Spectropolarimetric signatures of Earth–like extrasolar planets D. M. Stam (
[email protected]) Aerospace Engineering Department, Technical University Delft, Kluyverweg 1, 2629 HS, Delft, The Netherlands and SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands December 17, 2018 Abstract We present results of numerical simulations of the flux (irradiance), F, and the degree of polarization (i.e. the ratio of polarized to total flux), P, of light that is reflected by Earth–like extrasolar planets orbiting solar–type stars, as functions of the wavelength (from 0.3 to 1.0 µm, with 0.001 µm spectral resolution) and as functions of the planetary phase angle. We use different surface coverages for our model planets, including vegetation and a Fresnel reflecting ocean, and clear and cloudy atmospheres. Our adding-doubling radiative transfer algorithm, which fully includes multiple scattering and polarization, handles horizontally homoge- neous planets only; we simulate fluxes and polarization of horizontally inhomoge- neous planets by weighting results for homogeneous planets. Like the flux, F, the degree of polarization, P, of the reflected starlight is shown to depend strongly on the phase angle, on the composition and structure of the planetary atmosphere, on the reflective properties of the underlying surface, and on the wavelength, in par- ticular in wavelength regions with gaseous absorption bands. The sensitivity of P to a planet’s physical properties appears to be different than that of F. Combining arXiv:0707.3905v1 [astro-ph] 26 Jul 2007 flux with polarization observations thus makes for a strong tool for characterizing extrasolar planets.