Color Models

Total Page:16

File Type:pdf, Size:1020Kb

Color Models 1 Color Models A color model is an orderly system for creating a whole range of colors from a small set of primary colors. There are two types of color models, those that are subtractive and those that are additive. Additive color models use light to display color while subtractive models use printing inks. Colors perceived in additive models are the result of transmitted light. Colors perceived in subtractive models are the result of reflected light. The Two Most Common Color Models There are several established color models used in computer graphics, but the two most common are the RGB model (Red-Green-Blue) for computer display and the CMYK model (Cyan-Magenta-Yellow- blacK) for printing. RGB Color Model CMYK Color Model Additive color model Subtractive color model For computer displays For printed material Uses light to display color Uses ink to display color Colors result from transmitted Colors result from reflected light light Cyan+Magenta+Yellow=Black Red+Green+Blue=White 2 Notice the centers of the two color charts. In the RGB model, the convergence of the three primary additive colors produces white. In the CMYK model, the convergence of the three primary subtractive colors produces black. In the RGB model notice that the overlapping of additive colors (red, green and blue) results in subtractive colors (cyan, magenta and yellow). In the CMYK model notice that the overlapping of subtractive colors (cyan, magenta and yellow) results in additive colors (red, green and blue). Also notice that the colors in the RGB model are much brighter than the colors in the CMYK model. It is possible to attain a much larger percentage of the visible spectrum with the RGB model. That is because the RGB model uses transmitted light while the CMYK model uses reflected light. The muted appearance of the CMYK model demonstrates the limitation of printing inks and the nature of reflected light. The colors in this chart appear muted because they are displayed within their printable gamut (see below). Additive vs. Subtractive Color Models Since additive color models display color as a result of light being transmitted (added) the total absence of light would be perceived as black. Subtractive color models display color as a result of light being absorbed (subtracted) by the printing inks. As more ink is added, less and less light is reflected. Where there is a total absence of ink the resulting light being reflected (from a white surface) would be perceived as white. Color Gamut and Color "Space" Each color model has is own gamut (range) of colors that can be displayed or printed. Each color model is limited to only a portion of the visible spectrum. Since a color model has a particular range of available color or gamut, it is referred to as using a "color space". An image or vector graphic is said to use either the RGB color space or the CMYK color space (or the color space of another color model). Some graphic applications present the user with more than one color model for image editing or illustration and it is important to choose the right one for the task. The whole point of this article is to explain the difference between the two color models so you choose the right one for the job. For you work to display at its best, choosing the right color model is critical. RGB Color The RGB model forms its gamut from the primary additive colors of red, green and blue. When red, green and blue light is combined it forms white. Computers generally display RGB using 24-bit color. In the 24-bit RGB color model there are 256 variations for each of the additive colors of red, green and blue. Therefore there are 16,777,216 possible colors (256 reds x 256 greens x 256 blues) in the 24-bit RGB color model. In the RGB color model, colors are represented by varying intensities of red, green and blue light. The intensity of each of the red, green and blue components are represented on a scale from 0 to 255 with 0 being the least intensity (no light emitted) to 255 (maximum intensity). For example in the above RGB 3 chart the magenta color would be R=255 G=0 B=255. Black would be R=0 G=0 B=0 (a total absence of light). CMYK or "Process Color" The CMYK printing method is also known as "four-color process" or simply "process" color. All of the colors in the printable portion of the color spectrum can be achieved by overlapping "tints" of cyan, magenta, yellow and black inks. A tint is a screen of tiny dots appearing as a percentage of a solid color. When various tints of the four colors are printed in overlapping patterns it gives the illusion of continuous tones - like a photograph: The CMYK model forms its gamut from the primary subtractive colors of cyan, magenta and yellow. When cyan, magenta and yellow inks are combined it forms black - in theory. However, because of the impurities in ink, when cyan, magenta and yellow inks are combined it produces a muddy brown color. Black ink is added to this system to compensate for these impurities. In the CMYK color model, colors are represented as percentages of cyan, magenta, yellow and black. For example in the above CMYK chart the red color is composed of 14% cyan, 100% magenta, 99% yellow and 3% black. White would be 0% cyan, 0% magenta, 0% yellow and 0% black (a total absence of ink on white paper). When In Doubt, Save Images As RGB The RGB model displays a much larger percentage of the visible spectrum than the CMYK model and, as a result, has a wider gamut. Once an image has been converted from RGB to CMYK and brought into printable gamut, the extra RGB data will be lost. One can retain out-of-gamut areas in CMYK images and leave it to the computer to bring the colors into gamut at printing time. However this requires the computer to make the conversion from RGB to CMYK and this doesn't always work out as well as one might expect. Conversion between color models is not always a good idea. Because of this fact, you want to scan or shoot images (with a digital camera) using the appropriate color model for their primary purpose. If the images will be used primarily for print then use CMYK. If they will be used primarily for screen displays, then use RGB. You can always convert from RGB to CMYK (or vise-versa) but it is best not to. If you can afford the time, money and disk space to scan or shoot both versions of an image where both are needed, then this is the best solution. This is especially true if you will be using the same images for both printed material (such as a catalog) and the web (such as an online catalog). A little planning can go a long way here. 4 But if you are not sure, then I generally recommend saving images in RGB mode and creating CMYK copies for printed material as needed. Use RGB For Screen Displays and CMYK For Print It is important to choose the right color model for the job. If your images will be printed, then convert them to CMYK and manually bring them into gamut before printing. If your images are to be displayed on a computer, then make sure you use RGB color so the full gamut will be available for display. Because both models can be available at the same time while using an application, it is easy to make a mistake and choose the wrong palette or set of color swatches. Summery RGB o Additive CMYK o Subtractive .
Recommended publications
  • Impact of Properties of Thermochromic Pigments on Knitted Fabrics
    International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1693 ISSN 2229-5518 Impact of Properties of Thermochromic Pigments on Knitted Fabrics 1Dr. Jassim M. Abdulkarim, 2Alaa K. Khsara, 3Hanin N. Al-Kalany, 4Reham A. Alresly Abstract—Thermal dye is one of the important indicators when temperature is changed. It is used in medical, domestic and electronic applications. It indicates the change in chemical and thermal properties. In this work it is used to indicate the change in human body temperature where the change in temperature between (30 – 41 oC) is studied .The change in color begin to be clear at (30 oC). From this study it is clear that heat flux increased (81%) between printed and non-printed clothes which is due to the increase in heat transfer between body and the printed cloth. The temperature has been increased to the maximum level that the human body can reach and a gradual change in color is observed which allow the use of this dye on baby clothes to indicate the change in baby body temperature and monitoring his medical situation. An additional experiment has been made to explore the change in physical properties to the used clothe after the printing process such as air permeability which shows a clear reduction in this property on printed region comparing with the unprinted region, the reduction can reach (70%) in this property and in some type of printing the reduction can reach (100%) which give non permeable surface. Dye fitness can also be increased by using binders and thickeners and the reduction in dyes on the surface of cloth is reached (15%) after (100) washing cycle.
    [Show full text]
  • Color Models
    Color Models Jian Huang CS456 Main Color Spaces • CIE XYZ, xyY • RGB, CMYK • HSV (Munsell, HSL, IHS) • Lab, UVW, YUV, YCrCb, Luv, Differences in Color Spaces • What is the use? For display, editing, computation, compression, …? • Several key (very often conflicting) features may be sought after: – Additive (RGB) or subtractive (CMYK) – Separation of luminance and chromaticity – Equal distance between colors are equally perceivable CIE Standard • CIE: International Commission on Illumination (Comission Internationale de l’Eclairage). • Human perception based standard (1931), established with color matching experiment • Standard observer: a composite of a group of 15 to 20 people CIE Experiment CIE Experiment Result • Three pure light source: R = 700 nm, G = 546 nm, B = 436 nm. CIE Color Space • 3 hypothetical light sources, X, Y, and Z, which yield positive matching curves • Y: roughly corresponds to luminous efficiency characteristic of human eye CIE Color Space CIE xyY Space • Irregular 3D volume shape is difficult to understand • Chromaticity diagram (the same color of the varying intensity, Y, should all end up at the same point) Color Gamut • The range of color representation of a display device RGB (monitors) • The de facto standard The RGB Cube • RGB color space is perceptually non-linear • RGB space is a subset of the colors human can perceive • Con: what is ‘bloody red’ in RGB? CMY(K): printing • Cyan, Magenta, Yellow (Black) – CMY(K) • A subtractive color model dye color absorbs reflects cyan red blue and green magenta green blue and red yellow blue red and green black all none RGB and CMY • Converting between RGB and CMY RGB and CMY HSV • This color model is based on polar coordinates, not Cartesian coordinates.
    [Show full text]
  • Chapter 6 : Color Image Processing
    Chapter 6 : Color Image Processing CCU, Taiwan Wen-Nung Lie Color Fundamentals Spectrum that covers visible colors : 400 ~ 700 nm Three basic quantities Radiance : energy that flows from the light source (measured in Watts) Luminance : a measure of energy an observer perceives from a light source (in lumens) Brightness : a subjective descriptor difficult to measure CCU, Taiwan Wen-Nung Lie 6-1 About human eyes Primary colors for standardization blue : 435.8 nm, green : 546.1 nm, red : 700 nm Not all visible colors can be produced by mixing these three primaries in various intensity proportions Cones in human eyes are divided into three sensing categories 65% are sensitive to red light, 33% sensitive to green light, 2% sensitive to blue (but most sensitive) The R, G, and B colors perceived by CCU, Taiwan human eyes cover a range of spectrum Wen-Nung Lie 6-2 Primary and secondary colors of light and pigments Secondary colors of light magenta (R+B), cyan (G+B), yellow (R+G) R+G+B=white Primary colors of pigments magenta, cyan, and yellow M+C+Y=black CCU, Taiwan Wen-Nung Lie 6-3 Chromaticity Hue + saturation = chromaticity hue : an attribute associated with the dominant wavelength or dominant colors perceived by an observer saturation : relative purity or the amount of white light mixed with a hue (the degree of saturation is inversely proportional to the amount of added white light) Color = brightness + chromaticity Tristimulus values (the amount of R, G, and B needed to form any particular color : X, Y, Z trichromatic
    [Show full text]
  • In Concert with Teaching Strategies That Have a Solid Theoretical Basis
    1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in “Teaching and Learning Technology”. In Section 1 of this course you will cover these topics: Learning And Instruction Computer Applications In Education The Impact Of The Computer On Education Topic : Learning And Instruction Topic Objective: At the end of this topic student would be able to understand: Computer's Role In Instruction Instructional Technology Early Applications The Internet Era Outcomes Research Social Context Gagne's Nine Events of Instruction Definition/Overview: The first topic establishes a framework for looking at the computer's role in instruction and examines its role in student learning. A brief review of behaviorist and constructivist theories of instruction and learning is presented. The intent is to demonstrate that the computer can be a practical tool usedWWW.BSSVE.IN in concert with teaching strategies that have a solid theoretical basis. We recognize that thinking patterns and learning styles vary and that many different cognitive processes and intelligences should be valued. This topic presents a brief overview of types of intelligences, perception and motivation in order to emphasize the importance of analyzing student populations and matching instructional materials to student needs. Recognizing the important role that software plays in instruction and learning, a good deal of discussion takes place on the selection and evaluation of effective software. www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Key Points: 1.Computer's Role in Instruction American education has long incorporated technology in K-12 classrooms tape recorders, televisions, calculators, computers, and many others.
    [Show full text]
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • A Method of Content-Based Image Retrieval for the Generation of Image Mosaics
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2007 A Method Of Content-based Image Retrieval For The Generation Of Image Mosaics Michael Snead University of Central Florida Part of the Computer Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Snead, Michael, "A Method Of Content-based Image Retrieval For The Generation Of Image Mosaics" (2007). Electronic Theses and Dissertations, 2004-2019. 3358. https://stars.library.ucf.edu/etd/3358 A METHOD OF CONTENT-BASED IMAGE RETRIEVAL FOR THE GENERATION OF IMAGE MOSAICS by MICHAEL CHRISTOPHER SNEAD B.S. University of Central Florida, 2005 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Electrical Engineering and Computer Science in the College of Engineering & Computer Science at the University of Central Florida Orlando, Florida Spring Term 2007 © 2007 Michael Christopher Snead ii ABSTRACT An image mosaic is an artistic work that uses a number of smaller images creatively combined together to form another larger image. Each building block image, or tessera, has its own distinctive and meaningful content, but when viewed from a distance the tesserae come together to form an aesthetically pleasing montage. This work presents the design and implementation of MosaiX, a computer software system that generates these image mosaics automatically.
    [Show full text]
  • First Semester
    NATIONAL UNIVERSITY F o u r t h Y e a r S y l l a b u s D e p a r t m e n t of Computer Science and Engineering Four Year B.Sc. Honours Course Effective from the Session: 2017–2018 National University Subject: Computer Science and Engineering Syllabus for Four Year B.Sc. Honours Course Effective from the Session: 2017-2018 Year wise courses and marks distribution FOURTH YEAR Semester VII Course Code Course Title Credit Hours 540201 Artificial Intelligence 3.0 540202 Artificial Intelligence Lab 1.5 540203 Compiler Design and Construction 3.0 540204 Compiler Design Lab 1.5 540205 Computer Graphics 3.0 540206 Computer Graphics Lab 1.5 540207 E-Commerce and Web Engineering 3.0 540208 E-Commerce and Web Engineering Lab 1.5 Total Credits in 7th Semester 18.0 Semester VIII Course Code Course Title Credit Hours Major Theory Courses 540209 Network and Information Security 3.0 540210 Network and Information Security Lab 1.5 540211 Information System Management 3.0 Project/Industry Attachment 540240 Project/Industry Attachment 6.0 Optional Course (any one) 3.0 540212 Simulation and Modeling 540214 Parallel and Distributed Systems 540216 Digital Signal Processing 540218 Digital Image Processing 540220 Multimedia 540222 Pattern Recognition 540224 Design and Analysis of VLSI Systems 540226 Micro-controller and Embedded System 540228 Cyber Law and Computer Forensic 540230 Natural Language Processing 540232 System Analysis and Design 540234 Optical Fiber Communication 540236 Human Computer Interaction 540238 Graph Theory Page 2 of 18 Optional Course
    [Show full text]
  • NEC Multisync® PA311D Wide Gamut Color Critical Display Designed for Photography and Video Production
    NEC MultiSync® PA311D Wide gamut color critical display designed for photography and video production 1419058943 High resolution and incredible, predictable color accuracy. The 31” MultiSync PA311D is the ultimate desktop display for applications where precise color is essential. The innovative wide-gamut LED backlight provides 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3, enabling more accurate colors to be displayed on screen. Utilizing a high performance IPS LCD panel and backed by a 4 year warranty with Advanced Exchange, the MultiSync PA311D delivers high quality, accurate images simply and beautifully. Impeccable Image Performance The wide-gamut LED LCD backlight combined with NEC’s exclusive SpectraView Engine deliver precise color in every environment. • True 4K resolution (4096 x 2160) offers a high pixel density • Up to 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3 • 10-bit HDMI and DisplayPort inputs display up to 1.07 billion colors out of a palette of 4.3 trillion colors Ultimate Color Management The sophisticated SpectraView Engine provides extensive, intuitive control over color settings. • MultiProfiler software and on-screen controls provide access to thousands of color gamut, gamma, white point, brightness and contrast combinations • Internal 14-bit 3D lookup tables (LUTs) work with optional SpectraViewII color calibration solution for unparalleled color accuracy A Perfect Fit for Your Workspace A Better Workflow Future-proof connectivity, great ergonomics, and VESA mount Exclusive,
    [Show full text]
  • Working with Colors
    Working With Colors INK: The physical form of color; Ink is how color is applied to paper There are two different types of inks: • TRANSPARENT INKS are commonly used in printing • OPAQUE INKS are considered a specialty ink and generally cost more COLOR: in printing, there are two types of color modes: • SPOT COLOR; aka: Match color, PMS color, Solid color • 4-COLOR PRocESS; aka: Process, CMYK Working With Colors With Working SPot COLOR • A pre-mixed color; a color mixed prior to the printing press PMS : PANtoNE MAtcHING SYSTEM • Color system that has several color libraries for reference in reproducing color • Popular PMS color libraries: • Spot color Formula guide (coated, uncoated, and matte versions) solid color guide that identifies specific colors • 4-Color Process Guide (coated and uncoated versions) identifies colors using CMYK inks • Color Bridge (coated and uncoated versions) using the colors from the spot color Formula guide this book shows the difference Working With Colors With Working between a spot color and the same color when converted to CMYK • Metallic Inks • Pastels • Tints • www.pantone.com COATED: Paper stock that has been treated with a special coating in order to have a glossy appearance. • Ink sits on this type of paper stock as a result of the glossy coating • Colors appear to be brighter compared to uncoated paper Matte: coated paper stock that has been dulled UNcoATED : Paper stock that has not been treated; it has no coating. • Ink is absorbed into this type of paper stock • Ink color appears darker and duller Working With Colors With Working BENEFit OF USING SPot coLOR: • consistent color within a print job.
    [Show full text]
  • Xilinx PG014 Logicore IP Ycrcb to RGB Color-Space Converter V6.00.A, Product Guide
    LogiCORE IP YCrCb to RGB Color-Space Converter v6.00.a Product Guide PG014 July 25, 2012 Table of Contents SECTION I: SUMMARY IP Facts Chapter 1: Overview Feature Summary. 8 Applications . 9 Licensing and Ordering Information. 9 Chapter 2: Product Specification Standards Compliance . 10 Performance. 10 Resource Utilization. 11 Core Interfaces and Register Space . 13 Chapter 3: Designing with the Core General Design Guidelines . 27 Color-Space Conversion Background . 28 Clock, Enable, and Reset Considerations . 34 System Considerations . 36 Chapter 4: C Model Reference Installation and Directory Structure . 38 Using the C-Model . 40 Input and Output Video Structures . 42 Initializing the Input Video Structure . 43 Compiling with the YCrCb to RGB C-Model . 46 YCrCb to RGB Color-Space Converter v6.00.a www.xilinx.com 2 PG014 July 25, 2012 SECTION II: VIVADO DESIGN SUITE Chapter 5: Customizing and Generating the Core Graphical User Interface . 49 Output Generation. 53 Chapter 6: Constraining the Core Required Constraints . 54 Device, Package, and Speed Grade Selections. 54 Clock Frequencies . 54 Clock Management . 54 Clock Placement. 54 Banking . 55 Transceiver Placement . 55 I/O Standard and Placement. 55 SECTION III: ISE DESIGN SUITE Chapter 7: Customizing and Generating the Core Graphical User Interface . 57 Parameter Values in the XCO File . 61 Output Generation. 62 Chapter 8: Constraining the Core Required Constraints . 63 Device, Package, and Speed Grade Selections. 63 Clock Frequencies . 63 Clock Management . 63 Clock Placement. 63 Banking . 64 Transceiver Placement . 64 I/O Standard and Placement. 64 Chapter 9: Detailed Example Design Demonstration Test Bench . 65 Test Bench Structure .
    [Show full text]
  • Chapter 2 Fundamentals of Digital Imaging
    Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation © 2016 Pearson Education, Inc., Hoboken, 1 NJ. All rights reserved. In this lecture, you will find answers to these questions • What is RGB color model and how does it represent colors? • What is CMY color model and how does it represent colors? • What is HSB color model and how does it represent colors? • What is color gamut? What does out-of-gamut mean? • Why can't the colors on a printout match exactly what you see on screen? © 2016 Pearson Education, Inc., Hoboken, 2 NJ. All rights reserved. Color Models • Used to describe colors numerically, usually in terms of varying amounts of primary colors. • Common color models: – RGB – CMYK – HSB – CIE and their variants. © 2016 Pearson Education, Inc., Hoboken, 3 NJ. All rights reserved. RGB Color Model • Primary colors: – red – green – blue • Additive Color System © 2016 Pearson Education, Inc., Hoboken, 4 NJ. All rights reserved. Additive Color System © 2016 Pearson Education, Inc., Hoboken, 5 NJ. All rights reserved. Additive Color System of RGB • Full intensities of red + green + blue = white • Full intensities of red + green = yellow • Full intensities of green + blue = cyan • Full intensities of red + blue = magenta • Zero intensities of red , green , and blue = black • Same intensities of red , green , and blue = some kind of gray © 2016 Pearson Education, Inc., Hoboken, 6 NJ. All rights reserved. Color Display From a standard CRT monitor screen © 2016 Pearson Education, Inc., Hoboken, 7 NJ. All rights reserved. Color Display From a SONY Trinitron monitor screen © 2016 Pearson Education, Inc., Hoboken, 8 NJ.
    [Show full text]
  • Computational RYB Color Model and Its Applications
    IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig.
    [Show full text]