Provided for Non-Commercial Research and Educational Use Only. Not for Reproduction Or Distribution Or Commercial Use

Total Page:16

File Type:pdf, Size:1020Kb

Provided for Non-Commercial Research and Educational Use Only. Not for Reproduction Or Distribution Or Commercial Use Provided for non-commercial research and educational use only. Not for reproduction or distribution or commercial use. This article was originally published by IWA Publishing. IWA Publishing recognizes the retention of the right by the author(s) to photocopy or make single electronic copies of the paper for their own personal use, including for their own classroom use, or the personal use of colleagues, provided the copies are not offered for sale and are not distributed in a systematic way outside of their employing institution. Please note that you are not permitted to post the IWA Publishing PDF version of your paper on your own website or your institution’s website or repository. Please direct any queries regarding use or permissions to [email protected] 1406 © IWA Publishing 2011 Water Science & Technology | 64.7 | 2011 Comparative 16S rRNA gene surveys of granular sludge from three upflow anaerobic bioreactors treating purified terephthalic acid (PTA) wastewater S. D. Perkins, N. B. Scalfone and L. T. Angenent ABSTRACT The microbial communities from three upflow anaerobic bioreactors treating purified terephthalic S. D. Perkins Department of Energy, acid (PTA) wastewater were characterized with 16S ribosomal RNA gene sequencing surveys. Environment and Chemical Engineering, Washington University in St. Louis, Universal bacterial and archaeal primers were used to compare the bioreactor communities to each St. Louis, MO 63130, USA other. A total of 1,733 bacterial sequences and 383 archaeal sequences were characterized. The high Syntrophus Pelotomaculum fi N. B. Scalfone number of spp. and spp. found within these reactors indicates ef cient L. T. Angenent (corresponding author) removal of benzoate and terephthalate. Under anaerobic conditions benzoate can be degraded Biological and Environmental Engineering, Cornell University, through syntrophic associations between these bacteria and hydrogen-scavenging microbes, such as 214 Riley-Robb Hall, Ithaca, NY 14853, Desulfovibrio spp. and hydrogenotrophic methanogens, which remove H2 to force the USA E-mail: [email protected] thermodynamically unfavourable reactions to take place. The authors did not observe a relatively high percentage of hydrogenotrophic methanogens with the archaeal gene survey because of a high acetate flux (acetate is a main component in PTA wastewater and is the main degradation product of terephthalate/benzoate fermentation), and because of the presence of Desulfovibrio spp. (a sulfate reducer that scavenges hydrogen). The high acetate flux also explains the high percentage of acetoclastic methanogens from the genus Methanosaeta among the archaeal sequences. A group of uncultured bacteria (OD1) may be involved in the degradation of p-toluate (4-methyl benzoate), which is a component of PTA wastewater. Key words | anaerobic digestion, methanogens, p-toluate, PTA wastewater, 16S rRNA gene survey, terephthalate INTRODUCTION Purified terephthalic (p-phthalic or 1,4-benzenedicar- which can be accomplished in upflow bioreactors, such as boxylic) acid (PTA) wastewater has been successfully upflow anaerobic sludge blanket (UASB) reactors and its off- treated in anaerobic digesters at chemical companies that shoots, with granular biomass to sustain long residence produce polyethylene terephthalate to manufacture, for times (Kleerebezem et al. ). But even after a sustainable example, plastic bottles for the beverage industry (Qiu period of terephthalate degradation, high concentrations of et al. ; Kleerebezem et al. b, ). This wastewater acetate and benzoate (itself the product of terephthalate contains terephthalate, acetate, benzoate, and p-toluate degradation) can disrupt this (Kleerebezem et al. b). (4-methyl-benzoate) among other chemicals (Zhang et al. These authors also discussed that the same bacterium may ). Even though these chemicals are not inhibiting the be degrading both terephthalate and benzoate. p-Toluate methanogenic biomass at the concentrations observed in can be removed, albeit at even lower rates than terephthal- PTA wastewater, terephthalate and p-toluate are not ate in methanogenic environments, which is why some always degraded in anaerobic upflow bioreactors, while have suggested the use of aerobic post-treatment to remove the biodegradation of acetate and benzoate is relatively p-toluate (Zhang et al. ). In high-rate anaerobic bio- easy (Kleerebezem et al. ). Terephthalate under anaero- reactors, such as UASB reactors or expanded sludge bed bic conditions is degraded at low rates after long lag periods, reactors (EGSBs), the high concentration of granular doi: 10.2166/wst.2011.552 1407 S. D. Perkins et al. | Comparative 16s rRNA gene surveys of granular sludge from anaerobic bioreactors Water Science & Technology | 64.7 | 2011 biomass and long cell residence times may overcome the consists of a tank with an internal diameter of 13 m and slow removal rates of p-toluate. Here, we surveyed three aheightof15m(∼2,000 m3 wet volume). This reactor granular samples from upflow anaerobic bioreactors treating was started ∼4 years prior to sampling with a sCOD PTA wastewater to characterize their microbial commu- removal efficiency of ∼60%. This relatively low sCOD nities with nonculturing methods. We used Sanger removal efficiency indicates that the most difficult to be sequencing to sequence near full-length sequences of 16S removed chemicals, such as p-toluate, were not degraded ribosomal RNA (rRNA) genes that were amplified with bac- in the anaerobic system. terial or archaeal specific PCR primers. Our goal was to compare the communities of the upflow bioreactors with DNA extraction and PCR amplification different operating conditions and performance, especially in regard to the removal of p-toluate. Received samples were immediately stored at –80 W C until further processing. Granules were crushed using a sterile spa- tula (Corning 3003, Corning, NY) before 0.5 ml of sample METHODS was submitted to a bead-beating and phenol:chloroform extraction protocol. The 16S rRNA genes from bacteria Granular samples were amplified with a 30-cycle PCR (initial 2 min denaturing step at 94 W C, followed by 30 cycles at 92 W C for 30 s 45 W C We surveyed granular samples from two lab-scale UASB for 90 s, 72 W C for 90 s, and a final 72 W C extension for reactors (samples U1 and U2, received 17 June 2008); 15 min). The 50-μl solution contained 1.25 units of GoTaq and from a full-scale expanded granular sludge bed (Promega Corp, Madison, WI), 0.4 pmol/μl forward and (EGSB)-Biobed reactor (E1, received 5 August 2008). The reverse primers (8F-50 AGAGTTTGATCCTGGCTCAG-30; UASB reactors had an internal diameter of 0.10 m with a 1391R-50 GACGGGCGGTGWGTRCA-30), 0.5 mmol/L height of 1.2 m (∼9 L wet volume). U1 was operated with MgCl2, 0.2 mmol/L dNTPs, 0.8 mg/mL BSA, and 2-μlof an upflow velocity of 1.9 m/h, a temperature of 38 W C, template. Archaeal 16S rRNA genes were amplified with a and an average pH of 7.2 during a three-month period 30-cycle PCR (initial 2 min denaturing step at 94 W C, followed before sampling. This reactor had been operating for a by 30 cycles at 94 W C for 60 s, 55 W C for 60 s, 72 W C for 60 s, and period of 15 months after inoculation with granular a final 72 W C extension for 10 min). A similar PCR solution sludge from upflow anaerobic bioreactors located at a brew- was used with different primers: 21F-50 AAGGAGGTGATC ery (70% v/v) and a papermill (8%), and from U2 (22%). A CAGCC-30; 1492R-50 GGTTACCTTGTTACGACTT-30. Con- synthetic PTA wastewater was fed to U1 at a loading rate of trol positive and negative reactions were included with 42.6 g COD/L/day, a hydraulic retention time (HRT) of 14 each reaction set. h, and a soluble COD (sCOD) removal efficiency of 98.7%. U2 was operated with an upflow velocity of 1.7 m/h, a Cloning and sequence analysis temperature of 38 W C, and an average pH of 7.2 during a three-month period. This reactor had been operating for PCR products were cleaned and concentrated (Montage a period of 21 months after inoculation with granular PCR cleaning kit, UFC7PCR50, Millipore, Billerica, MA) sludge from upflow anaerobic bioreactors at two breweries and sent to the Genome Sequencing Center, Washington and a petrochemical company. A synthetic PTA wastewater University School of Medicine in St. Louis, for cloning, puri- was fed to U2 at a loading rate of 27.4 g COD/L/day, a fication, and Sanger sequencing on an ABI 3730 capillary HRT of 12 h, and a sCOD removal efficiency of 99.0%. sequencer (Applied Biosystems, Foster City, CA). Three The difference between U1 and U2 was the composition independent PCR amplicon materials were sequenced per of the PTA wastewater, which mimicked two different pro- sample for bacteria and one for Archaea. 16S rRNA gene cessing plants. The high sCOD removal efficiencies show sequences were edited and assembled into consensus that almost all chemicals (including p-toluate) in this type sequences using PHRED and PHRAP aided by XplorSeq of wastewater were completely removed under methano- (Frank ). Bases with a PHRAP quality score <20 were genic conditions and converted to biogas, and that the trimmed from the dataset before being aligned using the intermediate volatile fatty acids were maintained at very NAST online tool (DeSantis et al. b). Chimeras were low concentrations in the effluent. The full-scale E1 detected and removed using Bellerophon (Huber et al. system is located at a petrochemical industrial site and ). Nonchimeric sequences were compared to the 1408 S. D. Perkins et al. | Comparative 16s rRNA gene surveys of granular sludge from anaerobic bioreactors Water Science & Technology | 64.7 | 2011 greengenes public database and imported into ARB Nucleotide sequence accession numbers (Ludwig et al. ). A pair-wise identity of 97% or greater was used to bin sequences into ‘species’-level operational Near full-length bacterial 16S rRNA gene sequences were taxonomic units (OTUs).
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide
    microorganisms Article Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide Kelly J. Hidalgo 1,2,* , Isabel N. Sierra-Garcia 3 , German Zafra 4 and Valéria M. de Oliveira 1 1 Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas–UNICAMP, Av. Alexandre Cazellato 999, 13148-218 Paulínia, Brazil; [email protected] 2 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, 13083-862 Campinas, Brazil 3 Biology Department & CESAM, University of Aveiro, Aveiro, Portugal, Campus de Santiago, Avenida João Jacinto de Magalhães, 3810-193 Aveiro, Portugal; [email protected] 4 Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, Cra 27 calle 9, 680002 Bucaramanga, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +55-19981721510 Abstract: Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301.2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 metagenome-assembled genomes (MAGs) of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied.
    [Show full text]
  • Genomic Signatures of Predatory Bacteria
    The ISME Journal (2013) 7, 756–769 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej ORIGINAL ARTICLE By their genes ye shall know them: genomic signatures of predatory bacteria Zohar Pasternak1, Shmuel Pietrokovski2, Or Rotem1, Uri Gophna3, Mor N Lurie-Weinberger3 and Edouard Jurkevitch1 1Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel; 2Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel and 3Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel Predatory bacteria are taxonomically disparate, exhibit diverse predatory strategies and are widely distributed in varied environments. To date, their predatory phenotypes cannot be discerned in genome sequence data thereby limiting our understanding of bacterial predation, and of its impact in nature. Here, we define the ‘predatome,’ that is, sets of protein families that reflect the phenotypes of predatory bacteria. The proteomes of all sequenced 11 predatory bacteria, including two de novo sequenced genomes, and 19 non-predatory bacteria from across the phylogenetic and ecological landscapes were compared. Protein families discriminating between the two groups were identified and quantified, demonstrating that differences in the proteomes of predatory and non-predatory bacteria are large and significant. This analysis allows predictions to be made, as we show by confirming from genome data an over-looked bacterial predator. The predatome exhibits deficiencies in riboflavin and amino acids biosynthesis, suggesting that predators obtain them from their prey. In contrast, these genomes are highly enriched in adhesins, proteases and particular metabolic proteins, used for binding to, processing and consuming prey, respectively.
    [Show full text]
  • Assessment of Bacterial Species Present in Pasig River and Marikina River Soil Using 16S Rdna Phylogenetic Analysis
    International Journal of Philippine Science and Technology, Vol. 08, No. 2, 2015 !73 SHORT COMMUNICATION Assessment of bacterial species present in Pasig River and Marikina River soil using 16S rDNA phylogenetic analysis Maria Constancia O. Carrillo*, Paul Kenny L. Ko, Arvin S. Marasigan, and Arlou Kristina J. Angeles Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Padre Faura St., Ermita, Manila Philippines 1000 Abstract—The Pasig River system, which includes its major tributaries, the Marikina, Taguig-Pateros, and San Juan Rivers, is the most important river system in Metro Manila. It is known to be heavily polluted due to the dumping of domestic, industrial and solid wastes. Identification of microbial species present in the riverbed may be used to assess water and soil quality, and can help in assessing the river’s capability of supporting other flora and fauna. In this study, 16S rRNA gene or 16S rDNA sequences obtained from community bacterial DNA extracted from riverbed soil of Napindan (an upstream site along the Pasig River) and Vargas (which is along the Marikina River) were used to obtain a snapshot of the types of bacteria populating these sites. The 16S rDNA sequences of amplicons produced in PCR with total DNA extracted from soil samples as template were used to build clone libraries. Four positive clones were identified from each site and were sequenced. BLAST analysis revealed that none of the contiguous sequences obtained had complete sequence similarity to any known cultured bacterial species. Using the classification output of the Ribosomal Database Project (RDP) Classifier and DECIPHER programs, 16S rDNA sequences of closely related species were collated and used to construct a neighbor-joining phylogenetic tree using MEGA6.
    [Show full text]
  • Research Article Review Jmb
    J. Microbiol. Biotechnol. (2017), 27(0), 1–7 https://doi.org/10.4014/jmb.1707.07027 Research Article Review jmb Methods 20,546 sequences and all the archaeal datasets were normalized to 21,154 sequences by the “sub.sample” Bioinformatics Analysis command. The filtered sequences were classified against The raw read1 and read2 datasets was demultiplexed by the SILVA 16S reference database (Release 119) using a trimming the barcode sequences with no more than 1 naïve Bayesian classifier built in Mothur with an 80% mismatch. Then the sequences with the same ID were confidence score [5]. Sequences passing through all the picked from the remaining read1 and read2 datasets by a filtration were also clustered into OTUs at 6% dissimilarity self-written python script. Bases with average quality score level. Then a “classify.otu” function was utilized to assign lower than 25 over a 25 bases sliding window were the phylogenetic information to each OTU. excluded and sequences which contained any ambiguous base or had a final length shorter than 200 bases were Reference abandoned using Sickle [1]. The paired reads were assembled into contigs and any contigs with an ambiguous 1. Joshi NA, FJ. 2011. Sickle: A sliding-window, adaptive, base, more than 8 homopolymeric bases and fewer than 10 quality-based trimming tool for FastQ files (Version 1.33) bp overlaps were culled. After that, the contigs were [Software]. further trimmed to get rid of the contigs that have more 2. Schloss PD. 2010. The Effects of Alignment Quality, than 1 forward primer mismatch and 2 reverse primer Distance Calculation Method, Sequence Filtering, and Region on the Analysis of 16S rRNA Gene-Based Studies.
    [Show full text]
  • Syntrophic Butyrate and Propionate Oxidation Processes 491
    Environmental Microbiology Reports (2010) 2(4), 489–499 doi:10.1111/j.1758-2229.2010.00147.x Minireview Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanismsemi4_147 489..499 Nicolai Müller,1† Petra Worm,2† Bernhard Schink,1* a cytoplasmic fumarate reductase to drive energy- Alfons J. M. Stams2 and Caroline M. Plugge2 dependent succinate oxidation. Furthermore, we 1Faculty for Biology, University of Konstanz, D-78457 propose that homologues of the Thermotoga mar- Konstanz, Germany. itima bifurcating [FeFe]-hydrogenase are involved 2Laboratory of Microbiology, Wageningen University, in NADH oxidation by S. wolfei and S. fumaroxidans Dreijenplein 10, 6703 HB Wageningen, the Netherlands. to form hydrogen. Summary Introduction In anoxic environments such as swamps, rice fields In anoxic environments such as swamps, rice paddy fields and sludge digestors, syntrophic microbial communi- and intestines of higher animals, methanogenic commu- ties are important for decomposition of organic nities are important for decomposition of organic matter to matter to CO2 and CH4. The most difficult step is the CO2 and CH4 (Schink and Stams, 2006; Mcinerney et al., fermentative degradation of short-chain fatty acids 2008; Stams and Plugge, 2009). Moreover, they are the such as propionate and butyrate. Conversion of these key biocatalysts in anaerobic bioreactors that are used metabolites to acetate, CO2, formate and hydrogen is worldwide to treat industrial wastewaters and solid endergonic under standard conditions and occurs wastes. Different types of anaerobes have specified only if methanogens keep the concentrations of these metabolic functions in the degradation pathway and intermediate products low. Butyrate and propionate depend on metabolite transfer which is called syntrophy degradation pathways include oxidation steps of (Schink and Stams, 2006).
    [Show full text]
  • Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion Propionic Acid Degradation Propionic WIREŁŁO
    KARLSRUHERBERICHTE ZUR INGENIEURBIOLOGIE . MONIKA FELCHNER-Z WIREŁŁO Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion Propionic Acid Degradation Propionic WIREŁŁO . MONIKA FELCHNER-Z 49 . Monika Felchner-Z wirełło Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion Karlsruher Berichte zur Ingenieurbiologie Band 49 Institut für Ingenieurbiologie und Biotechnologie des Abwassers Karlsruher Institut für Technologie Herausgeber: Prof. Dr. rer. nat. J. Winter Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion by . Monika Felchner-Z wirełło Dissertation, Karlsruher Institut für Technologie (KIT) Fakultät für Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften Tag der mündlichen Prüfung: 08. Februar 2013 Referenten: Prof. Dr. rer. nat. habil. Josef Winter Korreferenten: Prof. Dr.-Ing. E.h. Hermann H. Hahn, Ph.D. Prof. Dr hab. in˙z . Jacek Namie´snik Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover – is licensed under the Creative Commons Attribution-Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ The cover page is licensed under the Creative Commons Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): http://creativecommons.org/licenses/by-nd/3.0/de/ Print on Demand 2014 ISSN 1614-5267 ISBN 978-3-7315-0159-6 DOI: 10.5445/KSP/1000037825 Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS von der Fakult¨at f¨ur Bauingenieur-, Geo- und Umweltwissenschaften des Karlsruher Instituts f¨ur Technologie (KIT) genehmigte DISSERTATION von Dipl.-Ing.
    [Show full text]
  • 'Candidatus Desulfonatronobulbus Propionicus': a First Haloalkaliphilic
    Delft University of Technology ‘Candidatus Desulfonatronobulbus propionicus’ a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes Sorokin, D. Y.; Chernyh, N. A. DOI 10.1007/s00792-016-0881-3 Publication date 2016 Document Version Accepted author manuscript Published in Extremophiles: life under extreme conditions Citation (APA) Sorokin, D. Y., & Chernyh, N. A. (2016). ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles: life under extreme conditions, 20(6), 895-901. https://doi.org/10.1007/s00792-016-0881-3 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Extremophiles DOI 10.1007/s00792-016-0881-3 ORIGINAL PAPER ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes D. Y. Sorokin1,2 · N. A. Chernyh1 Received: 23 August 2016 / Accepted: 4 October 2016 © Springer Japan 2016 Abstract Propionate can be directly oxidized anaerobi- from its members at the genus level.
    [Show full text]
  • Microbial Analysis and Enrichment of Anaerobic Phenol and P-Cresol Degrading Consortia with Addition of AQDS
    © 2021 The Authors Water Science & Technology Vol 84 No 3, 683 doi: 10.2166/wst.2021.264 Microbial analysis and enrichment of anaerobic phenol and p-cresol degrading consortia with addition of AQDS Mingmei Chia, Xiaoli Sub, Xiaojiao Suna, Yan Xua, Xiaoxia Wanga and Yanling Qiua,* a School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China b Department of hematology, Xijing Hospital, Air Force Medical University, Xi’an 710032, China *Corresponding author. E-mail: [email protected] ABSTRACT Quinones and humus are ubiquitous in the biosphere and play an important role in the anaerobic biodegradation and biotransformation of organic acids, poisonous compounds as well as inorganic compounds. The impact of humic model compound, anthraquinone-2, 6-disulfonate (AQDS) on anaerobic phenol and p-cresol degradation were studied. Four methanogenic AQDS-free phenol and p-cresol enrich- ments and two phenol-AQDS enrichments were obtained using two sludges with potential biodegradability of phenol and cresol isomers as inoculum. 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization revealed that syntrophic aromatic compound degrading bacterium Syntrophorhabdus aromaticivorans was dominant in four AQDS-free enrichments, whereas phenol degrading Crypta- naerobacter phenolicus was dominant in two phenol-AQDS enrichments. Neither co-culture of S. aromaticivorans with Methanospirillum hungatei nor two phenol-AQDS enrichments could metabolize phenol using AQDS as the terminal electron acceptor. Further degradation experiments suggested that C. phenolicus related microbes in two phenol-AQDS enrichments were responsible for the conversion of phenol to benzoate, and benzoate was further degraded by benzoate degraders of Syntrophus aciditrophicus or Sporotomaculum syntrophicum to acetate.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • 479683V2.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/479683; this version posted July 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Syntrophus Conductive Pili Demonstrate that Common Hydrogen-Donating Syntrophs can 2 have a Direct Electron Transfer Option 3 4 David J.F. Walker1,2, Kelly P. Nevin1, Dawn E. Holmes1,3, Amelia-Elena Rotaru1,4, Joy E. 5 Ward1, Trevor L. Woodard1, Jiaxin Zhu5, Toshiyuki Ueki1, Stephen S. Nonnenmann2,5, Michael 6 J. McInerney6, and Derek R. Lovley1,2* 7 8 1Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA 9 2Institute for Applied Life Sciences, University of Massachusetts-Amherst 10 3Department of Physical and Biological Science, Western New England University, Springfield, 11 MA, USA 12 4Department of Biology, University of Southern Denmark, Odense, Denmark 13 5Department of Mechanical and Industrial Engineering, University of Massachusetts-Amherst 14 6Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA 15 *Corresponding author: [email protected] 16 bioRxiv preprint doi: https://doi.org/10.1101/479683; this version posted July 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 17 Abstract 18 Syntrophic interspecies electron exchange is essential for the stable functioning of diverse 19 anaerobic microbial communities. Hydrogen/formate interspecies electron transfer (HFIT), in 20 which H2 and/or formate function as diffusible electron carriers, has been considered to be the 21 primary mechanism for electron sharing because most common syntrophs were thought to lack 22 biochemical components, such as electrically conductive pili (e-pili), necessary for direct 23 interspecies electron transfer (DIET).
    [Show full text]
  • Phylogenetic Profile of Copper Homeostasis in Deltaproteobacteria
    Phylogenetic Profile of Copper Homeostasis in Deltaproteobacteria A Major Qualifying Report Submitted to the Faculty of Worcester Polytechnic Institute In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science By: __________________________ Courtney McCann Date Approved: _______________________ Professor José M. Argüello Biochemistry WPI Project Advisor 1 Abstract Copper homeostasis is achieved in bacteria through a combination of copper chaperones and transporting and chelating proteins. Bioinformatic analyses were used to identify which of these proteins are present in Deltaproteobacteria. The genetic environment of the bacteria is affected by its lifestyle, as those that live in higher concentrations of copper have more of these proteins. Two major transport proteins, CopA and CusC, were found to cluster together frequently in the genomes and appear integral to copper homeostasis in Deltaproteobacteria. 2 Acknowledgements I would like to thank Professor José Argüello for giving me the opportunity to work in his lab and do some incredible research with some equally incredible scientists. I need to give all of my thanks to my supervisor, Dr. Teresita Padilla-Benavides, for having me as her student and teaching me not only lab techniques, but also how to be scientist. I would also like to thank Dr. Georgina Hernández-Montes and Dr. Brenda Valderrama from the Insituto de Biotecnología at Universidad Nacional Autónoma de México (IBT-UNAM), Campus Morelos for hosting me and giving me the opportunity to work in their lab. I would like to thank Sarju Patel, Evren Kocabas, and Jessica Collins, whom I’ve worked alongside in the lab. I owe so much to these people, and their support and guidance has and will be invaluable to me as I move forward in my education and career.
    [Show full text]