SATURDAY, OCTOBER 15 General Session 8:30 Am

Total Page:16

File Type:pdf, Size:1020Kb

SATURDAY, OCTOBER 15 General Session 8:30 Am SATURDAY, OCTOBER 15 General Session A bb r e v i at i on K e y 8:30 am - 9:15 am GA = General Audience Platinum 5&6 e = Elementary JH = Middle School/Jr . High Eugenie C. Scott, Ph.D. HS = High School Executive Director, National Center for Science Education 2C = Two-Year College (NSCE) 4C = Four-Year College Deja vu all over again: Denialism of climate change and evolution 9:30 am - 10:45 am Both evolution and global warming are “controversial issues” in education, but are not controversial in the world of science . There is remarkable similarity in the techniques that are used by both camps to promote Human Skin Pigmentation and UV their views . The scientific issues are presented as “not being settled,” or that there is consid- Intensity erable debate among scientists over the validity of claims . Denialists in both camps practice Elite 1 • Hands-On Workshop • Evolution “anomaly mongering,” in which a small detail seemingly incompatible with either evolution • HS 2C or global warming is held up as dispositive of either evolution or climate science . Although in Human evolution activity studies the both cases, reputable, established science is under attack for ideological reasons, the underly- distribution of patterns of human pigmen- ing ideology differs: for creationism, the ideology of course is religious; for global warming, tation, discover causal relationship with the ideology is political and/or economic . Join Dr . Eugenie Scott, Executive Director of NCSE, environment and natural selection . Lesson as she highlights how science denialism is impacting biology education while helping you plan and background resources provided . diffuse the claims about these not so “controversial” topics .” — Pamela Harman, SETI Institute, Eugenie Scott, a former university professor, is the Executive Director of NCSE . She has been Mountain View, CA both a researcher and an activist in the creationism/evolution controversy for over twenty-five years . She holds eight honorary degrees and has received national recognition for her NCSE activities, including awards from scientific societies, educational societies, skeptics groups, Integrating Concepts In Biology is and humanist groups . Scott is the author of Evolution vs Creationism and co-editor, with Redesigned Biology for Vision and Glenn Branch, of Not in Our Classrooms: Why Intelligent Design Is Wrong for Our Schools . Change Grand A • Exhibitor Demonstration • Evolution • HS 2C 4C Invited Speaker We will present the only textbook that 9:30 am - 10:45 am meets the needs of AP teachers and Vision and Change guidelines for introductory Orange County 3 college biology . Integrating Concepts in Biology is a complete redesign, with Helen Quinn, Ph.D. pedagogy based on how people learn . We National Research Council Board on Science Education, develop 5 Big Ideas of biology at 5 organi- Stanford University, Stanford, CA zational levels, from molecules to ecologi- cal systems, to produce a 25-chapter book . A Framework for K-12 Science Education: We provide user-friendly math modules Practices, Crosscutting Concepts, and Core Ideas and all the resources teachers need to ease into this transition . The National Research Council’s (NRC) recently released “Framework for K-12 Science Education” is intended to guide — A . Malcolm Campbell and Laurie J . the development of “Next Generation Science Standards” by Photo by Dan Quinn Heyer, Wiley Blackwell, Hoboken, NJ Achieve Inc . in partnership with multiple states . Dr . Helen Quinn chaired the NRC committee that developed the document and will discuss its impacts . Best Practices Using Quinn is professor emerita of physics at SLAC National Accelerator Laboratory . A theoretical MasteringBiology® physicist, she was elected to the National Academy of Sciences in 2003 and was president of Orange County 3 • Exhibitor Demonstration the American Physical Society in 2004 . In addition to her scholarship in physics, she has had • Instructional Strategies/Technologies • GA long-term involvement in science education and in the continuing education of science teach- This demonstration and discussion will ers . She was an active contributor to the California State Science Standards development pro- present a variety of basic and advanced cess . She is a former president and founder of the nonprofit Contemporary Physics Education techniques for making effective use of Project . She served as chair of the Review and Evaluation of the Pre-College Education the powerful MasteringBiology tutorial Program Committee of the National Aeronautics and Space Administration . At the National and homework system . Participants are Research Council, she was a member of the Committee on Science Learning, K-8; the Federal encouraged to share their experiences, Coordinating Committee on Science, Mathematics and Technology Education; and the Center best practices, and plans for creating for Education Advisory Board . She has a Ph D. in physics from Stanford University (1967) . assignments and using the student data . 52 Anaheim 2011 SATURDAY, OCTOBER 15 — Eileen Gregory, Rollins College, Teach Marine Biology Instead of administrators with an understanding of Winter Park, FL and Jon Lochamy, Biology to all State Standards how evaluation can be used to enhance Georgia Perimeter College, Atlanta, Elite 2 • Hands-On Workshop • biology students’ learning . GA Oceanography/Marine Biology • HS JH — Amy Nisselle, & Bruce Nash, Dolan Comprehensive biology course focus- DNA Learning Center, Cold Spring Teaching DNA, Gene Expression, ing on marine life teaching all required Harbor, NY, Uwe Hilgert, Cold Spring Gene Regulation, and Biotechnology California, various state/national biology Harbor Laboratory, Cold Spring with Free Resources from HHMI standards! Includes lesson plans, labs, Harbor, NY Platinum 1&2 • Hands-On Workshop • activities, games, web inter-actives/web Instructional Strategies/Technologies • HS quests . Course components tried & test Turbo Strand 2C 4C scores were phenomenal . This session will provide teacher- — Mark Friedman, Animo High School, Statistics for Sophomores ready classroom activities utilizing Inglewood, CA & Gwen Noda, Grand C • Hands-On Workshop • General Holiday Lectures on Science DVDs COSEE-West, UCLA, Los Angeles, CA Biology • HS GA and BioInteractive website resources Presenters will clarify the hypothesis, to enhance classroom instruction Easy Lab to Show Enzyme Activity the prediction, and the null statistical of Molecular Genetics . Topics will Platinum 7 • Hands-On Workshop • hypothesis and participants will learn include: DNA structure and function, Molecular & Cell Biology • HS JH various statistical tests to help students gene expression, RNA processing, gene support their conclusions . regulation, prokaryotic operons, toolkit This hands-on activity workshop will genes, and biotechnology . Resources provide an easy lesson plan to help — Paul Strode & Kristy Campbell, pertaining to the 2010 Viral Outbreak you show how enzymes work . This is a Fairview High School, Boulder, CO DVD will be provided, as well as cor- S .T .E .M . based activity that utilizes tech- relations with the new AP Biology cur- nology and math to analyze data . Cool Things About DNA riculum . FREE DVDs, teacher-generated — Nancy Withers, Fisher Science Grand D • Paper • Biotechnology • HS 4C curriculum guides, and classroom-ready Education, Huntington Beach, CA Come and enjoy a light hearted session activities will be distributed . on what research has discovered about — Ann Brokaw, Howard Hughes Medical An Overview of the NSDL Science DNA . “Cool Things About DNA” was Institute, Chevy Chase, MD Literacy Maps developed as an introductory presenta- Grand B • Focus Group • Molecular & tion to HS biology class’ genetic unit Teaching Life Science so Students Cell Biology but has been used at grade levels 7-14 . You are invited to bring your own “cool” Learn An interactive presentation introducing facts about DNA . Platinum 4 • Hands-On Workshop • educators to the NSDL Science Literacy Instructional Strategies/Technologies • GA Maps, the online concept browsing — Mike Zeller, Iowa State University- JH interface provided by the National Biotechnology, Ames, IA Come experience the features and Science Digital Library review the research base of a curricu- — Francis Molina, AAAS, Washington, From Shrooms to Biodiversity to lum that dramatically improved 8th DC Revitalization grade students understanding of core Grand K • Paper • Teacher Prep/ science concepts and scientific inquiry . “It’s Kind of Like This?” Demystifying Professional Development • HS 2C Participants will also have the oppor- Biological Science with the Help of Summer field courses in biology are a tunity to join the online community of Analogies and Illustrations great way to learn something new, meet curriculum users . Orange County 2 • Paper • General new friends, and rejuvenate yourself/ — Paul Beardsley, BSCS, Colorado Biology • HS 4C teaching for the coming school year . Springs, CO Examples of several simple analogies — LaRue (George) Sellers, Ware Shoals from dart guns to dominoes, used to help High School, Greenwood, SC & Judy students better understand abstract bio- Jones, East Chapel High School, 9:30 am - 10:45 am logical concepts of General Biology and Chapel Hill, NC Microbiology courses will be presented . Who has the Risk Taking Gene: Committee Meetings — Paul DeLange, Kettering College, Grand E Kettering, Ohio Olympic Bobsledders or Your NABT is an association for our members Students
Recommended publications
  • Medical Advisory Board September 1, 2006–August 31, 2007
    hoWard hughes medical iNstitute 2007 annual report What’s Next h o W ard hughes medical i 4000 oNes Bridge road chevy chase, marylaNd 20815-6789 www.hhmi.org N stitute 2007 a nn ual report What’s Next Letter from the president 2 The primary purpose and objective of the conversation: wiLLiam r. Lummis 6 Howard Hughes Medical Institute shall be the promotion of human knowledge within the CREDITS thiNkiNg field of the basic sciences (principally the field of like medical research and education) and the a scieNtist 8 effective application thereof for the benefit of mankind. Page 1 Page 25 Page 43 Page 50 seeiNg Illustration by Riccardo Vecchio Südhof: Paul Fetters; Fuchs: Janelia Farm lab: © Photography Neurotoxin (Brunger & Chapman): Page 3 Matthew Septimus; SCNT images: by Brad Feinknopf; First level of Rongsheng Jin and Axel Brunger; iN Bruce Weller Blake Porch and Chris Vargas/HHMI lab building: © Photography by Shadlen: Paul Fetters; Mouse Page 6 Page 26 Brad Feinknopf (Tsai): Li-Huei Tsai; Zoghbi: Agapito NeW Illustration by Riccardo Vecchio Arabidopsis: Laboratory of Joanne Page 44 Sanchez/Baylor College 14 Page 8 Chory; Chory: Courtesy of Salk Janelia Farm guest housing: © Jeff Page 51 Ways Illustration by Riccardo Vecchio Institute Goldberg/Esto; Dudman: Matthew Szostak: Mark Wilson; Evans: Fred Page 10 Page 27 Septimus; Lee: Oliver Wien; Greaves/PR Newswire, © HHMI; Mello: Erika Larsen; Hannon: Zack Rosenthal: Paul Fetters; Students: Leonardo: Paul Fetters; Riddiford: Steitz: Harold Shapiro; Lefkowitz: capacity Seckler/AP, © HHMI; Lowe: Zack Paul Fetters; Map: Reprinted by Paul Fetters; Truman: Paul Fetters Stewart Waller/PR Newswire, Seckler/AP, © HHMI permission from Macmillan Page 46 © HHMI for Page 12 Publishers, Ltd.: Nature vol.
    [Show full text]
  • Mapping Our Genes—Genome Projects: How Big? How Fast?
    Mapping Our Genes—Genome Projects: How Big? How Fast? April 1988 NTIS order #PB88-212402 Recommended Citation: U.S. Congress, Office of Technology Assessment, Mapping Our Genes-The Genmne Projects.’ How Big, How Fast? OTA-BA-373 (Washington, DC: U.S. Government Printing Office, April 1988). Library of Congress Catalog Card Number 87-619898 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technol- ogy, and politics. Congress is responsible for ‘(writing the rules” of what various Federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the U.S. Congress, The House Committee on Energy and Commerce requested that OTA undertake the project. The House Committee on Science, Space, and Technology, the Senate Com- mittee on Labor and Human Resources, and the Senate Committee on Energy and Natu- ral Resources also asked OTA to address specific points of concern to them. Congres- sional interest focused on several issues: ● how to assess the rationales for conducting human genome projects, ● how to fund human genome projects (at what level and through which mech- anisms), ● how to coordinate the scientific and technical programs of the several Federal agencies and private interests already supporting various genome projects, and ● how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology.
    [Show full text]
  • The Gene Wars: Science, Politics, and the Human Genome
    8 Early Skirmishes | N A COMMENTARY introducing the March 7, 1986, issue of Science, I. Renato Dulbecco, a Nobel laureate and president of the Salk Institute, made the startling assertion that progress in the War on Cancer would be speedier if geneticists were to sequence the human genome.1 For most biologists, Dulbecco's Science article was their first encounter with the idea of sequencing the human genome, and it provoked discussions in the laboratories of universities and research centers throughout the world. Dul- becco was not known as a crusader or self-promoter—quite the opposite— and so his proposal attained credence it would have lacked coming from a less esteemed source. Like Sinsheimer, Dulbecco came to the idea from a penchant for thinking big. His first public airing of the idea came at a gala Kennedy Center event, a meeting organized by the Italian embassy in Washington, D.C., on Columbus Day, 1985.2 The meeting included a section on U.S.-Italian cooperation in science, and Dulbecco was invited to give a presentation as one of the most eminent Italian biologists, familiar with science in both the United States and Italy. He was preparing a review paper on the genetic approach to cancer, and he decided that the occasion called for grand ideas. In thinking through the recent past and future directions of cancer research, he decided it could be greatly enriched by a single bold stroke—sequencing the human genome. This Washington meeting marked the beginning of the Italian genome program.3 Dulbecco later made the sequencing
    [Show full text]
  • Regional Oral History Office University of California the Bancroft Library Berkeley, California
    Regional Oral History Office University of California The Bancroft Library Berkeley, California Daniel Koshland, Jr. Retrospective Oral History Project: Bruce Alberts Interviews conducted by Sally Smith Hughes in 2012 Copyright © 2014 by The Regents of the University of California ii Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the nation. Oral History is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well-informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is bound with photographs and illustrative materials and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ********************************* All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Bruce Alberts on March 21, 2014. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley. Excerpts up to 1000 words from this interview may be quoted for publication without seeking permission as long as the use is non-commercial and properly cited.
    [Show full text]
  • Schedule of C Ourses
    2020–2021 Schedule of Courses Schedule The David Rockefeller Graduate Program offers a multiple sclerosis); perception, cognition, and memory (autism, schizophrenia, and Alzheimer’s disease); consciousness (coma selection of courses, many of which students can and persistent vegetative state); mood (depression and anxiety); choose based on their interests and area of thesis motivation (addiction); sensation (pain); motor control (Parkinson’s research. Organized by Rockefeller faculty, and taught disease and ataxia); and trauma (brain or spinal cord injury and stroke). by scientists at the top of their fields, both from within Class length and frequency: Two-hour session, once weekly and outside of the university, these courses provide a Method of evaluation: Attendance, participation in the discussions, stimulating and dynamic curriculum that students can student presentations, and a final speculative paper relating a tailor to fit their personal goals, in consultation with disordered trait to a specific brain circuit the dean of graduate studies. Cell Biology SANFORD M. SIMON and SHAI SHAHAM Biochemical and Biophysical Methods, I & II This advanced course covering major topics in modern cell biology is GREGORY M. ALUSHIN, SETH A. DARST, SHIXIN LIU, and MICHAEL P. ROUT taught by faculty and visitors who are specialists in various disciplines. This course presents the fundamental principles of biochemistry Class length and frequency: Three-hour lecture, once weekly; and biophysics, with an emphasis on methodologies. In addition, two-hour discussion, twice weekly case studies are discussed, examining how physical and chemical methods have been used to establish the molecular mechanisms Prerequisite(s): Good knowledge of textbook cell biology of fundamental biological processes.
    [Show full text]
  • Masthead (PDF)
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Officers BRUCE ALBERTS, President of the JACK HALPERN, Vice President Academy PETER H. RAVEN, Home Secretary F. SHERWOOD ROWLAND, Foreign Secretary RONALD L. GRAHAM, Treasurer Editor-in-Chief NICHOLAS R. COZZARELLI Editorial Board MAY R. BERENBAUM CHARLES FEFFERMAN PHIL W. MAJERUS CARLA J. SHATZ of the PETER J. BICKEL WALTER M. FITCH PHILIPPA MARRACK KAI L. SIMONS Proceedings MARIO R. CAPECCHI JOSEPH L. GOLDSTEIN RICHARD D. MCKELVEY CHRISTOPHER A. SIMS WILLIAM CATTERALL CAROL A. GROSS ARNO G. MOTULSKY SOLOMON H. SNYDER ANTHONY CERAMI JACK HALPERN RONALD L. PHILLIPS CHRISTOPHER R. SOMERVILLE PIERRE CHAMBON BERTIL HILLE THOMAS D. POLLARD LARRY R. SQUIRE MARSHALL H. COHEN PIERRE C. HOHENBERG STANLEY B. PRUSINER STEVEN M. STANLEY STANLEY N. COHEN H. ROBERT HORVITZ CHARLES RADDING CHARLES F. STEVENS DAVID R. DAVIES ERICH P. IPPEN GIAN-CARLO ROTA FRANK H. STILLINGER HERMAN N. EISEN ALFRED G. KNUDSON JEREMY A. SABLOFF KARL K. TUREKIAN RAYMOND L. ERIKSON ROGER KORNBERG PAUL R. SCHIMMEL DON C. WILEY ANTHONY S. FAUCI ROBERT LANGER STUART L. SCHREIBER PETER G. WOLYNES NINA FEDOROFF HARVEY F. LODISH AARON J. SHATKIN Publisher: KENNETH R. FULTON Managing Editor: DIANE M. SULLENBERGER Associate Editorial Manager: JOHN M. MALLOY Associate Manager for Production: JOANNE D’AMICO Production Coordinator: BARBARA A. BACON Editorial Coordinators: AZADEH FULLMER,DANIEL H. SALSBURY Editorial Assistants: RENITA M. JOHNSON,BARBARA J. ORTON,JOE N. HARPE,DORIS DIASE System Administrator: MARILYN J. MASON Financial Manager: JOSEPH F. RZEPKA,JR. Financial Assistant: JULIA A. LITTLE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (ISSN-0027-8424) is published biweekly by THE NATIONAL ACADEMY OF SCIENCES.
    [Show full text]
  • Nucleosomal Barriers Can Accelerate Cohesin Mediated Loop Formation in Chromatin
    bioRxiv preprint doi: https://doi.org/10.1101/861161; this version posted December 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The accidental ally: Nucleosomal barriers can accelerate cohesin mediated loop formation in chromatin Ajoy Maji1, Ranjith Padinhateeri2, Mithun K. Mitra1,*, 1 Department of Physics, IIT Bombay, Mumbai 400076, India 2 Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India * [email protected] Abstract An important question in the context of the 3D organization of chromosomes is the mechanism of formation of large loops between distant base pairs. Recent experiments suggest that the formation of loops might be mediated by Loop Extrusion Factor proteins like cohesin. Experiments on cohesin have shown that cohesins walk diffusively on the DNA, and that nucleosomes act as obstacles to the diffusion, lowering the permeability and hence reducing the effective diffusion constant. An estimation of the times required to form the loops of typical sizes seen in Hi-C experiments using these low effective diffusion constants leads to times that are unphysically large. The puzzle then is the following, how does a cohesin molecule diffusing on the DNA backbone achieve speeds necessary to form the large loops seen in experiments? We propose a simple answer to this puzzle, and show that while at low densities, nucleosomes act as barriers to cohesin diffusion, beyond a certain concentration, they can reduce loop formation times due to a subtle interplay between the nucleosome size and the mean linker length.
    [Show full text]
  • Oral History Interview with Michael Ashburner (B
    CSHL Oral History, Michael Ashburner, July 3, 2003 1/24 Oral history interview with Michael Ashburner (b. 1942) Interview conducted by Ludmila Pollock Cold Spring Harbor Laboratory, July 3, 2003 Transcript edited and annotated by Daniel Liu, PhD, Dec. 2020 Part 1, CSHL1010_Ashburner.mp4 Mila Pollock: [00:00:00] Okay, today is—I never remember dates. Michael Ashburner: July the 3rd, 2003 in the Carnegie Library in Cold Spring Harbor. Pollock: And what is the—if you count numbers, what is the number of your visits now since the first time you came here? Ashburner: I don't know, 40? 50? Pollock: Oh, fantastic. Ashburner: I first came here in 1970. [00:00:30] So that's 30 years, and I've been here at least once a year since then, mostly twice a year. Pollock: Do you remember your first visit? Why did you come? Ashburner: I came to the symposium in 1970.1 Pollock: What is the name of the symposium of the day? Ashburner: I can't remember, look it up. [laughter] Pollock: As a matter of fact, I will do it but we'll talk about this. Ashburner: You'll see a photograph of me there, kissing a girl's hand.2 [cut in tape 00:01:00] Pollock: Do you know how many symposiums you visited? Ashburner: Three? Pollock: No, one, two, three, four, five. 1 1970 Cold Spring Harbor Symposium on Quantitative Biology, “Transcription of Genetic Material,” http://symposium.cshlp.org/site/misc/topic35.xhtml; Michael Ashburner, “A Prodromus to the Genetic Analysis of Puffing in Drosophila,” Cold Spring Harbor Symposia on Quantitative Biology 35 (1970): 533–38, doi:10.1101/SQB.1970.035.01.069.
    [Show full text]
  • Gleevec's Glory Days
    Diabetes Detectives || $$$ to Databases || Anthrax 101 || Fighting Parasites in Bangladesh DECEMBER 2001 Gleevec’s Glory Days The Long Journey of a Celebrated Anticancer Drug FEATURES Gleevec’s Glory Days Mirpur’s Children 10 22 An apparent overnight success, this new A slum in Bangladesh yields clues about leukemia drug has decades of research behind it. immunity, infection and an illness that afflicts By Jill Waalen millions worldwide. By David Jarmul 16 Confronting Diabetes From All Angles 26 Scientific Outliers To combat this growing epidemic, researchers are hunting for genes, exploring cell-signaling How teachers and students in rural America pathways and looking at obesityÕs role. can learn good science. By Karen Hopkin By Mitch Leslie 16 In Starr County, Texas, an alarming 2,500 Mexican- American residents have type 2 diabetes. These women, at the Starr County Health Studies Office, undergo regular monitoring of their disease, which has strong genetic and evironmental components. DEPARTMENTS 2 NOTA BENE 30 HANDS ON Howard Hughes Medical Institute Bulletin ulletin Building Interest in the December 2001 || Volume 14 Number 5 3 PRESIDENT’S LETTER Human Body HHMI TRUSTEES Biomedical Research in a James A. Baker, III, Esq. Changed World Senior Partner, Baker & Botts NEWS AND NOTES Alexander G. Bearn, M.D. Executive Officer, American Philosophical Society 32 To Think Like a Scientist Adjunct Professor, The Rockefeller University UP FRONT Professor Emeritus of Medicine, Cornell University Medical College Frank William Gay 4 Mouse Model Closely 33 Undergraduate Taps Into Former President and Chief Executive Officer, summa Corporation James H. Gilliam, Jr., Esq. Mimics Human Cancer Tomato Communication Former Executive Vice President and General Counsel, Beneficial Corporation 6 Database Science Forcing New Hanna H.
    [Show full text]
  • American Association for the Advancement of Science
    Bridging Science and Society aaas annual report | 2010 The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society and publisher of the journal Science (www.sciencemag.org) as well as Science Translational Medicine (www.sciencetranslationalmedicine.org) and Science Signaling (www.sciencesignaling.org). AAAS was founded in 1848 and includes some 262 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer- reviewed general science journal in the world, with an estimated total readership of 1 million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to “advance science and serve society” through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science- news Web site, a service of AAAS. American Association for the Advancement of Science 1200 New York Avenue, NW Washington, DC 20005 USA Tel: 202-326-6440 For more information about supporting AAAS, Please e-mail [email protected], or call 202-326-6636. The cover photograph of bridge construction in Kafue, Zambia, was captured in August 2006 by Alan I. Leshner. Bridge enhancements were intended to better connect a grass airfield with the Kafue National Park to help foster industry by providing tourists with easier access to new ecotourism camps. [FSC MixedSources logo / Rainforest Alliance Certified / 100 percent green
    [Show full text]
  • Excitement and Gratification in Studying DNA Repair DNA Repair Interest Group History of DNA Repair June 20, 2006 Dr
    Life in the Serendipitous Lane: Excitement and Gratification in Studying DNA Repair DNA Repair Interest Group History of DNA Repair June 20, 2006 Dr. Stuart Linn University of California, Berkeley Serendipity Coined from The Three Princes of Serindip (Sri Lanka), a Persian fairy tale in which the princes have an aptitude for making fortunate discoveries accidentally The formative years Caltech 1958-1962 Stanford 1962-1966 Linus Pauling Arthur Kornberg Richard Feynman Paul Berg George Beadle Phil Hanawalt Norman Horowitz Joshua Lederberg Norman Davidson Charles Yanofsky Jerry Vinograd H. Gobind Khorana Henry Borsook I. R. Lehman Postdoctoral and beyond Geneva (Cambridge) 1966-68 Berkeley 1968- Eduard Kellenberger Harrison (Hatch) Echols Richard Epstein Bruce Ames Werner Arber A. John Clark (Sydney Brenner) Edward Penhoet (John Smith) Robert Mortimer Symore Fogel London 1974-75 Robin Holliday Aviemore, June 1973 Matthew Meselson Oslo 1982 Charles Radding Erling Seeberg Bruce Alberts RecBC(D) RecBC(D) action with 1mM Ca2+ present Coming of Age with Aging S. W. Krauss &. S. Linn (1986) J. Cell Physiol. 126: 99-106 MPC11 (Leukemic B line) J. Barnard, M. LaBelle, & S. 169 µg/106 cells Linn Exp. Cell. Res. (1986) 163: 500-508 1650 U /106 cells 143 U /106 cells Mouse primary skin fibroblasts M. LaBelle & S. Linn (1984) Mut. Res. 132: 51-61 L. M. Jensen & S. Linn (1988) Mol. Cell Biol. 8: 3964-3968 DNA polymerases “The Kornberg Enzyme (E. coli pol I) is probably just a repair enzyme” --Mark Bretcher, Stanford 1967 (prior to the report of the polA mutant by De Lucia and Cairns in 1969) Mosbaugh & Linn JBC 257:575 (1982) AP and “UV” Endonucleases _ _ Mosbaugh & Linn JBC 258:108 (1983) Mosbaugh & Linn JBC 255:11743 (1980) Both the protein and UV/AP endonucleases are immunodepleted by abs.
    [Show full text]
  • Dear Student
    Dear Student: Welcome to Jefferson Medical College! From November through January of the first year, you will take the course Molecular and Cellular Basis of Medicine (MCBM), which contains topics from molecular biology, genetics, cell biology, cell physiology, and biochemistry. Courses in cell biology, genetics, or biochemistry are not a prerequisite for admission to Jefferson Medical College. MCBM is taught accordingly. However, we recognize that our course presents a special challenge to non-science majors, who sometimes find it challenging to learn the vocabulary and concepts, and to think in a scientific manner. If you are a non- science major and if you feel that you have a weak background in molecular biology and cell biology, we would like to recommend that you use a little bit of your time this summer to read about this material. This should help you get through November more comfortably. (Please note that this is not an across-the-board recommendation to study these topics. We make the following suggestions simply in response to students who struggled in the past and told us they wished they had known to study a little bit over the summer.) Following are comments from two students who finished the course in a previous year: One student wrote: "As a non-science major, just switching from anatomy, which is a fairly "verbal" science to biochem-style reading, diagrams, etc. was very difficult. I felt totally overwhelmed with the initial week's material on DNA, RNA, etc. as I simply felt totally unfamiliar with the "language." … “As I got more comfortable with reading scientific material, it all became easier, but initially it was very hard.
    [Show full text]