Investigating the Impacts of Marine Invasive Non-Native Species

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Impacts of Marine Invasive Non-Native Species Natural England Commissioned Report NECR223 Investigating the Impacts of Marine Invasive Non-Native Species First published 14 September 2016 www.gov.uk/natural -england Foreword Natural England commission a range of reports from external contractors to provide evidence and advice to assist us in delivering our duties. The views in this report are those of the authors and do not necessarily represent those of Natural England. Background Non-native species can become invasive, altering worm F. enigmaticus and the leathery sea-squirt S. local ecology and out-competing native species. clava. However, we currently lack evidence on the impacts The focus of this report to provide evidence on that some of these species have on the environment, potential susceptibility of MPA features in particular in particular to features of Marine Protected Areas and the generation of a matrix tool which can be and how best to incorporate the presence and adapted in future to incorporate more species and potential impacts caused by invasive non-native new information will provide our staff and others with species (INNS) in the assessment of site condition. overview of potential risks and priorities. This The Improvement Programme for England’s Natura information will feed into the guidance being 2000 sites (IPENS) identified INNS as a key issue developed on the condition assessment process as it impacting our Natura 2000 sites. The theme plan of will help staff to assess the potential threats of key actions includes gathering evidence on impacts invasive species on the MPA. to encourage uptake of best practice and also Finally, the information gathered in this report will be gathering evidence to help determine priority species provided to the GB Non Native Species Secretariat to to address. input into risk assessments currently being written or The aims of this project were to carry out a literature not yet started for these 8 species. The review and gather evidence from stakeholders on the recommendation to review the risk assessment environmental (with a particular focus on MPA process to include specific impacts to MPAs will also features) and socioeconomic impacts of 8 key marine be taken forward for consideration. INNS. This report should be cited as: This report provides a useful reference source for MACLEOD, A., COOK, E.J., HUGHES, D. & ALLEN, information about both the economic and C. 2016. Investigating the Impacts of Marine Invasive environmental impacts of 8 marine INNS which will Non-Native Species. A report by Scottish Association help feed into improvements in our advice to for Marine Science Research Services Ltd for Natural operators on the potential impacts of invasive England & Natural Resources Wales, pp. 59. Natural species, in turn helping us to encourage the uptake England Commissioned Reports, Number223. of mitigation and best practice to reduce the introduction and spread of these species. For example, new information previously unpublished and gathered from stakeholders includes anecdotal evidence of economic impacts from the trumpet tube Natural England Project Team - Jan Maclennan and Chris Pirie [email protected] Contractor - SRSL, Lismore Suite, Malin House, The European Marine Science Park, Dunbeg, Oban, Argyll, PA37 1SZ, Tel 01631 559 470 www.srsl.com Keywords - Marine, invasive non-native species (inns), marine protected areas (mpa), non-native species Further information This report can be downloaded from the Natural England website: www.gov.uk/government/organisations/natural-england. For information on Natural England publications contact the Natural England Enquiry Service on 0300 060 3900 or e-mail [email protected]. This report is published by Natural England under the Open Government Licence - OGLv3.0 for public sector information. You are encouraged to use, and reuse, information subject to certain conditions. For details of the licence visit Copyright. Natural England photographs are only available for non commercial purposes. If any other information such as maps or data cannot be used commercially this will be made clear within the report. ISBN 978-1-78354-349-6 © Natural England and other parties 2016 INVESTIGATING THE IMPACTS OF MARINE INVASIVE NON-NATIVE SPECIES SAMS Research Services Ltd. Registered Office: Lismore Suite, Malin House, The European Marine Science Park, Oban, Argyll PA37 1SZ T: +44 (0) 1631 559470 F: +44 (0) 1631 559001 E: [email protected] W: http://www.srsl.com Vat Registration No GB 828 9579 61 Company Registered in Scotland No. SC224404 This report was produced by SRSL for its Customers, Natural England & Natural Resources Wales, for the specific purpose of providing a review of the impacts of marine non-native species as per the Customer’s requirements. SRSL accepts no liability for any costs, liabilities or losses arising as a result of the use of or reliance upon the contents of this report by any person other than its Customer. i Acknowledgements Many thanks to Jan Maclennan and Hazel Selley (Natural England), Gabrielle Wyn (Natural Resources Wales) and Olaf Booy (GB Non-Native Species secretariat) who provided support, guidance and comments throughout the duration of this project. The input of all the people who spent the time to respond to the survey is greatly appreciated. Their valuable contribution to the data gathering exercise provided a level of colloquial and ‘hands-on’ experience of non-native species that was essential and allowed recommendations to be presented that are founded within a ‘real world’ context. The authors would also like to thank all the individuals who granted us permission to use their images of the various non-native species within this report. ii Summary Eight Non-Native Species (NNS), whose environmental and socio-economic impacts in the UK were poorly understood, or those with risk assessments by GB Non-Native Species Secretariat which had not been reviewed recently, were selected for investigation to assess their potential impacts on Marine Protected Areas (MPAs) in England and Wales. The eight species were: Undaria pinnatifida; Asian kelp Ficopomatus enigmaticus; Trumpet tube worm Schizoporella japonica; Orange ripple bryozoan Sargassum muticum; Wire weed Hemigrapsus sanguineus; Asian shore crab Styela clava; Leathery sea squirt Corella eumyota; Orange-tipped sea squirt Grateloupia turuturu; Devil’s tongue weed Information was gathered on the biology, habitat, ecology and socio-economic impacts of each NNS via a literature review and a stakeholder consultation survey. The survey was designed to acquire more colloquial experience of stakeholders, with respect to the eight NNS, that may not have been captured or documented within the literature sources. All eight target NNS were found in one or more MPAs in England and Wales, and there were 209 records of one or more of these NNS in MPAs. Observed changes in MPA features were only reported for three of the target NNS including; U. pinnatifida, Sargassum muticum, and C. eumyota, whose introduction had led to changes in community composition. In addition, evidence suggested that a number of the eight target NNS could potentially cause changes to community structure on certain MPA intertidal and subtidal biogenic features. These features included biogenic reefs (e.g. mussel and Sabellaria spp.), subtidal macrophyte-dominated sediment, seagrass beds and native oysters (Ostrea edulis). A matrix tool was created to prioritise the MPAs, which required more detailed risk assessment. This tool used a ‘traffic light’ system based on MPAs features, which were (i) susceptible to (or already colonised by) and (ii) were identified as likely to have one or more of the eight target NNS become established (see Supplementary Material). Sixteen of the 112 MPAs assessed were highlighted as ‘red’ under this system, in that they contained five or more suitable features and environmental conditions for the establishment by one or more of the eight NNS. Whereas, 25 MPAs were considered as ‘green’, in that the designated features of the site were not suitable for establishment by any of the eight target NNS. Two MPAs, Morecambe Bay SAC and the Exe Estuary SPA, were found to have five or more features (i.e. ‘red’), susceptible to colonisation by the greatest number of the target NNS (5 out of 8) in this report. Morecambe Bay SPA, Plymouth Sound and Estuaries SAC and Fal and Helford SAC, were also listed as ‘red’ for 4 out of 8 of the target NNS. It must be stressed, that a number of assumptions were made when developing the matrix tool, which can be refined over time as more environmental and monitoring data for specific sites becomes available. It is recommended that further evidence is gathered to help determine the point at which a particular NNS may start to have a detrimental impact on a particular feature. For example, at what density a NNS may become an issue. This will help inform both priorities for any iii potential management and identify when features are likely to move into unfavourable condition. In the meantime, authorities and SNCBs will need to continue to make a judgement about the above based on the information provided in this report and other literature sources. Finally, assessors should also be aware of the potential socio-economic impacts associated with specific NNS when preparing a risk assessment for a particular location and discussing biosecurity plans with relevant stakeholders. From the survey, the trumpet tube-worm F. enigmaticus and the leathery
Recommended publications
  • Investigating the Cryptogenic Status of the Sea Squirt Didemnum Perlucidum (Tunicata, Ascidiacea) in Australia Based on a Molecular Study of Its Global Distribution
    Aquatic Invasions (2016) Volume 11, Issue 3: 239–245 DOI: http://dx.doi.org/10.3391/ai.2016.11.3.02 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Investigating the cryptogenic status of the sea squirt Didemnum perlucidum (Tunicata, Ascidiacea) in Australia based on a molecular study of its global distribution P. Joana Dias1,2,*, Rosana Rocha3, Scott Godwin4, María Ana Tovar-Hernández5, Maria V. Delahoz6, Simon McKirdy7,8, Paul de Lestang7, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia 3Departamento de Zoologia, Universidade Federal do Paraná, C.P. 19020, 81.531-980, Curitiba, PR, Brazil 4National Oceanic and Atmospheric Administration, National Marine Sanctuaries, 1845 Wasp Blvd, Bldg 176, Honolulu 96818 Hawaii, USA 5Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Biosistemática, San Nicolás de los Garza, Nuevo León, México 6Instituto Latinoamericano de Ciencias Marinas y del Ambiente, Miami, USA 7Chevron Australia Pty Ltd, Dynons Plaza 905 hay Street, Perth 6000, Western Australia 8School of Veterinary and Life Sciences, Murdoch University, South St, Murdoch 6150, Western Australia *Corresponding author E-mail: [email protected] Received: 29 January 2016 / Accepted: 31 March 2016 / Published online: 28 April 2016 Handling editor: Noa Shenkar Abstract Didemnid species are assessed as species with a high invasive potential for Australia and as such are listed as target species for both state and national monitoring programs. The presence of the sea squirt Didemnum perlucidum (Monniot, 1983) was first documented in Australia in 2010 and has since then been detected extensively throughout the state of Western Australia and in the Northern Territory.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Colonial Tunicates: Species Guide
    SPECIES IN DEPTH Colonial Tunicates Colonial Tunicates Tunicates are small marine filter feeder animals that have an inhalant siphon, which takes in water, and an exhalant siphon that expels water once it has trapped food particles. Tunicates get their name from the tough, nonliving tunic formed from a cellulose-like material of carbohydrates and proteins that surrounds their bodies. Their other name, sea squirts, comes from the fact that many species will shoot LambertGretchen water out of their bodies when disturbed. Massively lobate colony of Didemnum sp. A growing on a rope in Sausalito, in San Francisco Bay. A colony of tunicates is comprised of many tiny sea squirts called zooids. These INVASIVE SEA SQUIRTS individuals are arranged in groups called systems, which form interconnected Star sea squirts (Botryllus schlosseri) are so named because colonies. Systems of these filter feeders the systems arrange themselves in a star. Zooids are shaped share a common area for expelling water like ovals or teardrops and then group together in small instead of having individual excurrent circles of about 20 individuals. This species occurs in a wide siphons. Individuals and systems are all variety of colors: orange, yellow, red, white, purple, grayish encased in a matrix that is often clear and green, or black. The larvae each have eight papillae, or fleshy full of blood vessels. All ascidian tunicates projections that help them attach to a substrate. have a tadpole-like larva that swims for Chain sea squirts (Botryloides violaceus) have elongated, less than a day before attaching itself to circular systems. Each system can have dozens of zooids.
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Settlement Patterns in Ascidians Concerning Have Been
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Larval settlement behaviour in six gregarious ascidians in relation to adult 2 distribution 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Marc Rius1,2,*, George M. Branch2, Charles L. Griffiths1,2, Xavier Turon3 18 19 20 1 Centre for Invasion Biology, Zoology Department, University of Cape Town, 21 Rondebosch 7701, South Africa 22 23 2 Marine Biology Research Centre, Zoology Department, University of Cape Town, 24 Rondebosch 7701, South Africa 25 26 3 Center for Advanced Studies of Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, 27 17300 Blanes (Girona), Spain 28 29 30 31 32 33 34 * Corresponding author: Marc Rius 35 Centre for Invasion Biology, Zoology Department, University of Cape Town, 36 Rondebosch 7701, South Africa 37 E-mail: [email protected] 38 Telephone: +27 21 650 4939 39 Fax: +27 21 650 3301 40 41 Running head: Settlement patterns of gregarious ascidians 42 43 44 1 45 ABSTRACT 46 Settlement influences the distribution and abundance of many marine organisms, 47 although the relative roles of abiotic and biotic factors influencing settlement are poorly 48 understood. Species that aggregate often owe this to larval behaviour, and we ask 49 whether this predisposes ascidians to becoming invasive, by increasing their capacity to 50 maintain their populations. We explored the interactive effects of larval phototaxis and 51 geotaxis and conspecific adult extracts on settlement rates of a representative suite of 52 six species of ascidians that form aggregations in the field, including four aliens with 53 global distributions, and how they relate to adult habitat characteristics.
    [Show full text]
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • (Platyhelminthes, Polycladida, Cotylea) from the Persian Gulf, Iran
    A peer-reviewed open-access journal ZooKeys 31: 39–51 (2009)First record of the family Pseudocerotidae the Persian Gulf, Iran 39 doi: 10.3897/zookeys.31.136 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research First record of the family Pseudocerotidae (Platyhelminthes, Polycladida, Cotylea) from the Persian Gulf, Iran Zahra Khalili1, Hassan Rahimian2, Jamile Pazooki1 1 University of Shahid Beheshti, G.C, Tehran, Iran 2 University of Tehran, Tehran, Iran Corresponding authors: Hassan Rahimian ([email protected]), Zahra Khalili ([email protected]) Academic editor: E. Neubert, Z. Amr | Received 7 March 2009 | Accepted 14 August 2009 | Published 28 December 2009 Citation: Khalili Z, Rahimian H, Pazooki J (2009) First record of the family Pseudocerotidae (Platyhelminthes, Po- lycladida, Cotylea) from the Persian Gulf, Iran. In: Neubert, E, Amr, Z, Taiti, S, Gümüs, B (Eds) Animal Biodiversity in the Middle East. Proceedings of the First Middle Eastern Biodiversity Congress, Aqaba, Jordan, 20–23 October 2008. ZooKeys 31: 39–51. doi: 10.3897/zookeys.31.136 Abstract In this paper, two species of cotylean Platyhelminthes are recorded for the fi rst time from Qeshm Island, Persian Gulf, Iran. Pictures are taken from living specimens to illustrate shape and colour, and stained sec- tions and drawings are used to describe shape and organisation of some organs. Morphological characters of Persian Gulf specimens of Tytthosoceros lizardensis Newman and Cannon 1996 are compared to those of the type specimens of this species. Keywords Platyhelminthes, new records, Qeshm Island, Persian Gulf, Iran Introduction Most polyclad fl atworms inhabit coral reefs in tropical and subtropical waters, and are espe- cially species-rich throughout the Indo-Pacifi c.
    [Show full text]
  • Phlebobranchia of CTAW
    PHLEBOBRANCHIA PHLEBOBRANCHIA The suborder Phlebobranchia (order Enterogona) is characterised by having unpaired gonads present only on the same side of the body as the gut. As in Stolidobranchia, the body is not divided into different sections (such as thorax, abdomen and posterior abdomen) as the gut is folded up in the parietal body wall outside the pharynx and the large branchial sac occupies the whole length of the body. Usually the branchial sac (which is flat, without folds) has internal longitudinal vessels (although only vestiges remain in Agneziidae). Epicardial sacs do not persist in adults as they do in Aplousobranchia, although excretory vesicles (nephrocytes) embedded in the body wall over the gut are known to originate from the embryonic epicardium in Ascidiidae and Corellidae. Most phlebobranchs are solitary. However, Plurellidae Kott, 1973 includes both solitary and colonial forms, and Perophoridae Giard, 1872 are all colonial. Replication in Perophoridae is from ectodermal epithelium (rather than endodermal or mesodermal tissue the mesodermal tissue of the vascular stolon (rather than the endodermal tissue as in most as in Aplousobranchia). The process of replication has not been investigated in Plurellidae. Phlebobranch taxa occurring in Australia are documented in Kott (1985). Family level taxa are characterised principally by the size and form of the branchial sac including the number of branchial vessels and form of the stigmata; the form, size and position of the gonads; and the habit (colonial or solitary) of the taxon. Berrill (1950) has discussed problems in assessing the phylogeny of Perophoridae. References Berrill, N.J. (1950). The Tunicata. Ray Soc. Publs 133: 1–354 Giard, A.M.
    [Show full text]
  • Halocynthia Roretzi
    Sekigami et al. Zoological Letters (2017) 3:17 DOI 10.1186/s40851-017-0078-3 RESEARCH ARTICLE Open Access Hox gene cluster of the ascidian, Halocynthia roretzi, reveals multiple ancient steps of cluster disintegration during ascidian evolution Yuka Sekigami1, Takuya Kobayashi1, Ai Omi1, Koki Nishitsuji2, Tetsuro Ikuta1, Asao Fujiyama3, Noriyuki Satoh2 and Hidetoshi Saiga1* Abstract Background: Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis (Ci), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi (Hr) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Results: Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1, 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a, 11/12/13.b and HoxX. To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr, distinct from their arrangement in Ci.
    [Show full text]
  • The Ascidian Styela Plicata As a Potential Bioremediator of Bacterial and Algal Contamination of Marine Estuarine Waters
    THE ASCIDIAN STYELA PLICATA AS A POTENTIAL BIOREMEDIATOR OF BACTERIAL AND ALGAL CONTAMINATION OF MARINE ESTUARINE WATERS by Lisa Denham Draughon A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, Florida May, 2010 Copyright by Lisa Denham Draughon 2010 ii ACKNOWLEDGEMENTS I wish to express my sincerest gratitude to those who made this research possible; Ocean Restoration Corporation Associates (ORCA), the Link Foundation, and Florida Atlantic University (FAU) for their financial fellowships, and for the many hands that played a part in getting it all done. A special thank you goes to my committee members; Dr. James X. Hartmann (chairperson) and Dr. David Binninger of FAU, Dr. Ed Proffitt and Dr. John Scarpa of Harbor Branch Oceanographic Institute at FAU, and Dr. Ray Waldner of Palm Beach Atlantic University. You were all such an integral part of helping me achieve this goal. Special thanks also go to my friend Karen Halloway- Adkins who was always willing to help locate specimens and provide equipment when she had it. Mike Calinski of ORCA made trips from the Gulf Coast to deliver specimens to me. Sherry Reed of the Smithsonian Marine Station in Ft. Pierce was extremely helpful by keeping an eye out for the tunicates and at times gathering them for me. Dr. Patricia Keating was invaluable for her help in flow-cytometry analysis. Dr. Peter McCarthy of Harbor Branch Oceanographic Institute at FAU provided the bacteria for the filtration rate experiment.
    [Show full text]
  • 1471-2148-9-187.Pdf
    BMC Evolutionary Biology BioMed Central Research article Open Access An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models Georgia Tsagkogeorga1,2, Xavier Turon3, Russell R Hopcroft4, Marie- Ka Tilak1,2, Tamar Feldstein5, Noa Shenkar5,6, Yossi Loya5, Dorothée Huchon5, Emmanuel JP Douzery1,2 and Frédéric Delsuc*1,2 Address: 1Université Montpellier 2, Institut des Sciences de l'Evolution (UMR 5554), CC064, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France, 2CNRS, Institut des Sciences de l'Evolution (UMR 5554), CC064, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France, 3Centre d'Estudis Avançats de Blanes (CEAB, CSIC), Accés Cala S. Francesc 14, 17300 Blanes (Girona), Spain, 4Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, Alaska, USA, 5Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel and 6Department of Biology, University of Washington, Seattle WA 98195, USA Email: Georgia Tsagkogeorga - [email protected]; Xavier Turon - [email protected]; Russell R Hopcroft - [email protected]; Marie-Ka Tilak - [email protected]; Tamar Feldstein - [email protected]; Noa Shenkar - [email protected]; Yossi Loya - [email protected]; Dorothée Huchon - [email protected]; Emmanuel JP Douzery - [email protected]; Frédéric Delsuc* - [email protected] * Corresponding author Published: 5 August 2009 Received: 16 October 2008 Accepted: 5 August 2009 BMC Evolutionary Biology 2009, 9:187 doi:10.1186/1471-2148-9-187 This article is available from: http://www.biomedcentral.com/1471-2148/9/187 © 2009 Tsagkogeorga et al; licensee BioMed Central Ltd.
    [Show full text]