Doctoral Dissertation Template

Total Page:16

File Type:pdf, Size:1020Kb

Doctoral Dissertation Template UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE ENZYME SYSTEMS INVOLVED IN INTERSPECIES HYDROGEN AND FORMATE TRANSFER BETWEEN SYNTROPHIC FATTY AND AROMATIC ACID DEGRADERS AND METHANOSPIRILLUM HUNGATEI A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By BRYAN REGIS CRABLE Norman, Oklahoma 2013 ENZYME SYSTEMS INVOLVED IN INTERSPECIES HYDROGEN AND FORMATE TRANSFER BETWEEN SYNTROPHIC FATTY AND AROMATIC ACID DEGRADERS AND METHANOSPIRILLUM HUNGATEI A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Michael J. McInerney, Chair ______________________________ Dr. Joseph M. Suflita ______________________________ Dr. Ralph S. Tanner ______________________________ Dr. Elizabeth A. Karr ______________________________ Dr. Michael R. Markham © Copyright by BRYAN REGIS CRABLE 2013 All Rights Reserved. I dedicate this work to my parents, Larry and Kathy Crable. Thank you for all your support and all that you have done for me. I also dedicate this work to my sister, Laura Crable. Thank you for your support and encouragement. Acknowledgements First, I need to acknowledge the intellectual and academic support of my committee chair, Dr. Michael McInerney. I also need to acknowledge two outstanding colleagues from Dr. McInerney’s group – both Neil Wofford and Dr. Jessica Sieber provided valuable technical support, training and intellectual input over the last several years. Additionally, my colleagues Dr. Housna Mouttaki, Kimberly James, Huynh Le and Dr. Johannes Kung have helped immensely with my research. Outside of Dr. McInerney’s group, I have received valuable advice and counseling from the members of my committee, Dr. Joseph Suflita, Dr. Ralph Tanner and Dr. Elizabeth Karr. Dr. Phil Klebba served as my external committee member until 2012 and provided valuable input into this research. I also thank Dr. Michael Markham, my current external committee member, for his valuable input and agreeing to join my committee so late in my program. I have also received valuable support from great colleagues here at the University of Oklahoma; among these are Dr. Chris Lyles and his wife, Laura, Chris Marks and Dr. Victoria Parisi. My colleagues at the University of California – Los Angeles, Dr. Robert Gunsalus, Dr. Lars Rohlin, Dr. Rachel Loo and Dr. Loo’s doctoral student Hong Nguyen have been instrumental in proteomic analysis. At Oak Ridge National Laboratory, Dr. Gregory Hurst was essential for completing the proteomic analysis of M. hungatei. Also, a special thank-you is due to Dr. Lisa Alvarez-Cohen and her student Xinwei Mao at the University of California – Berkley for their collaborative efforts on S. wolfei. iv I need to also thank Dr. Alfons Stams and Dr. Caroline Plugge of the University of Wageningen, the Netherlands, for allowing me to work in their group for a year. This experience was a high-point of my doctoral work, and several colleagues from Wageningen and beyond need to be thanked. Ruud Heshoff, Peer Timmers, Michael Visser and Marjet Oosterkamp all provided valuable intellectual input during my time at Wageningen. Shawn Scarlett, Dennis Rütze, Jeroen Roskam and Jeanette Smits all provided valuable assistance in navigating the complexities (and oddities) of Dutch society for a year. I thank all of them for a year of gezelligheid. Dr. Danielle Johnston, Dr. Bruce Bethke and Dr. John Stolz are all colleagues from past institutions who have continued to provide support and encouragement throughout my doctoral work. Also, I thank friends and relatives (too many to name) for all the support and encouragement over the last six years. Last, and most importantly, I need to thank my family – it’s been a long six years away from home. My parents, Larry and Kathy Crable, and sister, Laura Crable, have provided endless love, support and encouragement. I also need to acknowledge my cousin and fellow budding scientist, Jillian D’Amico – watching your intellectual growth has given me a valuable source of encouragement to keep moving forward. v Table of Contents Acknowledgements ......................................................................................................... iv List of Tables ................................................................................................................. viii List of Figures ................................................................................................................... x Preface……………………………………………………………….…………………xii Abstract ........................................................................................................................... xv Chapter 1: Summary ........................................................................................................ 1 Chapter 2: Membrane complexes formed by Syntrophomonas wolfei during axenic and syntrophic growth ............................................................................................... 10 Abstract ..................................................................................................................... 11 Introduction .............................................................................................................. 13 Materials and Methods ............................................................................................. 17 Results ……………………………………………………………………….……..30 Discussion ................................................................................................................. 58 Chapter 3: Membrane protein complexes of the syntrophic fatty and aromatic acid- oxidizing bacterium Syntrophus aciditrophicus ................................................. 67 Abstract ..................................................................................................................... 68 Introduction .............................................................................................................. 70 Materials and Methods ............................................................................................. 73 Results ……………………………………………………………….……………..84 Discussion ............................................................................................................... 118 Chapter 4: The genome and proteome of Methanospirillum hungatei strain JF1: new insights into syntrophic metabolism and biological methane production ........ 123 vi Abstract ................................................................................................................... 124 Introduction ............................................................................................................ 125 Materials and Methods ........................................................................................... 128 Results…… ............................................................................................................ 134 Discussion………………………………………………………………………....196 References .................................................................................................................... 202 vii List of Tables Table 1: Thermodynamics of butyrate, benzoate and propionate oxidation. .................. 3 Table 2: Primers for quantitative RT-PCR analysis of hydIIABC, etfAB, Swol_0698, fdhA-1, fdhA-2 and fdhA-4 in S. wolfei ........................................................................... 29 Table 3: Peptides detected from non-denaturing blue-native PAGE separation of solubilized S. wolfei membranes.. .................................................................................. 35 Table 4: Peptides detected from membrane complex testing positive for hydrogenase activity in membrane fractions of S. wolfei grown on butyrate ...................................... 51 Table 5: Peptides detected from non-denaturing blue-native PAGE separation of solubilized S. aciditrophicus membranes. ...................................................................... 88 Table 6: Specific activities of hydrogenase, formate dehydrogenase and Rnf- and Nqo- like activity in S. aciditrophicus membrane fractions.. ................................................ 103 Table 7: Specific activities of hydrogenase, formate dehydrogenase and Rnf-like activity in S. aciditrophicus membrane fractions.. ....................................................... 106 Table 8: Peptides detected from denaturing SDS-PAGE separation of S. aciditrophicus membrane fractions partially purified for Rnf-like activity. ........................................ 113 Table 9: General features of M. hungatei strain JF1 genome ...................................... 135 Table 10: Amino acid incorporation in M. hungatei strain JF1 .................................. 137 Table 11: Distribution of proteins detected from M. hungatei by functional category 147 Table 12: Core methanogenesis proteins detected from M. hungatei. ........................ 154 Table 13: Core methanogenesis proteins detected from M. hungatei only during growth butyrate-oxidizing coculture ......................................................................................... 159 viii Table 14: Peptides detected from M. hungatei showing a greater than a Log2 change of 2 increase in relative abundance in cultures from butyrate-oxidizing conditions ........ 161 Table 15: Hydrogenase proteins detected from M. hungatei ...................................... 164 Table 16: Formate dehydrogenase proteins detected from M. hungatei ..................... 168 Table 17: ATP
Recommended publications
  • Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
    microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.
    [Show full text]
  • Rewiring Hydrogenase-Dependent Redox Circuits in Cyanobacteria
    Rewiring hydrogenase-dependent redox circuits in cyanobacteria Daniel C. Ducata,b, Gairik Sachdevac, and Pamela A. Silvera,b,1 aDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115; bWyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115; and cSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 Edited by David Baker, University of Washington, Seattle, WA, and approved January 26, 2011 (received for review October 26, 2010) þ þ − ↔ Hydrogenases catalyze the reversible reaction 2H 2e H2 The hydrogen production capacity of a variety of cyanobacter- with an equilibrium constant that is dependent on the reducing ial and algal species has been surveyed (8–10), and the highest potential of electrons carried by their redox partner. To examine rates of hydrogen evolution are typically observed in algae the possibility of increasing the photobiological production of and some nitrogen-fixing cyanobacteria. Algal species frequently hydrogen within cyanobacterial cultures, we expressed the [FeFe] possess [FeFe]-hydrogenases that accept low-potential electrons hydrogenase, HydA, from Clostridium acetobutylicum in the non- from ferredoxins that are, in turn, linked to the light reactions of nitrogen-fixing cyanobacterium Synechococcus elongatus sp. 7942. photosynthesis (11). Nitrogen-fixing microorganisms, including We demonstrate that the heterologously expressed hydrogenase is many cyanobacteria (12), produce hydrogen gas as a byproduct functional in vitro and in
    [Show full text]
  • Assessment of Bacterial Species Present in Pasig River and Marikina River Soil Using 16S Rdna Phylogenetic Analysis
    International Journal of Philippine Science and Technology, Vol. 08, No. 2, 2015 !73 SHORT COMMUNICATION Assessment of bacterial species present in Pasig River and Marikina River soil using 16S rDNA phylogenetic analysis Maria Constancia O. Carrillo*, Paul Kenny L. Ko, Arvin S. Marasigan, and Arlou Kristina J. Angeles Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Padre Faura St., Ermita, Manila Philippines 1000 Abstract—The Pasig River system, which includes its major tributaries, the Marikina, Taguig-Pateros, and San Juan Rivers, is the most important river system in Metro Manila. It is known to be heavily polluted due to the dumping of domestic, industrial and solid wastes. Identification of microbial species present in the riverbed may be used to assess water and soil quality, and can help in assessing the river’s capability of supporting other flora and fauna. In this study, 16S rRNA gene or 16S rDNA sequences obtained from community bacterial DNA extracted from riverbed soil of Napindan (an upstream site along the Pasig River) and Vargas (which is along the Marikina River) were used to obtain a snapshot of the types of bacteria populating these sites. The 16S rDNA sequences of amplicons produced in PCR with total DNA extracted from soil samples as template were used to build clone libraries. Four positive clones were identified from each site and were sequenced. BLAST analysis revealed that none of the contiguous sequences obtained had complete sequence similarity to any known cultured bacterial species. Using the classification output of the Ribosomal Database Project (RDP) Classifier and DECIPHER programs, 16S rDNA sequences of closely related species were collated and used to construct a neighbor-joining phylogenetic tree using MEGA6.
    [Show full text]
  • The Genetic Basis of Energy Conservation in the Sulfate-Reducing Bacterium Desulfovibrio Alaskensis G20
    Lawrence Berkeley National Laboratory Recent Work Title The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. Permalink https://escholarship.org/uc/item/7b44z00f Journal Frontiers in microbiology, 5(OCT) ISSN 1664-302X Authors Price, Morgan N Ray, Jayashree Wetmore, Kelly M et al. Publication Date 2014 DOI 10.3389/fmicb.2014.00577 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH ARTICLE published: 31 October 2014 doi: 10.3389/fmicb.2014.00577 The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20 Morgan N. Price 1*, Jayashree Ray 1, Kelly M. Wetmore 1, Jennifer V. Kuehl 1, Stefan Bauer 2, Adam M. Deutschbauer 1 and Adam P.Arkin 1,2,3* 1 Physical Biosciences Division, Lawrence Berkeley Lab, Berkeley, CA, USA 2 Energy Biosciences Institute, University of California, Berkeley, CA, USA 3 Department of Bioengineering, University of California, Berkeley, CA, USA Edited by: Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but Thomas E. Hanson, University of it remains unclear how reducing sulfate yields energy. To determine the genetic basis Delaware, USA of energy conservation, we measured the fitness of thousands of pooled mutants of Reviewed by: Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors Caroline M. Plugge, Wageningen University, Netherlands and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is Ulrike Kappler, University of required whenever substrate-level phosphorylation is not possible. The uncharacterized Queensland, Australia complex Hdr/flox-1 (Dde_1207:13) is sometimes important alongside Rnf and may *Correspondence: perform an electron bifurcation to generate more reduced ferredoxin from NADH Morgan N.
    [Show full text]
  • Tree Scale: 1 D Bacteria P Desulfobacterota C Jdfr-97 O Jdfr-97 F Jdfr-97 G Jdfr-97 S Jdfr-97 Sp002010915 WGS ID MTPG01
    d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermodesulfobacterium s Thermodesulfobacterium commune WGS ID JQLF01 d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermosulfurimonas s Thermosulfurimonas dismutans WGS ID LWLG01 d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f DG-60 g DG-60 s DG-60 sp001304365 WGS ID LJNA01 ID WGS sp001304365 DG-60 s DG-60 g DG-60 f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f Desulfofervidaceae g Desulfofervidus s Desulfofervidus auxilii RS GCF 001577525 1 001577525 GCF RS auxilii Desulfofervidus s Desulfofervidus g Desulfofervidaceae f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfatatoraceae g Thermodesulfatator s Thermodesulfatator atlanticus WGS ID ATXH01 d Bacteria p Desulfobacterota c Desulfobacteria o Desulfatiglandales f NaphS2 g 4484-190-2 s 4484-190-2 sp002050025 WGS ID MVDB01 ID WGS sp002050025 4484-190-2 s 4484-190-2 g NaphS2 f Desulfatiglandales o Desulfobacteria c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g QOAM01 s QOAM01 sp003978075 WGS ID QOAM01 d Bacteria p Desulfobacterota c BSN033 o UBA8473 f UBA8473 g UBA8473 s UBA8473 sp002782605 WGS
    [Show full text]
  • Research Article Review Jmb
    J. Microbiol. Biotechnol. (2017), 27(0), 1–7 https://doi.org/10.4014/jmb.1707.07027 Research Article Review jmb Methods 20,546 sequences and all the archaeal datasets were normalized to 21,154 sequences by the “sub.sample” Bioinformatics Analysis command. The filtered sequences were classified against The raw read1 and read2 datasets was demultiplexed by the SILVA 16S reference database (Release 119) using a trimming the barcode sequences with no more than 1 naïve Bayesian classifier built in Mothur with an 80% mismatch. Then the sequences with the same ID were confidence score [5]. Sequences passing through all the picked from the remaining read1 and read2 datasets by a filtration were also clustered into OTUs at 6% dissimilarity self-written python script. Bases with average quality score level. Then a “classify.otu” function was utilized to assign lower than 25 over a 25 bases sliding window were the phylogenetic information to each OTU. excluded and sequences which contained any ambiguous base or had a final length shorter than 200 bases were Reference abandoned using Sickle [1]. The paired reads were assembled into contigs and any contigs with an ambiguous 1. Joshi NA, FJ. 2011. Sickle: A sliding-window, adaptive, base, more than 8 homopolymeric bases and fewer than 10 quality-based trimming tool for FastQ files (Version 1.33) bp overlaps were culled. After that, the contigs were [Software]. further trimmed to get rid of the contigs that have more 2. Schloss PD. 2010. The Effects of Alignment Quality, than 1 forward primer mismatch and 2 reverse primer Distance Calculation Method, Sequence Filtering, and Region on the Analysis of 16S rRNA Gene-Based Studies.
    [Show full text]
  • Syntrophic Butyrate and Propionate Oxidation Processes 491
    Environmental Microbiology Reports (2010) 2(4), 489–499 doi:10.1111/j.1758-2229.2010.00147.x Minireview Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanismsemi4_147 489..499 Nicolai Müller,1† Petra Worm,2† Bernhard Schink,1* a cytoplasmic fumarate reductase to drive energy- Alfons J. M. Stams2 and Caroline M. Plugge2 dependent succinate oxidation. Furthermore, we 1Faculty for Biology, University of Konstanz, D-78457 propose that homologues of the Thermotoga mar- Konstanz, Germany. itima bifurcating [FeFe]-hydrogenase are involved 2Laboratory of Microbiology, Wageningen University, in NADH oxidation by S. wolfei and S. fumaroxidans Dreijenplein 10, 6703 HB Wageningen, the Netherlands. to form hydrogen. Summary Introduction In anoxic environments such as swamps, rice fields In anoxic environments such as swamps, rice paddy fields and sludge digestors, syntrophic microbial communi- and intestines of higher animals, methanogenic commu- ties are important for decomposition of organic nities are important for decomposition of organic matter to matter to CO2 and CH4. The most difficult step is the CO2 and CH4 (Schink and Stams, 2006; Mcinerney et al., fermentative degradation of short-chain fatty acids 2008; Stams and Plugge, 2009). Moreover, they are the such as propionate and butyrate. Conversion of these key biocatalysts in anaerobic bioreactors that are used metabolites to acetate, CO2, formate and hydrogen is worldwide to treat industrial wastewaters and solid endergonic under standard conditions and occurs wastes. Different types of anaerobes have specified only if methanogens keep the concentrations of these metabolic functions in the degradation pathway and intermediate products low. Butyrate and propionate depend on metabolite transfer which is called syntrophy degradation pathways include oxidation steps of (Schink and Stams, 2006).
    [Show full text]
  • Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Applied Microbiology, Vol 66, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney, Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. In Allen I. Laskin, Sima Sariaslani, and Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol 66, Burlington: Academic Press, 2009, pp. 141-251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 6 Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney1 Contents I. Introduction 142 II. Factors Governing Oil Recovery 144 III. Microbial Ecology of Oil Reservoirs 147 A. Origins of microorganisms recovered from oil reservoirs 147 B. Microorganisms isolated from oil reservoirs 148 C. Culture-independent analysis of microbial communities in oil reservoirs 155 IV.
    [Show full text]
  • Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion Propionic Acid Degradation Propionic WIREŁŁO
    KARLSRUHERBERICHTE ZUR INGENIEURBIOLOGIE . MONIKA FELCHNER-Z WIREŁŁO Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion Propionic Acid Degradation Propionic WIREŁŁO . MONIKA FELCHNER-Z 49 . Monika Felchner-Z wirełło Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion Karlsruher Berichte zur Ingenieurbiologie Band 49 Institut für Ingenieurbiologie und Biotechnologie des Abwassers Karlsruher Institut für Technologie Herausgeber: Prof. Dr. rer. nat. J. Winter Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion by . Monika Felchner-Z wirełło Dissertation, Karlsruher Institut für Technologie (KIT) Fakultät für Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften Tag der mündlichen Prüfung: 08. Februar 2013 Referenten: Prof. Dr. rer. nat. habil. Josef Winter Korreferenten: Prof. Dr.-Ing. E.h. Hermann H. Hahn, Ph.D. Prof. Dr hab. in˙z . Jacek Namie´snik Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover – is licensed under the Creative Commons Attribution-Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ The cover page is licensed under the Creative Commons Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): http://creativecommons.org/licenses/by-nd/3.0/de/ Print on Demand 2014 ISSN 1614-5267 ISBN 978-3-7315-0159-6 DOI: 10.5445/KSP/1000037825 Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS von der Fakult¨at f¨ur Bauingenieur-, Geo- und Umweltwissenschaften des Karlsruher Instituts f¨ur Technologie (KIT) genehmigte DISSERTATION von Dipl.-Ing.
    [Show full text]
  • Biosulfidogenesis Mediates Natural Attenuation in Acidic Mine Pit Lakes
    microorganisms Article Biosulfidogenesis Mediates Natural Attenuation in Acidic Mine Pit Lakes Charlotte M. van der Graaf 1,* , Javier Sánchez-España 2 , Iñaki Yusta 3, Andrey Ilin 3 , Sudarshan A. Shetty 1 , Nicole J. Bale 4, Laura Villanueva 4, Alfons J. M. Stams 1,5 and Irene Sánchez-Andrea 1,* 1 Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; [email protected] (S.A.S.); [email protected] (A.J.M.S.) 2 Geochemistry and Sustainable Mining Unit, Dept of Geological Resources, Spanish Geological Survey (IGME), Calera 1, Tres Cantos, 28760 Madrid, Spain; [email protected] 3 Dept of Mineralogy and Petrology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain; [email protected] (I.Y.); [email protected] (A.I.) 4 NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Landsdiep 4, 1797 SZ ‘t Horntje, The Netherlands; [email protected] (N.J.B.); [email protected] (L.V.) 5 Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal * Correspondence: [email protected] (C.M.v.d.G.); [email protected] (I.S.-A.) Received: 30 June 2020; Accepted: 14 August 2020; Published: 21 August 2020 Abstract: Acidic pit lakes are abandoned open pit mines filled with acid mine drainage (AMD)—highly acidic, metalliferous waters that pose a severe threat to the environment and are rarely properly remediated. Here, we investigated two meromictic, oligotrophic acidic mine pit lakes in the Iberian Pyrite Belt (IPB), Filón Centro (Tharsis) (FC) and La Zarza (LZ).
    [Show full text]
  • Microbial Bioenergy: Hydrogen Production Microbial Bioenergy: Hydrogen Production
    Advances in Photosynthesis and Respiration 38 Including Bioenergy and Related Processes Davide Zannoni Roberto De Philippis Editors Microbial BioEnergy: Hydrogen Production Microbial BioEnergy: Hydrogen Production Different Ways for BioHydrogen Production The four possible ways for producing H2 , by exploiting microbial activities, are shown here. Biophotolysis : H2 production by microalgae (through H 2 -ase) or Cyanobacteria (through H2 -ase or N 2 -ase) by using low potential reductants derived from either water or stored sugars via the photosynthetic machinery. Photofermentation : H2 production by anoxygenic photosynthetic bacteria (through N2 -ase) by using reductants obtained from the oxidation of organic compounds as well as solar energy used through photosynthesis. Dark fermentation : H2 production by mesophilic or thermophilic chemoheterotrophic bacteria (through H2 -ase) by using reductants and energy obtained from the oxidation of organic compounds. Microbial Electrolysis Cell (MEC): H2 production by means of cathodic proton reduction with applied potential exploiting the low redox potential produced by exoelectrogenic bacteria at the anode. This fi gure is adapted from Fig. 1.3 in Chap. 1 of this book. Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes VOLUME 38 Series Editors: GOVINDJEE * ( University of Illinois at Urbana- Champaign , IL , U.S.A ) THOMAS D. SHARKEY ( Michigan State University , East Lansing , MI , U.S.A ) * Founding Series Editor Advisory Editors: Elizabeth AINSWORTH, United States Department of Agriculture , Urbana , IL , U.S.A. Basanti BISWAL, Sambalpur University , Jyoti Vihar , Odisha , India Robert E. BLANKENSHIP, Washington University , St Louis , MO , U.S.A. Ralph BOCK, Max Planck Institute of Molecular Plant Physiology , Postdam - Golm , Germany Julian J.
    [Show full text]
  • Methanogens: Pushing the Boundaries of Biology
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 12-14-2018 Methanogens: pushing the boundaries of biology Nicole R. Buan Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Emerging Topics in Life Sciences (2018) 2 629–646 https://doi.org/10.1042/ETLS20180031 Review Article Methanogens: pushing the boundaries of biology Nicole R. Buan Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St., Lincoln, NE 68588-0664, U.S.A. Correspondence: Nicole R. Buan ([email protected]) Downloaded from https://portlandpress.com/emergtoplifesci/article-pdf/2/4/629/484198/etls-2018-0031c.pdf by University of Nebraska Libraries user on 11 February 2020 Methanogens are anaerobic archaea that grow by producing methane gas. These microbes and their exotic metabolism have inspired decades of microbial physiology research that continues to push the boundary of what we know about how microbes conserve energy to grow. The study of methanogens has helped to elucidate the thermodynamic and bioener- getics basis of life, contributed our understanding of evolution and biodiversity, and has garnered an appreciation for the societal utility of studying trophic interactions between environmental microbes, as methanogens are important in microbial conversion of biogenic carbon into methane, a high-energy fuel.
    [Show full text]