Oral History Center University of California the Bancroft Library Berkeley, California

Total Page:16

File Type:pdf, Size:1020Kb

Oral History Center University of California the Bancroft Library Berkeley, California Oral History Center, The Bancroft Library, University of California Berkeley Oral History Center University of California The Bancroft Library Berkeley, California Keith Robert Yamamoto, PhD Politics, Ethics, and Transcription Regulation in the UCSF Biochemistry Department Interviews conducted by Sally Smith Hughes, PhD in 1994 & 1995 Copyright © 2018 by The Regents of the University of California Oral History Center, The Bancroft Library, University of California Berkeley ii Since 1954 the Oral History Center of the Bancroft Library, formerly the Regional Oral History Office, has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the nation. Oral History is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well-informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is bound with photographs and illustrative materials and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Keith Yamamoto dated August 27, 2014. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley. Excerpts up to 1000 words from this interview may be quoted for publication without seeking permission as long as the use is non-commercial and properly cited. Requests for permission to quote for publication should be addressed to The Bancroft Library, Head of Public Services, Mail Code 6000, University of California, Berkeley, 94720-6000, and should follow instructions available online at http://ucblib.link/OHC-rights. It is recommended that this oral history be cited as follows: Keith Robert Yamamoto, “Keith Yamamoto: Politics, Ethics, and Transcription Regulation in the UCSF Biochemistry Department, conducted by Sally Smith Hughes in 1994 & 1995, Oral History Center, The Bancroft Library, University of California, Berkeley, 2018. Oral History Center, The Bancroft Library, University of California Berkeley iii Keith Yamamoto, 1982 Photograph taken at Cold Spring Harbor by Herb Parsons Courtesy of the Cold Spring Harbor Laboratory Archives Oral History Center, The Bancroft Library, University of California Berkeley iv This oral history with Keith Yamamoto is one in a series documenting science and technology in Northern California. Its focus is Yamamoto’s years in the UCSF Department of Biochemistry which he joined in 1973 as a postdoc, rising to full professor in 1983. He recounts in detail his research on the glucocorticoid receptor and, more generally, on DNA transcription regulation. He was a first-hand witness to the invention and early application of recombinant DNA technology and the research breakthrough it represented as well as the public controversy it raised in the 1970s over its safety and commercialization. Yamamoto remains a persistent voice in issues pertaining to research ethics and responsibility in science. A second oral history recorded in 2014 chronicles his later career as UCSF Vice Chancellor for Research, Keith R. Yamamoto: UCSF Biochemist, Vice Chancellor for Research, and the Mission Bay Campus. A third oral history was recorded as part of the Sandler Foundation Project, Keith R. Yamamoto: The Sandler Foundation and the Program in Breakthrough Biomedical Research at UCSF. Oral History Center, The Bancroft Library, University of California Berkeley v Table of Contents— Keith Yamamoto Interview History by Sally Smith Hughes Interview 1: September 26, 1994 1 Early Influences — The Internment of the Japanese during World War II — Parents and Sister — Religion — Family Values — Interest in Science — Undergraduate, Iowa State University, 1964-1968 — Research as an Undergraduate — Attraction to Molecular Biology Interview 2: October 5, 1994 18 Graduate Student, Princeton University, 1968-1973: Assignment to Bruce Alberts' Laboratory — First Research Problem — Paper Presentation, Cold Spring Harbor — The Princeton Milieu — The Biochemistry Faculty — Interdisciplinary Tensions — Bruce Alberts — Choosing to Focus on Eukaryotes — Research on the Estrogen Receptor — Finding that the Estrogen Receptor Binds to DNA — Combining Scientific Approaches — Political Involvement: Campaign for Eugene McCarthy — Campaign for George McGovern — Alberts' Program in Science Education — The Dissertation Project — Detecting Specific Binding Sites for the Estrogen Receptor — Arthur Riggs' Discovery — Two Theoretical Papers — Fellow in Biochemistry, UCSF, 1973-1975 — Gordon M. Tomkins, M.D., Ph.D. — Research on the Glucocorticoid Receptor — The Tomkins Lab — Early Impressions of the Department — Scientific Communication Interview 3: November 4, 1994 55 More on Postdoctoral Fellowship in Biochemistry at UCSF, 1973-1975 — The UCSF Department of Biochemistry — Faculty Recruitment — Decision to Emphasize the Basic Sciences at UCSF — Tensions — Biophysics — Biomathematics — Postdoc Factory — Postdoc Competition — Research Problem as a Postdoc — UCSF faculty member — Opinions about Cell — Order of Authorship — Different Understandings about Authorship — Pierre Chambon — Harold Varmus — Directing His Laboratory Group — — Less Time in the Lab — Science Manager — Institutional Context Interview 4: November 14, 1994 79 Program in Biological Sciences as a Model for the Clinical Sciences — Role of Genetics at UCSF — Division of Genetics, Department of Biochemistry and Biophysics — Debate about the Campus Role of Human Genetics — Departmental Retreats — The Ralston Center Retreat, Mill Valley, ca.1976 — Early Asilomar Conferences — Current Asilomar Retreats — Social Occasions in the Department — Howard Goodman's Wine Gatherings — The Chelsea Pub — Spring and Halloween Parties — Departmental Camaraderie — Building a Departmental Reputation — Administrative Styles — Utilizing Joint Appointments — Comparing Biology at Berkeley, Stanford, and UCSF — Open versus Hierarchical Governance — The Collective Model — New Technology Oral History Center, The Bancroft Library, University of California Berkeley vi Interview 5: November 28, 1994 101 The Recombinant DNA Controversy — Cohen-Boyer Experiments — Paul Berg's Experiments with SV40 — Hearing of Early Recombinant DNA Research — First Public Announcement of Recombinant DNA, June 1974 — The Asilomar Meeting, February 1975 — The Recombinant DNA Research Moratorium — Communicating Scientific Knowledge — NIH Recombinant DNA Guidelines — Threat of Federal and State Regulation — The pBR322 Plasmid Episode in the Race for Human Insulin— Possible Commercial Applications — The Scientific Process in the U.S. — The UCSF Biosafety Committee — Changes in Laboratory Safety Procedures — The UCSF P-3 Laboratory — The Public's Role in Science — Ownership of Ideas in Science Interview 6: December 22, 1994 125 A Conversation with Gordon Tomkins — Personal Problems with Ownership: Gordon Ringold — Goal-oriented versus Open-ended Research — Competition — Issues around Distribution of Biological Materials — Publication and Public Domain — Authorship Claims — Requesting Information — Requesting Payment — More on Authorship — Ethics in Science — Research on DNA Transcription Regulation — Bacteriophage and Universality Interview 7: January 24, 1995 154 DNA Binding Sites — Long-range and Combinatorial Regulation — Insertion Sequences — A Mechanism for Evolution — Allan Wilson — More on Transcription Regulation— The Binding Site — Discovery of Three Classes of Glucocorticoid Receptors — Cell- specific Gene Expression — Research in Yeast — Long-range Regulation as an Evolutionary Driving Force — Stories about Signaling — Steroid Molecules as Cholesterol Derivatives — The UCSF Collaborative Spirit Interview 8: February 20, 1995 184 Controversy over the Commercialization of Academic Biology — Technology Transfer and Patenting at the University — Scientific Advisor to Tularik — More on Commercial Ties in the Biochemistry Department — More on the pBR322 Plasmid Episode Interview 9: March 27, 1995 207 The UCSF Biomedical Resource Center — The Biochemistry Department’s Administrative Structure — Chairmanship Styles: Bill Rutter and Bruce Alberts — Dan Koshland and the Reorganization of Biology at Berkeley — The University’s Growing Leniency for Faculty Outside Commitments — Faculty Community Service — U.S. Military Use of Recombinant DNA Technology — Testimony on Biological Defense Research before the Senate Government Affairs Committee — Writing Scientific Papers — Science Journals and the Shaping of Science Oral History Center, The Bancroft Library, University of California Berkeley vii Interview 10: April 13, 1995 235 Determining Author Order on Science Publications — Graduate School as a Time to be Daring in Research — Issues as Editor of Science Journals — Misconduct
Recommended publications
  • Medical Advisory Board September 1, 2006–August 31, 2007
    hoWard hughes medical iNstitute 2007 annual report What’s Next h o W ard hughes medical i 4000 oNes Bridge road chevy chase, marylaNd 20815-6789 www.hhmi.org N stitute 2007 a nn ual report What’s Next Letter from the president 2 The primary purpose and objective of the conversation: wiLLiam r. Lummis 6 Howard Hughes Medical Institute shall be the promotion of human knowledge within the CREDITS thiNkiNg field of the basic sciences (principally the field of like medical research and education) and the a scieNtist 8 effective application thereof for the benefit of mankind. Page 1 Page 25 Page 43 Page 50 seeiNg Illustration by Riccardo Vecchio Südhof: Paul Fetters; Fuchs: Janelia Farm lab: © Photography Neurotoxin (Brunger & Chapman): Page 3 Matthew Septimus; SCNT images: by Brad Feinknopf; First level of Rongsheng Jin and Axel Brunger; iN Bruce Weller Blake Porch and Chris Vargas/HHMI lab building: © Photography by Shadlen: Paul Fetters; Mouse Page 6 Page 26 Brad Feinknopf (Tsai): Li-Huei Tsai; Zoghbi: Agapito NeW Illustration by Riccardo Vecchio Arabidopsis: Laboratory of Joanne Page 44 Sanchez/Baylor College 14 Page 8 Chory; Chory: Courtesy of Salk Janelia Farm guest housing: © Jeff Page 51 Ways Illustration by Riccardo Vecchio Institute Goldberg/Esto; Dudman: Matthew Szostak: Mark Wilson; Evans: Fred Page 10 Page 27 Septimus; Lee: Oliver Wien; Greaves/PR Newswire, © HHMI; Mello: Erika Larsen; Hannon: Zack Rosenthal: Paul Fetters; Students: Leonardo: Paul Fetters; Riddiford: Steitz: Harold Shapiro; Lefkowitz: capacity Seckler/AP, © HHMI; Lowe: Zack Paul Fetters; Map: Reprinted by Paul Fetters; Truman: Paul Fetters Stewart Waller/PR Newswire, Seckler/AP, © HHMI permission from Macmillan Page 46 © HHMI for Page 12 Publishers, Ltd.: Nature vol.
    [Show full text]
  • Mapping Our Genes—Genome Projects: How Big? How Fast?
    Mapping Our Genes—Genome Projects: How Big? How Fast? April 1988 NTIS order #PB88-212402 Recommended Citation: U.S. Congress, Office of Technology Assessment, Mapping Our Genes-The Genmne Projects.’ How Big, How Fast? OTA-BA-373 (Washington, DC: U.S. Government Printing Office, April 1988). Library of Congress Catalog Card Number 87-619898 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technol- ogy, and politics. Congress is responsible for ‘(writing the rules” of what various Federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the U.S. Congress, The House Committee on Energy and Commerce requested that OTA undertake the project. The House Committee on Science, Space, and Technology, the Senate Com- mittee on Labor and Human Resources, and the Senate Committee on Energy and Natu- ral Resources also asked OTA to address specific points of concern to them. Congres- sional interest focused on several issues: ● how to assess the rationales for conducting human genome projects, ● how to fund human genome projects (at what level and through which mech- anisms), ● how to coordinate the scientific and technical programs of the several Federal agencies and private interests already supporting various genome projects, and ● how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology.
    [Show full text]
  • The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/25008 SHARE The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through DETAILS 162 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-47137-4 | DOI 10.17226/25008 CONTRIBUTORS GET THIS BOOK Committee on the Next Generation Initiative; Board on Higher Education and Workforce; Policy and Global Affairs; National Academies of Sciences, Engineering, and Medicine FIND RELATED TITLES Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through THE NEXT GENERATION OF BIOMEDICAL AND BEHAVIORAL SCIENCES RESEARCHERS: BREAKING THROUGH Committee on the Next Generation Initiative Board on Higher Education and Workforce Policy and Global Affairs A Consensus Study Report of PREPUBLICATION COPY—UNEDITED PROOFS Copyright National Academy of Sciences. All rights reserved. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by contracts between the National Academy of Sciences and The National Institutes of Health (#HHSN263201200074I, Order No.
    [Show full text]
  • Deptbiochemistry00ruttrich.Pdf
    'Berkeley University o'f California Regional Oral History Office UCSF Oral History Program The Bancroft Library Department of the History of Health Sciences University of California, Berkeley University of California, San Francisco The UCSF Oral History Program and The Program in the History of the Biological Sciences and Biotechnology William J. Rutter, Ph.D. THE DEPARTMENT OF BIOCHEMISTRY AND THE MOLECULAR APPROACH TO BIOMEDICINE AT THE UNIVERSITY OF CALIFORNIA, SAN FRANCISCO VOLUME I With an Introduction by Lloyd H. Smith, Jr., M.D. Interviews by Sally Smith Hughes, Ph.D. in 1992 Copyright O 1998 by the Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the Nation. Oral history is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well- informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable.
    [Show full text]
  • The Gene Wars: Science, Politics, and the Human Genome
    8 Early Skirmishes | N A COMMENTARY introducing the March 7, 1986, issue of Science, I. Renato Dulbecco, a Nobel laureate and president of the Salk Institute, made the startling assertion that progress in the War on Cancer would be speedier if geneticists were to sequence the human genome.1 For most biologists, Dulbecco's Science article was their first encounter with the idea of sequencing the human genome, and it provoked discussions in the laboratories of universities and research centers throughout the world. Dul- becco was not known as a crusader or self-promoter—quite the opposite— and so his proposal attained credence it would have lacked coming from a less esteemed source. Like Sinsheimer, Dulbecco came to the idea from a penchant for thinking big. His first public airing of the idea came at a gala Kennedy Center event, a meeting organized by the Italian embassy in Washington, D.C., on Columbus Day, 1985.2 The meeting included a section on U.S.-Italian cooperation in science, and Dulbecco was invited to give a presentation as one of the most eminent Italian biologists, familiar with science in both the United States and Italy. He was preparing a review paper on the genetic approach to cancer, and he decided that the occasion called for grand ideas. In thinking through the recent past and future directions of cancer research, he decided it could be greatly enriched by a single bold stroke—sequencing the human genome. This Washington meeting marked the beginning of the Italian genome program.3 Dulbecco later made the sequencing
    [Show full text]
  • Regional Oral History Office University of California the Bancroft Library Berkeley, California
    Regional Oral History Office University of California The Bancroft Library Berkeley, California Daniel Koshland, Jr. Retrospective Oral History Project: Bruce Alberts Interviews conducted by Sally Smith Hughes in 2012 Copyright © 2014 by The Regents of the University of California ii Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the nation. Oral History is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well-informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is bound with photographs and illustrative materials and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ********************************* All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Bruce Alberts on March 21, 2014. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley. Excerpts up to 1000 words from this interview may be quoted for publication without seeking permission as long as the use is non-commercial and properly cited.
    [Show full text]
  • Schedule of C Ourses
    2020–2021 Schedule of Courses Schedule The David Rockefeller Graduate Program offers a multiple sclerosis); perception, cognition, and memory (autism, schizophrenia, and Alzheimer’s disease); consciousness (coma selection of courses, many of which students can and persistent vegetative state); mood (depression and anxiety); choose based on their interests and area of thesis motivation (addiction); sensation (pain); motor control (Parkinson’s research. Organized by Rockefeller faculty, and taught disease and ataxia); and trauma (brain or spinal cord injury and stroke). by scientists at the top of their fields, both from within Class length and frequency: Two-hour session, once weekly and outside of the university, these courses provide a Method of evaluation: Attendance, participation in the discussions, stimulating and dynamic curriculum that students can student presentations, and a final speculative paper relating a tailor to fit their personal goals, in consultation with disordered trait to a specific brain circuit the dean of graduate studies. Cell Biology SANFORD M. SIMON and SHAI SHAHAM Biochemical and Biophysical Methods, I & II This advanced course covering major topics in modern cell biology is GREGORY M. ALUSHIN, SETH A. DARST, SHIXIN LIU, and MICHAEL P. ROUT taught by faculty and visitors who are specialists in various disciplines. This course presents the fundamental principles of biochemistry Class length and frequency: Three-hour lecture, once weekly; and biophysics, with an emphasis on methodologies. In addition, two-hour discussion, twice weekly case studies are discussed, examining how physical and chemical methods have been used to establish the molecular mechanisms Prerequisite(s): Good knowledge of textbook cell biology of fundamental biological processes.
    [Show full text]
  • Masthead (PDF)
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Officers BRUCE ALBERTS, President of the JACK HALPERN, Vice President Academy PETER H. RAVEN, Home Secretary F. SHERWOOD ROWLAND, Foreign Secretary RONALD L. GRAHAM, Treasurer Editor-in-Chief NICHOLAS R. COZZARELLI Editorial Board MAY R. BERENBAUM CHARLES FEFFERMAN PHIL W. MAJERUS CARLA J. SHATZ of the PETER J. BICKEL WALTER M. FITCH PHILIPPA MARRACK KAI L. SIMONS Proceedings MARIO R. CAPECCHI JOSEPH L. GOLDSTEIN RICHARD D. MCKELVEY CHRISTOPHER A. SIMS WILLIAM CATTERALL CAROL A. GROSS ARNO G. MOTULSKY SOLOMON H. SNYDER ANTHONY CERAMI JACK HALPERN RONALD L. PHILLIPS CHRISTOPHER R. SOMERVILLE PIERRE CHAMBON BERTIL HILLE THOMAS D. POLLARD LARRY R. SQUIRE MARSHALL H. COHEN PIERRE C. HOHENBERG STANLEY B. PRUSINER STEVEN M. STANLEY STANLEY N. COHEN H. ROBERT HORVITZ CHARLES RADDING CHARLES F. STEVENS DAVID R. DAVIES ERICH P. IPPEN GIAN-CARLO ROTA FRANK H. STILLINGER HERMAN N. EISEN ALFRED G. KNUDSON JEREMY A. SABLOFF KARL K. TUREKIAN RAYMOND L. ERIKSON ROGER KORNBERG PAUL R. SCHIMMEL DON C. WILEY ANTHONY S. FAUCI ROBERT LANGER STUART L. SCHREIBER PETER G. WOLYNES NINA FEDOROFF HARVEY F. LODISH AARON J. SHATKIN Publisher: KENNETH R. FULTON Managing Editor: DIANE M. SULLENBERGER Associate Editorial Manager: JOHN M. MALLOY Associate Manager for Production: JOANNE D’AMICO Production Coordinator: BARBARA A. BACON Editorial Coordinators: AZADEH FULLMER,DANIEL H. SALSBURY Editorial Assistants: RENITA M. JOHNSON,BARBARA J. ORTON,JOE N. HARPE,DORIS DIASE System Administrator: MARILYN J. MASON Financial Manager: JOSEPH F. RZEPKA,JR. Financial Assistant: JULIA A. LITTLE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (ISSN-0027-8424) is published biweekly by THE NATIONAL ACADEMY OF SCIENCES.
    [Show full text]
  • Nucleosomal Barriers Can Accelerate Cohesin Mediated Loop Formation in Chromatin
    bioRxiv preprint doi: https://doi.org/10.1101/861161; this version posted December 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The accidental ally: Nucleosomal barriers can accelerate cohesin mediated loop formation in chromatin Ajoy Maji1, Ranjith Padinhateeri2, Mithun K. Mitra1,*, 1 Department of Physics, IIT Bombay, Mumbai 400076, India 2 Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India * [email protected] Abstract An important question in the context of the 3D organization of chromosomes is the mechanism of formation of large loops between distant base pairs. Recent experiments suggest that the formation of loops might be mediated by Loop Extrusion Factor proteins like cohesin. Experiments on cohesin have shown that cohesins walk diffusively on the DNA, and that nucleosomes act as obstacles to the diffusion, lowering the permeability and hence reducing the effective diffusion constant. An estimation of the times required to form the loops of typical sizes seen in Hi-C experiments using these low effective diffusion constants leads to times that are unphysically large. The puzzle then is the following, how does a cohesin molecule diffusing on the DNA backbone achieve speeds necessary to form the large loops seen in experiments? We propose a simple answer to this puzzle, and show that while at low densities, nucleosomes act as barriers to cohesin diffusion, beyond a certain concentration, they can reduce loop formation times due to a subtle interplay between the nucleosome size and the mean linker length.
    [Show full text]
  • Oral History Interview with Michael Ashburner (B
    CSHL Oral History, Michael Ashburner, July 3, 2003 1/24 Oral history interview with Michael Ashburner (b. 1942) Interview conducted by Ludmila Pollock Cold Spring Harbor Laboratory, July 3, 2003 Transcript edited and annotated by Daniel Liu, PhD, Dec. 2020 Part 1, CSHL1010_Ashburner.mp4 Mila Pollock: [00:00:00] Okay, today is—I never remember dates. Michael Ashburner: July the 3rd, 2003 in the Carnegie Library in Cold Spring Harbor. Pollock: And what is the—if you count numbers, what is the number of your visits now since the first time you came here? Ashburner: I don't know, 40? 50? Pollock: Oh, fantastic. Ashburner: I first came here in 1970. [00:00:30] So that's 30 years, and I've been here at least once a year since then, mostly twice a year. Pollock: Do you remember your first visit? Why did you come? Ashburner: I came to the symposium in 1970.1 Pollock: What is the name of the symposium of the day? Ashburner: I can't remember, look it up. [laughter] Pollock: As a matter of fact, I will do it but we'll talk about this. Ashburner: You'll see a photograph of me there, kissing a girl's hand.2 [cut in tape 00:01:00] Pollock: Do you know how many symposiums you visited? Ashburner: Three? Pollock: No, one, two, three, four, five. 1 1970 Cold Spring Harbor Symposium on Quantitative Biology, “Transcription of Genetic Material,” http://symposium.cshlp.org/site/misc/topic35.xhtml; Michael Ashburner, “A Prodromus to the Genetic Analysis of Puffing in Drosophila,” Cold Spring Harbor Symposia on Quantitative Biology 35 (1970): 533–38, doi:10.1101/SQB.1970.035.01.069.
    [Show full text]
  • Timeline Code Dnai Site Guide
    DNAi Site Guide 1 DNAi Site Guide Timeline Pre 1920’s Johann Gregor Mendel, Friedrich Miescher, Carl Erich Correns, Hugo De Vries, Erich Von Tschermak- Seysenegg, Thomas Hunt Morgan 1920-49 Hermann Muller, Barbara McClintock, George Wells Beadle, Edward Lawrie Tatum, Joshua Lederberg, Oswald Theodore Avery 1950-54 Erwin Chargaff, Rosalind Elsie Franklin, Martha Chase, Alfred Day Hershey, Linus Pauling, James Dewey Watson, Francis Harry Compton Crick, Seymour Benzer 1955-59 Francis Harry Compton Crick, Paul Charles Zamecnik, Mahlon Hoagland, Matthew Stanley Meselson, Franklin William Stahl, Arthur Kornberg 1960’s Sydney Brenner, Marshall Warren Nirenberg, François Jacob, Jacques Lucien Monod, Roy John Britten 1970’s David Baltimore, Howard Martin Temin, Stanley Norman Cohen, Herbert W. Boyer, Richard John Roberts, Phillip Allen Sharp, Roger Kornberg, Frederick Sanger 1980’s Christiane Nüsslein-Volhard, Eric Francis Wieschaus, Kary Mullis, Thomas Robert Cech, Sidney Altman, Mario Renato Capecchi 1990-2000 Mary-Claire King, Stephen P.A. Fodor, Patrick Henry Brown, John Craig Venter Francis Collins, John Sulston Code Finding the structure Problem What is the structure of DNA? DNAi Site Guide 2 Players Erwin Chargaff, Rosalind Franklin, Linus Pauling, James Watson and Francis Crick, Maurice Wilkins Pieces of the puzzle Wilkins' X-ray, Pauling's triple helix, Franklin's X-ray, Watson's base pairing, Chargaff's ratios Putting it together DNA is a double-stranded helix. Copying the code Problem How is DNA copied? Players James Watson and Francis Crick, Sydney Brenner, François Jacob, Matthew Meselson, Arthur Kornberg Pieces of the puzzle The Central Dogma, Semi-conservative replication Models of DNA replication, The RNA experiment, DNA synthesis Putting it together DNA is used as a template for copying information.
    [Show full text]
  • Synthetic Insulin
    1 Invent or Discover: the art of useful science www.alanrwalker.com Synthetic insulin ‘As if science was too serious a business to be left to grown-ups.’ (François Jacob) Squeezed up against the southern slopes of the San Gabriel Mountains, by Los Angeles, lies the town of Duarte with its City of Hope National Medical Center. The hospital was founded in 1928 as a tented sanatorium to care for patients with tuberculosis and over the next fifty years it evolved into a world famous location for research and treatment of cancer. In 1979 one of the researchers there, Keiichi Itakura, applied for a patent concerning ‘recombinant DNA’. Few of his colleagues would have appreciated what he wanted, but amongst them Arthur Riggs had applied for a paired patent on ‘microbial polypeptide expression’. Within the depths of the dry legalistic texts stirred the creation of an incredible transformation in medicine and industry. Here were instructions, both specifically technical and of general application, to construct the genes responsible for human hormones such as insulin, then manufacture these hormone by using broths of bacteria. How to construct human genes? Yes, build them up them from small chemical units on the laboratory bench. Manufacture them using bacteria! Why not, the researchers would have answered? Bacteria can be tricked into producing a protein based on the coding from a gene that has been inserted into them; a synthetic human gene for example. Since bacteria reproduce extremely rapidly and can be grown in industrial vats using simple nutrients, they form vast numbers of tiny factories to pump out the hormone.
    [Show full text]