bioRxiv preprint doi: https://doi.org/10.1101/479683; this version posted July 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Syntrophus Conductive Pili Demonstrate that Common Hydrogen-Donating Syntrophs can 2 have a Direct Electron Transfer Option 3 4 David J.F. Walker1,2, Kelly P. Nevin1, Dawn E. Holmes1,3, Amelia-Elena Rotaru1,4, Joy E. 5 Ward1, Trevor L. Woodard1, Jiaxin Zhu5, Toshiyuki Ueki1, Stephen S. Nonnenmann2,5, Michael 6 J. McInerney6, and Derek R. Lovley1,2* 7 8 1Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA 9 2Institute for Applied Life Sciences, University of Massachusetts-Amherst 10 3Department of Physical and Biological Science, Western New England University, Springfield, 11 MA, USA 12 4Department of Biology, University of Southern Denmark, Odense, Denmark 13 5Department of Mechanical and Industrial Engineering, University of Massachusetts-Amherst 14 6Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA 15 *Corresponding author:
[email protected] 16 bioRxiv preprint doi: https://doi.org/10.1101/479683; this version posted July 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 17 Abstract 18 Syntrophic interspecies electron exchange is essential for the stable functioning of diverse 19 anaerobic microbial communities. Hydrogen/formate interspecies electron transfer (HFIT), in 20 which H2 and/or formate function as diffusible electron carriers, has been considered to be the 21 primary mechanism for electron sharing because most common syntrophs were thought to lack 22 biochemical components, such as electrically conductive pili (e-pili), necessary for direct 23 interspecies electron transfer (DIET).