassumida Et Al.: Effects of Pressure on Early Ascidian Ontogenesis BJOCE
Notes / NotasSumida et al.: Effects of pressure on early ascidian ontogenesis BJOCE Pressure tolerance of tadpole larvae of the Atlantic ascidian Polyandrocarpa zorritensis: potential for deep-sea invasion Paulo Yukio Gomes Sumida*, Arthur Ziggiatti Güth, Miguel Mies Benthic Dynamics Laboratory (LDB), Department of Biological Oceanography, Oceanographic Institute, Universidade de São Paulo. (Praça do Oceanográfico, 191 - CEP: 05508-120, São Paulo, SP - Brazil) *Corresponding author: [email protected] ABSTRACT RESUMO How deep-sea fauna evolved is a question still being Dentre as teorias mais aceitas de como surgiu a investigated. One of the most accepted theories is fauna de oceano profundo está a de que organismos that shallow water organisms migrated to deeper de águas rasas migraram para águas mais profundas waters and gave origin to the deep-sea communities. e lá especiaram até originarem as comunidades de However, many organisms are prevented from mar profundo atuais. No entanto, muitos organismos performing long vertical migrations by the increasing são impedidos de fazer longas migrações verticais hydrostatic pressure. Tadpole larvae of the ascidian por conta do aumento da pressão hidrostática. Polyandrocarpa zorritensis were submitted to Larvas da ascídia Polyandrocarpa zorritensis foram pressure treatments of 1, 50, 100 and 200 atm. submetidas a pressões de 1, 50, 100 e 200 atm. Taxas Survival, settlement and metamorphosis rates were de sobrevivência, assentamento e metamorfose foram verified after 24 hour incubation in a pressure avaliadas após incubação de 24 horas em uma câmara chamber. The majority of larvae settled (84%, de pressão. A maioria das larvas assentou (84%, 62%, 83% and 77% respectively) and successfully 62%, 83% e 77%, respectivamente) e completou underwent metamorphosis (93%, 59%, 85% and a metamorfose (93%, 59%, 85% e 60%) em todas 60%) in all pressure treatments. -
First Fossil Record of Early Sarmatian Didemnid Ascidian Spicules
First fossil record of Early Sarmatian didemnid ascidian spicules (Tunicata) from Moldova Keywords: Ascidiacea, Didemnidae, sea squirts, Sarmatian, Moldova ABSTRACT In the present study, numerous ascidian spicules are reported for the first time from the Lower Sarmatian Darabani-Mitoc Clays of Costeşti, north-western Moldova. The biological interpretation of the studied sclerites allowed the distinguishing of at least four genera (Polysyncraton, Lissoclinum, Trididemnum, Didemnum) within the Didemnidae family. Three other morphological types of spicules were classified as indeterminable didemnids. Most of the studied spicules are morphologically similar to spicules of recent shallow-water taxa from different parts of the world. The greater size of the studied spicules, compared to that of present-day didemnids, may suggest favourable physicochemical conditions within the Sarmatian Sea. The presence of these rather stenohaline tunicates that prefer normal salinity seems to confirm the latest hypotheses regarding mixo-mesohaline conditions (18–30 ‰) during the Early Sarmatian. PLAIN LANGUAGE SUMMARY For the first time the skeletal elements (spicules) of sessile filter feeding tunicates called sea squirts (or ascidians) were found in 13 million-year-old sediments of Moldova. When assigned the spicules to Recent taxa instead of using parataxonomical nomenclature, we were able to reconstruct that they all belong to family Didemnidae. Moreover, we were able to recognize four genera within this family: Polysyncraton, Lissoclinum, Trididemnum, and Didemnum. All the recognized spicules resemble the spicules of present-day extreemly shallow-water ascidians inhabiting depths not greater than 20 m. The presence of these rather stenohaline tunicates that prefer normal salinity seems to confirm the latest hypotheses regarding mixo-mesohaline conditions during the Early Sarmatian.