Bacterial Wetwood on Cottonwoods

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Wetwood on Cottonwoods UTAH PESTS News Utah Plant Pest Diagnostic Laboratory and USU Extension Vol. V, Winter 2011 Bacterial Wetwood on Cottonwoods Over the past two years, we have had reports of cottonwoods of all ages dying suddenly or in decline in parts of Utah What’s Inside (Cache, Iron, and Salt Lake counties). Af- Invasive Pest Highlight: ter several unsuccessful attempts by plant Brown Marmorated Stink pathologists at Oregon State University Bug to isolate plant pathogens from the wood, How Winter Weather Af- we came to the conclusion that the prob- fects Insect Activity lem was simply, bacterial wetwood, which is difficult to pinpoint to one causal or- Detection of Invasive Pest ganism. If you are familiar with bacterial in Utah Demonstrates Importance of CAPS wetwood, the symptoms we have seen are not as clear-cut as you might think. Dealing with Delusional Infestation Bacterial wetwood is a disease that af- Powdery Mildews in Your fects many hardwoods and some conifers. Backyard - Part 1 In general, it is an asymptomatic condition in trees, but in the case of cottonwoods News, Publications, (and globe willows and sometimes elms), Websites, Calendar it is lethal. Naturally occur- ring soil and water bacteria News Highlights enter the tree through root wounds or are transmitted New Utah Pests from tree to tree through Fact SheetS The following can be natural root grafting or by found on our Web site: wood-boring insects. The bacteria multiply and occupy Cockroaches the xylem, killing and stain- ing the wood and causing Elm Bark Beetles and a water-soaked condition. Dutch Elm Disease In the absence of oxygen, Eriophyid Mites these bacteria degrade pectin, starches, and sugars Fire Blight Annual via fermentation to pro- Management Guide duce methane and carbon dioxide. High gas pressure and moisture content forces fermentation by-products to Top outer limbs, and in the case of cottonwoods and globe : Cottonwood trees of all ages can be killed, seemingly willow, to the cambium, caus- Bottomovernight, by bacterial wetwood. ing localized death. Fluid : Symptoms include early fall color, dieback, and quarter- that seeps out of wounds or sized areas of tarry-like ooze on the bark. Under the ooze are branch stubs is colonized by www.utahpests.usu.edu small cankers of dead cambium, and orange staining of the xylem. continued on next page Bacterial Wetwood, continued from previous page UTAH PESTS airborne bacteria and yeasts, resulting in Staff the foul-smelling and toxic “slime flux.” Affected cottonwoods in Utah do not Diane Alston express the classic slime flux, but have Entomologist several small (quarter-sized) areas of [email protected] tar-like ooze on the bark. Removal 435-797-2516 of the bark over these oozing areas Ryan Davis reveals a brown discolored cambium and Arthropod Diagnostician fermented odor. The xylem beneath the [email protected] dead cambium is streaked red. In the 435-797-2435 case of the dying cottonwoods in Utah, Marion Murray the symptoms indicated multiple entry IPM Project Leader points through roots and by spread of Editor, Utah Pests News flatheaded borers. Trees contained both [email protected] basal and upper stem cambial wetwood 435-797-0776 cankers that, in advanced stages, co- Claudia Nischwitz alesced into a single massive formation. Plant Pathologist Some trees developed cracks in the [email protected] upper limbs due to the intense pressure 435-797-7569 within the tree. Symptoms of disease expression started with yellowing, wilt- Ricardo Ramirez Entomologist ing, and scorching foliage in parts of the [email protected] canopy, branch dieback, and failure to 435-797-8088 leaf out in spring. Death eventually oc- curred when the cambium was girdled Cory Vorel at the base of the tree. In advanced stages of decline, large areas of USU CAPS Coordinator cambial tissue are killed. [email protected] 801-388-5433 Most of the cottonwoods were grow- by wetwood at a very young age (less ing in environments that favors spread, than 10 years), and not show symptoms including monoculture plantings that for many years. Areas that have impor- allow for root to root spread, compacted tant cottonwoods should be managed for prevention of disease. The most Utah Plant Pest soil, surface roots exposed to wounding, and in some instances, drought conditions important factor is to prevent damage Diagnostic Lab and stress to roots. Trees should be given BNR Room 203 or excessive water. Most trees also had Utah State University a high incidence of cytospora canker that optimal watering and fertilization. 5305 Old Main Hill probably contributed to tree death. Dead Logan, UT 84322 trees ranged in age from 20-60 years. -Marion Murray, IPM Project Leader UTAH PESTS News Although isolating bacteria from wood is published quarterly. is very difficult, there have been reports To subscribe, click here. of over 13 genera of bacteria associated References: All images © UTAH PESTS and USU with wetwood tissue. Species from two Extension unless otherwise credited. genera, Clostridium and Enterobacter, are Shink, Bernard, J.C. Ward, and J.G. Zeikus. 1981. most prevalent, but cannot be assumed to Microbiology of wetwood: role of anaerobic be the causal agents of wetwood because bacterial populations in living trees. Journal of General Microbiology. Vol 123: 313-322. utahpests.usu.edu they have never been tested for ability to induce wetwood in laboratory conditions. Johnson, D.W., and J.W. Riffle. 1986. Wetwood in elm, cottonwood, and mulberry. In: Diseases of Trees in the Great Plains. USFS General There are no chemical treatments to Technical Report, RM-129, pp 64-65. prevent or cure trees with bacterial wet- wood. Trees may have become affected Scott, Eileen. 1984. Populations of bacteria in poplar stems. Eur. J. For. Path. Vol 14: 103-112. www.utahpests.usu.edu Utah Pests News - Winter 2011 - page 2 entomology NEWS AND information Invasive Pest Highlight: The Brown Marmorated Stink Bug A new invasive pest to the U.S. is a concern for Utah’s agricultural, landscape, and home garden industries. The brown marmorated stink bug (Hemiptera: Pentatomidae) is native to Asia and was first detected in the U.S. in Allentown, Pennsylvania in 1998. It has since spread to areas of the Mid-Atlantic, South-Atlantic, Northeast, Great Lakes, and David R. Lance, USDA APHIS PPQ USDA Lance, R. David Northwest regions of the U.S. In 2010, it caused severe crop APHIS PPQ USDA Lance, R. David injury to pome and stone fruits and some small fruits and vegetables in the Mid-Atlantic region. Some characteristics of the brown marmorated (= marbled) stink bug that make it such a concern include: • Adult populations move rapidly from one crop to another (a few hours for nearby fields). • It appears to be widely adaptable to many regions of the U.S. State University Pennsylvania State University Pennsylvania • It has a broad plant host range that includes tree fruits, vine and cane fruits, some vegetables (sweet corn, Adult stink bugs (top left) are identified by white bands on tomato, pepper, bean, asparagus), some field crops dark antennae, a smooth “shoulder” and black and white pattern around abdomen. Eggs and nymphs (top left) are (soybean, corn), and some landscape trees and shrubs. difficult to tell from other stink bugs. Injury to apple fruit • It feeds on fruits, seeds, and leaves. (bottom) resembles other stink bug injury. • It is already showing resistace to some pyrethroid red. Late nymphs are darker with light bands on dark legs insecticides. and antennae. Eggs are light green, barrel-shaped and laid in small clusters (20-30 eggs). The brown marmorated stink bug • Both the adult and nymph (immature) stages cause plant generally completes one generation per year in most regions injury. of the U.S., but it may be multi-voltine in warmer areas. It • It is also a nuisance pest, as it seeks shelter from the overwinters in the adult stage. Adults seek protected sites winter within buildings (similar to boxelder bug and the beginning in September. This habit causes it to be a nuisance Asian multicolored lady beetle). pest for people as it congregates in homes, office buildings and other structures. DAMAGE The brown marmorated stink bug feeds by sucking on plant SPREAD AND HOW TO REPORT OCCURRENCES juices with its beak composed of tube-like mouthparts. On Utah crop producers and home gardeners should be on fruits it causes small necrotic spots. On pome fruits, a pithy the look-out for this insect to show up in Utah. It is now area often forms under the fruit skin. For stone fruits that well established in greater Portland, OR. It could easily be are attacked early in the season, typical stink bug cat-facing transported on plant products or in vehicles to the fruit (puckering, distortion) is caused. On leaves, feeding causes and vegetable producing regions of Utah. If a suspected light-colored stippling or small crows-foot shaped lesions. On specimen is spotted, collect it and submit it to your local seedpods, the bug feeds on the immature seeds developing Utah State University Extension office or Utah Department within the pod. of Agriculture and Food office. Also report any suspect plant injury as this has been a common way its presence has been APPEARANCE AND LIFE HISTORY first detected in other regions of the country. The adult is a typical shield-shaped stink bug (5/8 in long, 3/8 in wide). Its upper side is mottled brown and gray and -Diane Alston, Entomologist its underside is white with gray and black markings. Its antennae have alternating dark and light bands on the last For further information, visit these online resources: two segments which is a characteristic that separates it from other similar-looking stink bugs.
Recommended publications
  • Insects and Diseases
    INSECTS AND DISEASES Important Problems of Florida’s Forest and Shade Tree Resources INSECTS AND DISEASES Important Problems of Florida’s Forest and Shade Tree Resources by Edward L. Barnard Pathologist, Florida Division of Forestry and Wayne N. Dixon Entomologist, Florida Division of Forestry Illustrations by Wayne N. Dixon Table of Contents FOREWORD ................................................................................................................... 7 INTRODUCTION ............................................................................................................. 8 ACKNOWLEDGEMENTS ............................................................................................... 9 HOW TO USE THE BOOK ............................................................................................ 10 DAMAGE KEYS ............................................................................................................ 11 Tree Insects – Key 1 Conifer Foliage .......................................................................... 11 Tree Insects – Key 2 Conifer Branch and Stem .......................................................... 1 Tree Insects – Key 3 Hardwood Foliage ...................................................................... 2 Tree Insects – Key 4 Hardwood Branch and Stem....................................................... 3 Tree Insects – Key 5 Roots ........................................................................................... 4 Diseases of Trees – Key 1 Conifer Foliage .................................................................
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Slime Flux Or Wetwood
    AZ1031 Slime Flux or Wetwood 9/98 Plant Disease Management: Horticultural Crops MARY W. OLSEN Disease Extension Plant Pathologist Slime flux is caused by the infection of sapwood by Department of Plant Pathology several different bacteria. Yeasts may also be involved in the disease. The microorganisms that have been associated with disease are commonly found in soils and probably DEBORAH J. YOUNG enter through wounds above and below the soil line. Over Extension Plant Pathologist a period of time, which may be several years, the number of microorganisms increases in the wood, causing the water- Pathogen soaked symptoms of wetwood. Large amounts of gases may Several different bacteria and yeasts be produced as the microorganisms grow, and the liquid is forced out of cracks and wounds. Host Mesquite, cottonwood, ash, elm, mulberry, willow, poplar, Prevention/control apple, firs, maples, pine, sycamore, and other trees There are no preventative methods for Slime Flux except good tree health care practices, proper watering, feeding Symptoms/signs and pruning. There are no controls for the disease. The A dark, watery exudate drains from branch crotches, practice of installing tubes to drain liquid is no longer cracks, pruning cuts and other wounds. This liquid often recommended since it does not alleviate the problem and the runs down the branches and trunk or may drip from infec- holes are a good infection site for many pathogenic organ- tion sites. Branches may die back in severely affected trees. isms. Trees with Slime Flux will usually live for many years, The liquid that seeps out of affected tissue may support but any weakened limb should be removed if it is a safety growth of many other microorganisms which gives it the risk.
    [Show full text]
  • Tree Health Issues: Bacterial Wetwood
    Tree Health Issues: Bacterial Wetwood What is Bacterial Wetwood and how does it work? Bacterial Wetwood or Slime Flux is a bacterial infection which affects the central core and bark of trees. This disease is typically caused by wounding of a tree or environmental stress (compacted soil, large root damage, etc.) Bacterial Wetwood increases the moisture content and pH of the wood, causing fermentation and oozing from cuts or wounds. The tree may look ugly with the staining, but typically little damage is done. If the tree is under severe stress, Bacterial Wetwood can cause wilting, yellowing of the leaf, branch dieback, and bark decay. What are the symptoms and what is it sometimes confused with? Bacterial Wetwood results in light to dark brown and/or black streaks which start at the wound and run down the tree to the trunk. Often, slime bubbles up and runs down the tree. The slimy wood is the by- product of the bacteria building up gases like methane and nitrogen. The slime can be foul smelling, especially during the summer. Bacterial Wetwood is sometimes confused with sap leakage after pruning or damage. Many insects like flies and beetles are attracted to bacterial Wetwood and feed off the slime. They do not cause or spread the disease. How can Bacterial Wetwood be treated? Preventative care is the best way to avoid Bacterial What species are affected? Wetwood. Prune only when needed and follow proper Sycamore, elm, maple, oaks, cottonwood, willow, ash, .pruning techniques. Protect the tree from birch, hickory, beech, cherry, yellow-poplar, fir, redbud, environmental stress such as soil compaction, boxelder, hickory, mulberry, sweet gum, linden, pines, especially during construction.
    [Show full text]
  • TREES of OHIO Field Guide DIVISION of WILDLIFE This Booklet Is Produced by the ODNR Division of Wildlife As a Free Publication
    TREES OF OHIO field guide DIVISION OF WILDLIFE This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any unauthorized reproduction is pro- hibited. All images within this booklet are copyrighted by the ODNR Division of Wildlife and its contributing artists and photographers. For additional INTRODUCTION information, please call 1-800-WILDLIFE (1-800-945-3543). Forests in Ohio are diverse, with 99 different tree spe- cies documented. This field guide covers 69 of the species you are most likely to encounter across the HOW TO USE THIS BOOKLET state. We hope that this guide will help you appre- ciate this incredible part of Ohio’s natural resources. Family name Common name Scientific name Trees are a magnificent living resource. They provide DECIDUOUS FAMILY BEECH shade, beauty, clean air and water, good soil, as well MERICAN BEECH A Fagus grandifolia as shelter and food for wildlife. They also provide us with products we use every day, from firewood, lum- ber, and paper, to food items such as walnuts and maple syrup. The forest products industry generates $26.3 billion in economic activity in Ohio; however, trees contribute to much more than our economic well-being. Known for its spreading canopy and distinctive smooth LEAF: Alternate and simple with coarse serrations on FRUIT OR SEED: Fruits are composed of an outer prickly bark, American beech is a slow-growing tree found their slightly undulating margins, 2-4 inches long. Fall husk that splits open in late summer and early autumn throughout the state.
    [Show full text]
  • Forest Health Manual
    FOREST HEALTH THREATS TO SOUTH CAROLINA’S FORESTS 1 Photo by Southern Forest Insect Work CONTENTS Conference (Bugwood.org) 3STEM, BRANCH & TRUNK DISEASES 9 ROOT DISEASES 13 VASCULAR DISEASES Forest Health: Threats to South Carolina’s Forests, published by the South Carolina Forestry Commission, August 2016 This forest health manual highlights some of the insect pests and diseases you are likely to encounter BARK-BORING INSECTS in South Carolina’s forests, as well as some threats 18 that are on the horizon. The South Carolina Forestry Commission plans to expand on the manual, as well as adapt it into a portable manual that can be consulted in the field. The SCFC insect and disease staff hopes you find this manual helpful and welcomes any suggestions to improve it. 23 WOOD-BORING INSECTS SCFC Insect & Disease staff David Jenkins Forest Health Program Coordinator Office: (803) 896-8838 Cell: (803) 667-1002 [email protected] 27 DEFOLIATING INSECTS Tyler Greiner Southern Pine Beetle Program Coordinator Office: (803) 896-8830 Cell: (803) 542-0171 [email protected] PIERCING INSECTS Kevin Douglas 34 Forest Technician Office: (803) 896-8862 Cell: (803) 667-1087 [email protected] SEEDLING & TWIG INSECTS 2 35 Photo by Robert L. Anderson (USDA Forest DISEASES Service, Bugwood.org) OF STEMS, BRANCHES & TRUNKS and N. ditissima) invade the wounds and create cankers. BEECH BARK DISEASE Spores are produced in orange-red fruiting bodies that form clusters on the bark. The fruiting bodies mature in the fall Overview and release their spores in moist weather to be dispersed by This disease was first reported in Europe in 1849.
    [Show full text]
  • Elmcare.Com - All About Elm Trees and Elm Tree Care
    Elmcare.com - All about elm trees and elm tree care. Home | Elm Care Products | Register your Elm | Forum Last Update 17/12/01 Customized Elm Tree Care Kits Did you know a new wild bird seed has been developed and tested that Custom care kits include actually repels squirrels? How Trees Work specialized and innovative soil Click here to learn about Squirrel Proof Wild Bird treatments designed to promote About Elm Trees Seed. root development and the long- Caring for Your Elm term health and vitality of your Elm Tree Diseases elm. A healthier elm will be better able to fight against Dutch elm disease. Elm Tree Links more Quick Elm Facts Elm Tree Registry Visit TreeHelp.com for all of your tree and shrub Register your elm tree to receive customized care care needs advice...more. Return of the Stately Elm Writer and broadcaster Jamie Swift examines the Canadian city of Winnipeg's struggle to combat Dutch elm disease. Through the work of community groups like the Coalition to Save the Elms and innovative technology, the city has achieved substantial success... more. http://www.elmcare.com/index.htm (1 of 2) [2/27/02 10:29:57 PM] Elmcare.com - All about elm trees and elm tree care. New Treatments for Elms in History Elm Tree Links Dutch Elm Disease? Look at elms in the context of Links to a growing community of Researchers examine new ways to human history. academics, homeowners and fight this devastating disease. professional tree care experts. Elms in Literature Elm Species Quick Elm Facts Read what some of the world's Elms come in many sizes and leading poets and authors have Discover something new and shapes...learn about them all.
    [Show full text]
  • Slime Flux Disease CIS 1205
    University of Idaho Extension CIS 1205 www.extension.uidaho.edu/idahogardens/ Slime Flux Disease at a glance of Trees I Slime flux is caused by several different bacteria and affects many different tree species. Introduction Slime flux, also referred to as bacterial wetwood, is thought to be caused by I Symptoms include vertical several different genera of bacteria that are associated with the problem in streaking and liquid running many different tree species. The most commonly affected trees in Idaho are down the trunk. cottonwood, willow, elm, and poplar, but the disease can also be found in I Infection may occur through apple, ash, beech, birch, cherry, fir, honeylocust, linden, maple, mountain damaged roots and pruning ash, mulberry, oak, sycamore, pine, and plum. wounds. Symptoms I Generally the disease does Affected trees have a streak of discoloration that runs vertically down the not kill the tree. trunk just below the area of infection (figures 1 and 2). At certain times of I Infection near the trunk sur - the year, a liquid may ooze from a wounded area on the trunk. This liquid face may kill the tree rapidly. generally has a fetid odor, and it can be toxic to both the bark and the vege - tation on the ground that lies in its path. I Proper watering helps miti - gate the problem. The exuding liquid is brought about by bacterial growth deep within the trunk of the tree. As the bacteria grow, they deplete oxygen within the I No pesticide controls are trunk, resulting in the production of methane gas.
    [Show full text]
  • Wetwood of Elms
    STATE OF ILLINOIS DwiGHT H. Green, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Frank G. Thompson, Director NATURAL HISTORY SURVEY DIVISION Theodore H. Frison, Chief olume 23 BULLETIN Article 4 Wetwood of Elms J. CEDRIC CARTER Printed by Authority of tlic State of Illinois URBAN A, ILLINOIS August 1945 STATE OF ILLINOIS DwiGHT H. Green, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Frank G. Thompson, Director BOARD OF NATURAL RESOURCES AND CONSERVATION Frank G. Thompson, Chairman William Trelease, D.Sc, LL.D., Biology* Arthur Cutts Willard, D.Eng., LL.D., Ezra J. Kraus, Ph.D., D.Sc, Forestry President of the University of Illinois L. R. HowsoN, B.S.C.E., C.E., Engineering Norman L. Bowen, Ph.D., Geology Roger Adams, Ph.D., D.Sc, Chemistry NATURAL HISTORY SURVEY DIVISION Urbana, Illinois Scientific and Technical Staff Theodore H. Prison, Ph.D., Chief Florence A. Nyberg, Assistant to the Chief Section of Economic Entomology Section of Aquatic Biology George Bennett, Ph.D., Limnologist G. C. Decker, Ph.D., Entomolgist W. D. F. Hansen, Ph.D., Assistant Zoologist M. D. Farrar, Ph.D., Research Entomolo- Paul G. Barnickol, M.A., Ichthyologist gist Limbach, Special Re- H. Bigger, M.S., Associate Entomologist Bruno von M.S., J. search Assistant S. C. Chandler, B.S., Southern Field Ento- mologist Research and Management James W. Apple, M.S., Northern Field Section of Game Entomologist R. E. Yeatter, Ph.D., Game Specialist B. G. Berger, M.A., Assistant Entomologist Wildlife Experimental Areas John M. Wright, B.A., Assistant Ento- Section of mologist (on leave) Arthur S. Hawkins, M.S., Game Tech- H.
    [Show full text]
  • Bacterial Wetwood Disease
    Open Access Journal of Plant Chemistry and Ecophysiology Mini Review Bacterial Wetwood Disease Alizadeh M* Department of Plant Protection, University of Tabriz, Iran Abstract *Corresponding author: Mehrdad Alizadeh, Wetwood, slime flux, oozing slime, or alcoholic flux all are different names Department of Plant Protection, University of Tabriz, of one bacterial disease in which the infected tissues (woods) are frequently Tabriz, 29 bahman Blvd, 51368, Iran discolored or water-soaked. Different from gases are produced by bacteria with fermentation action. These gases produce pressure within the tree and Received: April 19, 2017; Accepted: September 18, this pressure force saps from the trunks and branches through cracks, pruning 2017; Published: September 25, 2017 or lawn mower wounds, and other injured parts. Thereby, slime flux is oozing of sap on the surface of tree. Despite reported different causal agents for this disease, there isn’t specific pathogen for pathogenicity and the information is incomplete. Furthermore, there isn’t any method to control wetwood disease. The main objective of this mini review is brief illustration about wetwood disease characteristics. Keywords: Wetwood; Slime flux; Water-soaked; Soap; Gas Introduction (making anaerobic conditions), methane is produced, the pH of the sap is increased (pH 7 to 8 in infected trees vs. pH 6 in healthy trees), Among the diseases of ornamental trees, wetwood is the one and a high pressure is progressed in the infected-wood (60 psi in of the most severe diseases, epidemic all over the world. It is a infected trees vs. 5-10 psi in healthy trees) [3]. Methane production widespread disease that causes disease in many trees.
    [Show full text]
  • Wetwood in Trees: Forest Service Pacific Northwest a Timber Resource Forest and Range Experiment Station General Technical Problem Report PNW- 112 EDITOR's J.C
    United States Department of Agriculture Wetwood in Trees: Forest Service Pacific Northwest A Timber Resource Forest and Range Experiment Station General Technical Problem Report PNW- 112 EDITOR'S J.C. Ward and W.Y. Pong August 1980 FILE COPY This file was created by scanning the printed publication. Mis-scans identified by the software have been corrected; however, some errors may remain. Abstract Contents Available information on wetwood is pre- Page sented. Wetwood is a type of heartwood which has been internally infused with INTRODUCTION. ............. 1 water. Wetwood is responsible for substantial losses of wood, energy and CHARACTERISTICS OF WETWOOD. ...... 1 production expenditures in the forest prod- ucts industry. CAUSES OF WETWOOD FORMATION ...... 2 The need to evaluate these losses and to WETWOOD IN TREES AND LOGS ....... 4 find ways to eliminate or minimize them is Occurrence. ............. 4 emphasized. Types of Wetwood and Patterns Within the Tree. .......... 8 Because of increased interest in wetwood, excellent opportunities exist in initiating WElWOOD PROPERTIES--A MICROBIAL a comprehensive program of research. Both IMPLICATION .............. 10 short and long-term studies are included in Odor.. ............... 10 the program with the short-term studies Hydrogen Ion Concentration or pH. .. 10 answering the immediate utilization prob- Anaerobiosis. ............ 12 lems created by wetwood and the long-term Strength Properties ......... 12 studies directed at examining the causes of Permeability. ............ 14 wetwood and its control and prevention. ' Chemical Brown Stain Precursors ... 15 TIMBER UTILIZATION AND WOOD PROCESSING PROBLEMS .......... 16 Shake and Frost Cracks. ....... 16 Checking and Collapse ........ 19 Slow Drying Rates and Uneven Metric Equivalents Moisture Content ......... 23 Chemical Brown Stain.
    [Show full text]
  • Bacterial Wetwood and Slime Flux
    Bacterial Wetwood and Slime Flux TREE DOCTOR TIPS Bacterial Wetwood and Slime Flux management: (Erwinia nimipressuralis, Enterobactor sp) There is no anti-bacterial spray or treatment to eliminate description: these chronically active bacteria. Moreover the bacteria are Bacterial wetwood is a bacterial infection that causes a profuse widespread, removing infected branches also will not fix the flow (flux) of sap from trunk wounds or pruning cuts. It is problem. Remove dead or decaying branches, however, to characterized by light or dark-colored vertical streaks of residue help improve overall tree health. Keeping the tree healthy and on tree bark. The infection, also known as slime flux, causes practicing proper pruning techniques and plant health care the leaves of the upper crown to wilt and drop prematurely, as are the best ways to keep the tree from being affected by this well as potentially kill tree branches. A foul-smelling sap that bacteria. is toxic to vegetation and ground cover is often seen bubbling from an infected tree. hosts: Many trees are susceptible to bacterial wetwood infection, including: apple, birch, elm, fir, hemlock, hickory, linden, maple, mulberry, oak, pine, poplar, redbud, sycamore and willow. biology and symptoms: After bacteria enter a tree wound, it can take several years for the condition to develop. These bacteria need very little oxygen to survive and, therefore, inhabit the inner layers of sapwood and outer heartwood. Over time, the infection causes the sap to ferment and produce gases, primarily methane and carbon dioxide. High pressure builds, forcing the sap to flow or flux through bark wounds and cracks.
    [Show full text]