Didemnum Vexillum in Global Populations Elizabeth S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Cryptogenic Status of the Sea Squirt Didemnum Perlucidum (Tunicata, Ascidiacea) in Australia Based on a Molecular Study of Its Global Distribution
Aquatic Invasions (2016) Volume 11, Issue 3: 239–245 DOI: http://dx.doi.org/10.3391/ai.2016.11.3.02 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Investigating the cryptogenic status of the sea squirt Didemnum perlucidum (Tunicata, Ascidiacea) in Australia based on a molecular study of its global distribution P. Joana Dias1,2,*, Rosana Rocha3, Scott Godwin4, María Ana Tovar-Hernández5, Maria V. Delahoz6, Simon McKirdy7,8, Paul de Lestang7, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia 3Departamento de Zoologia, Universidade Federal do Paraná, C.P. 19020, 81.531-980, Curitiba, PR, Brazil 4National Oceanic and Atmospheric Administration, National Marine Sanctuaries, 1845 Wasp Blvd, Bldg 176, Honolulu 96818 Hawaii, USA 5Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Biosistemática, San Nicolás de los Garza, Nuevo León, México 6Instituto Latinoamericano de Ciencias Marinas y del Ambiente, Miami, USA 7Chevron Australia Pty Ltd, Dynons Plaza 905 hay Street, Perth 6000, Western Australia 8School of Veterinary and Life Sciences, Murdoch University, South St, Murdoch 6150, Western Australia *Corresponding author E-mail: [email protected] Received: 29 January 2016 / Accepted: 31 March 2016 / Published online: 28 April 2016 Handling editor: Noa Shenkar Abstract Didemnid species are assessed as species with a high invasive potential for Australia and as such are listed as target species for both state and national monitoring programs. The presence of the sea squirt Didemnum perlucidum (Monniot, 1983) was first documented in Australia in 2010 and has since then been detected extensively throughout the state of Western Australia and in the Northern Territory. -
Colonial Tunicates: Species Guide
SPECIES IN DEPTH Colonial Tunicates Colonial Tunicates Tunicates are small marine filter feeder animals that have an inhalant siphon, which takes in water, and an exhalant siphon that expels water once it has trapped food particles. Tunicates get their name from the tough, nonliving tunic formed from a cellulose-like material of carbohydrates and proteins that surrounds their bodies. Their other name, sea squirts, comes from the fact that many species will shoot LambertGretchen water out of their bodies when disturbed. Massively lobate colony of Didemnum sp. A growing on a rope in Sausalito, in San Francisco Bay. A colony of tunicates is comprised of many tiny sea squirts called zooids. These INVASIVE SEA SQUIRTS individuals are arranged in groups called systems, which form interconnected Star sea squirts (Botryllus schlosseri) are so named because colonies. Systems of these filter feeders the systems arrange themselves in a star. Zooids are shaped share a common area for expelling water like ovals or teardrops and then group together in small instead of having individual excurrent circles of about 20 individuals. This species occurs in a wide siphons. Individuals and systems are all variety of colors: orange, yellow, red, white, purple, grayish encased in a matrix that is often clear and green, or black. The larvae each have eight papillae, or fleshy full of blood vessels. All ascidian tunicates projections that help them attach to a substrate. have a tadpole-like larva that swims for Chain sea squirts (Botryloides violaceus) have elongated, less than a day before attaching itself to circular systems. Each system can have dozens of zooids. -
Establishment of a Taxonomic and Molecular Reference Collection to Support the Identification of Species Regulated by the Wester
Management of Biological Invasions (2017) Volume 8, Issue 2: 215–225 DOI: https://doi.org/10.3391/mbi.2017.8.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Proceedings of the 9th International Conference on Marine Bioinvasions (19–21 January 2016, Sydney, Australia) Research Article Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests P. Joana Dias1,2,*, Seema Fotedar1, Julieta Munoz1, Matthew J. Hewitt1, Sherralee Lukehurst2, Mathew Hourston1, Claire Wellington1, Roger Duggan1, Samantha Bridgwood1, Marion Massam1, Victoria Aitken1, Paul de Lestang3, Simon McKirdy3,4, Richard Willan5, Lisa Kirkendale6, Jennifer Giannetta7, Maria Corsini-Foka8, Steve Pothoven9, Fiona Gower10, Frédérique Viard11, Christian Buschbaum12, Giuseppe Scarcella13, Pierluigi Strafella13, Melanie J. Bishop14, Timothy Sullivan15, Isabella Buttino16, Hawis Madduppa17, Mareike Huhn17, Chela J. Zabin18, Karolina Bacela-Spychalska19, Dagmara Wójcik-Fudalewska20, Alexandra Markert21,22, Alexey Maximov23, Lena Kautsky24, Cornelia Jaspers25, Jonne Kotta26, Merli Pärnoja26, Daniel Robledo27, Konstantinos Tsiamis28,29, Frithjof C. Küpper30, Ante Žuljević31, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia; 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia; 3Chevron -
2012 Economic Impacts of Marine Invasive Species
Final Report to the Prince William Sound Regional Citizens’ Advisory Council Marine Invasive Species Program Contract No. 952.11.04 FINAL REPORT: July 19, 2011 – July 31, 2012 Submitted July 31, 2012 The opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC Project Overview Non-Indigenous Species (NIS) may specifically be classified as invasive when ecologically or economically damaging and/or causing harm to human health. We see the economic consequences of invasions in other states and regions. Alaska has not experienced significant impacts to date but examples tell us it may only be a matter of time, and all the more assured if we do nothing or little to prevent and mitigate invasions. To date, we as a state have not undertaken an economic assessment to estimate how severe an economic impact could be due to marine invasive species. Without this economic analysis the environmental arguments supporting action for an Alaska Council on Invasive Species become mute. There may be impacts, there may be environmental consequences, but a louder voice echoing the economic impacts may be required to get the ear of the Legislature. To this end we proposed to work in collaboration with the University of Alaska Anchorage’s Institute of Social and Economic Research (ISER) to assess economic benefits and costs of taking action versus no action on invasive species in Alaska. This project is a result of the Marine Invasive Species Workshop held in 2010 by the Marine Subcommittee of the Alaska Invasive Species Working Group. Workshop participants discussed the status of marine invasive species in Alaska, the state’s invasive species policies and management, and the potential impacts of marine invasive species on Alaska’s commercial, recreation, and subsistence economies. -
Aquatic Invasive Species of the Pacific Northwest Didemnum Vexillum
Aquatic Invasive Species of the Pacific Northwest Didemnum vexillum Colonial tunicate; ascidian; sea squirt Dejah L. Sanchez Aquatic Invasion Ecology: Julian Olden Autumn 2014 Figure 1. Didemnum vexillum growing on mussels in New Zealand, the originating location as described by P. Kott in 2002. (Photo US Geological Survey). Classification Order: Aplousobranchia Family: Didemnidae Genus: Didemnum Species: vexillum Identification Key Per the Kott 2002 description, the colony color is yellowish cream with a range of thin to thick shaped colonies. These extensive colonies can be either encrusting or lobed and have spicule-free dark bands between zooid groups. The Figure 3. Encrusting colony seen in spicule density is sparse and mostly limited Massachusetts. (Photo US Geological Survey). to the surface. Spicule shape stellate, with The zooids are about 1mm overall, the 9-11 conical rays in the optical transverse abdomen about twice the size of the section, and can be up to 58 μm (averaging contracted thorax. The branchial syphon is 30 μm per photo). Hypo abdominal lacunae short with six small pointed projections are absent. May be confused with encrusting around the rim of the aperture. A large sponges at times. spherical clump of crowded spicules from the lateral organ projects from the test each side of the posterior end of the large sessile atrial aperture, which exposes most of the branchial sac directly to the common cloacal cavity. Eight or nine stigmata are in the anterior row of the branchial sac. A short retractor muscle projects from halfway down the moderately long oesophageal neck (about the same length as the thorax). -
Assessing the Impact of Key Marine Invasive Non-Native Species on Welsh MPA Habitat Features, Fisheries and Aquaculture
Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. Bishop, J.D.D Marine Biological Association of the UK Report No. 454 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of -
First Record of the Colonial Ascidian Didemnum Vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy)
BioInvasions Records (2012) Volume 1, Issue 4: 247–254 Open Access doi: http://dx.doi.org/10.3391/bir.2012.1.4.02 © 2012 The Author(s). Journal compilation © 2012 REABIC Research Article First record of the colonial ascidian Didemnum vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy) Davide Tagliapietra1*, Erica Keppel1, Marco Sigovini1 and Gretchen Lambert2 1 CNR - National Research Council of Italy, ISMAR - Marine Sciences Institute, Arsenale - Tesa 104, Castello 2737/F, I-30122 Venice, Italy 2 University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250. Mailing address: 12001 11th Ave. NW, Seattle, WA 98177, USA E-mail: [email protected] (DT), [email protected] (EK), [email protected] (MS), [email protected] (GL) *Corresponding author Received: 30 July 2012 / Accepted: 16 October 2012 / Published online: 23 October 2012 Abstract Numerous colonies of the invasive colonial ascidian Didemnum vexillum Kott, 2002 have been found in the Lagoon of Venice (Italy) in 2012, overgrowing fouling organisms on maritime structures such as docks, pilings, and pontoons. This is the first record for the Mediterranean Sea. A survey conducted in July 2012 revealed that D. vexillum is present in the euhaline and tidally well flushed zones of the lagoon, whereas it was absent at the examined estuarine tracts and at the zones surrounding the saltmarshes. Suitable climatic, physiographic and saline features together with a high volume of international maritime traffic make the Lagoon of Venice a perfect hub for the successful introduction of temperate non-native species. Key words: Didemnum vexillum, Mediterranean, Lagoon of Venice, ascidian, fouling, marinas, invasive species Introduction cold coasts of North America and Europe as well as from Japan where it is probably native Didemnum vexillum Kott, 2002 (Ascidiacea: (Bullard et al. -
Policy Drafting Template SE-NIS-1 HLMO Living Through
Policy drafting template SE-NIS-1 HLMO Living through Sub bullet(s) Our oceans support environmental limits viable populations of representative, rare, vulnerable, and valued species. Grouping Invasive non-native Code SE-NIS-1 species Policy SE-NIS-1 Proposals that reduce the risk of spread and/or introduction of non-native invasive species within the south east marine plan area and adjacent plan areas should be supported. Proposals must put in place appropriate measures to avoid or minimise significant adverse impacts that would arise through the introduction and transport of non-native invasive species, particularly when: 1) moving equipment, boats or livestock (for example fish or shellfish) from one water body to another 2) introducing structures suitable for settlement of non-native invasive species, or the spread of non-native invasive species known to exist in the area. What are non-native and non-native invasive species? 1. Non-native (sometimes referred to as non-indigenous) species are those introduced outside of their natural past or present distribution which might survive and subsequently reproduce. In many cases non-native species do not cause harm to the local environment or economy. The Great Britain Non-Native Species Secretariat describes non-native invasive species as any non-native species that has the ability to spread, causing damage to the environment, economy, human health or the way we live. Non-native species can become ‘invasive’ when they cause significant adverse impacts. For example, the carpet sea squirt (Didemnum vexillum) was confirmed in British waters in 2008. It spreads quickly and smothers equipment, boat hulls, fishing equipment and native habitats, such as mussel beds. -
Notes / Notassumida Et Al.: Effects of Pressure on Early Ascidian Ontogenesis BJOCE
Notes / NotasSumida et al.: Effects of pressure on early ascidian ontogenesis BJOCE Pressure tolerance of tadpole larvae of the Atlantic ascidian Polyandrocarpa zorritensis: potential for deep-sea invasion Paulo Yukio Gomes Sumida*, Arthur Ziggiatti Güth, Miguel Mies Benthic Dynamics Laboratory (LDB), Department of Biological Oceanography, Oceanographic Institute, Universidade de São Paulo. (Praça do Oceanográfico, 191 - CEP: 05508-120, São Paulo, SP - Brazil) *Corresponding author: [email protected] ABSTRACT RESUMO How deep-sea fauna evolved is a question still being Dentre as teorias mais aceitas de como surgiu a investigated. One of the most accepted theories is fauna de oceano profundo está a de que organismos that shallow water organisms migrated to deeper de águas rasas migraram para águas mais profundas waters and gave origin to the deep-sea communities. e lá especiaram até originarem as comunidades de However, many organisms are prevented from mar profundo atuais. No entanto, muitos organismos performing long vertical migrations by the increasing são impedidos de fazer longas migrações verticais hydrostatic pressure. Tadpole larvae of the ascidian por conta do aumento da pressão hidrostática. Polyandrocarpa zorritensis were submitted to Larvas da ascídia Polyandrocarpa zorritensis foram pressure treatments of 1, 50, 100 and 200 atm. submetidas a pressões de 1, 50, 100 e 200 atm. Taxas Survival, settlement and metamorphosis rates were de sobrevivência, assentamento e metamorfose foram verified after 24 hour incubation in a pressure avaliadas após incubação de 24 horas em uma câmara chamber. The majority of larvae settled (84%, de pressão. A maioria das larvas assentou (84%, 62%, 83% and 77% respectively) and successfully 62%, 83% e 77%, respectivamente) e completou underwent metamorphosis (93%, 59%, 85% and a metamorfose (93%, 59%, 85% e 60%) em todas 60%) in all pressure treatments. -
Portland Harbour Authority Aquatic Invasive Non-Native Species Plan
Portland Harbour Authority Aquatic Invasive Non-Native Species Plan PORTLAND HARBOUR AUTHORITY AQUATIC INVASIVE NON-NATIVE SPECIES PLAN version 16th June 2019 CONTENTS 1. Introduction 2. What are invasive non-native (alien) species and where do they come from? 3. GB Non-Native Species Strategy 4. Classification of aquatic non-native (alien) species in the UK according to their level of impact? 5. Considerations relating to user interests ➢ Designated nature conservation sites & invasive species considerations ➢ Ports and Shipping and Biosecurity ➢ Recreational Boating and Biosecurity ➢ Fisheries and Biosecurity 6. What are Portland Harbour Authority doing? 7. Review by Portland Harbour Authority of Invasive Non-native Species 8. Reporting Non-Native Species, Updates and How to find out more? FIGURES 1. Portland Port Group Landownership and Jurisdiction TABLES 1. Invasive non-native species (UKTAG Classification) - Animal Species 2. Invasive non-native species (UKTAG Classification) - Plant Species 3. Non-native species - Animal Species 4. Non-native species - Plant Species Appendices A. Indicative distribution of biotopes in Portland Harbour taken from Marine Nature Conservation Review Sector 8 Inlets in the Western English Channel: area summaries 1 Version 16th June 2019 Portland Harbour Authority Aquatic Invasive Non-Native Species Plan 1 INTRODUCTION 1.1.1 This is the first version of Portland Harbour Authority’s (part of Portland Port Group) Aquatic Invasive Non-Native (Alien) Species Plan, that documents its understanding of invasive non-native species (and other harmful organisms such as diseases) in its jurisdiction and surroundings, considerations relating user interests, and potential measures going forward to improve understanding and reduce the overall risk. -
Impacts of the Invasive Ascidian Didemnum Vexillum on Green-Lipped Mussel Perna Canaliculus Aquaculture in New Zealand
Vol. 4: 17–30, 2013 AQUACULTURE ENVIRONMENT INTERACTIONS Published online June 18 doi: 10.3354/aei00069 Aquacult Environ Interact OPENPEN ACCESSCCESS Impacts of the invasive ascidian Didemnum vexillum on green-lipped mussel Perna canaliculus aquaculture in New Zealand Lauren M. Fletcher1,2,*, Barrie M. Forrest1, James J. Bell2 1Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand 2School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand ABSTRACT: Biofouling can pose a significant threat to shellfish aquaculture, as fouling organisms are often strong spatial competitors that are able to reach high densities or biomass in relatively short time frames. This study investigated the potential impacts of the colonial ascidian Didem- num vexillum on cultured New Zealand green-lipped mussels Perna canaliculus at one farm in the Marlborough Sounds region. Three size classes of mussels were examined: small (20 to 40 mm shell length at deployment), medium (40 to 60 mm), and large (60 to 70 mm). Replicate 4 m mussel lines were assigned to 1 of 3 treatments: (1) ambient fouling, (2) fouling enhanced by D. vexillum fragment inoculation (in addition to ambient fouling), or (3) control lines that were kept free of D. vexillum. After 15 mo, subsections of lines (0.5 m length) were processed to determine the effects of fouling cover on mussel density within lines, as well as on individual mussel size and condition. A highly significant negative relationship was shown between D. vexillum biomass and mussel density for small mussels, and to a lesser extent for medium mussels. Values of mussel condition indices were similar across size classes and across fouling treatments within each size class. -
First Occurrence of the Invasive Tunicate Didemnum Vexillum in Eelgrass Habitat
Aquatic Invasions (2010) Volume 5, Issue 1: 23-29 This is an Open Access article; doi: 10.3391/ai.2010.5.1.4 © 2010 The Author(s). Journal compilation © 2010 REABIC Proceedings of the 16th International Conference on Aquatic Invasive Species (19-23 April 2009, Montreal, Canada) Research article First occurrence of the invasive tunicate Didemnum vexillum in eelgrass habitat Mary R. Carman1* and David W. Grunden2 1Biology Department, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, USA 2Town of Oak Bluffs Shellfish Department, P.O. Box 1327, Oak Bluffs, MA 02557, USA E-mail: [email protected] (MRC), [email protected] (DWG) *Corresponding author Received: 2 September 2009 / Accepted: 22 December 2009 / Published online: 6 January 2010 Abstract During the late 20th century, several species of alien tunicates invaded New England marine coastal waters. In Autumn 2008, we surveyed for tunicates in Lake Tashmoo, a protected marine pond with shellfish aquaculture operations and restored bay scallop Argopecten irradians irradians habitat on Martha’s Vineyard, Massachusetts. We found the invasive tunicates Ascidiella aspersa, Botrylloides violaceus, Botryllus schlosseri, Didemnum vexillum, Diplosoma listerianum, Styela clava and native tunicate Molgula manhattensis attached to artificial substrates throughout Lake Tashmoo and B. violaceus, B. schlosseri, D. vexillum, D. listerianum and M. manhattensis attached to eelgrass Zostera marina in the middle of Lake Tashmoo. Tunicates were growing on the stalk and blade of in situ eelgrass, floating pieces of eelgrass (a transport and dispersal mechanism), and pieces of eelgrass in fouling communities on boat hulls and aquaculture floats. Botrylloides violaceus, B. schlosseri, D.