ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 2

Total Page:16

File Type:pdf, Size:1020Kb

ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 2 ING LA PALMA TECHNICAL NOTE NO. 134 ING Bibliography and Analysis 2002-2011 Javier Méndez (ING) May 2012 Contents 1. Introduction .................................................................................................................................................................... 3 2. Analysis. .......................................................................................................................................................................... 4 2.1. Paper counts. .......................................................................................................................................................... 4 2.2. Paper authorship. .................................................................................................................................................... 7 2.3. Paper instrument use. ............................................................................................................................................. 7 2.4. Paper count check. .................................................................................................................................................. 8 Appendix 1. “ING Bibliography 2002-2011”. ........................................................................................................................ 10 2002 .................................................................................................................................................................................. 10 2003 .................................................................................................................................................................................. 18 2004 .................................................................................................................................................................................. 24 2005 .................................................................................................................................................................................. 33 2006 .................................................................................................................................................................................. 41 2007 .................................................................................................................................................................................. 50 2008 .................................................................................................................................................................................. 58 2009 .................................................................................................................................................................................. 67 2010 .................................................................................................................................................................................. 75 2011 .................................................................................................................................................................................. 84 ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 2 1. Introduction An important metric of the the success of ING telescopes is the count of papers published in refereed journals. Before reporting on the results of this exercise, it is worth commenting on and clarifying the selection process. One of the first decisions to make is that of choosing which journals to scan for ING articles. We have restricted the search to the core journals in which most of the ING papers are published, ie. the British journal MNRAS (including Letters), the American journals ApJ, ApJ Letters, ApJ Suppl, AJ and PASP, plus the European journal A&A (including Letters), although many other publications have appeared elsewhere, notably in workshop and conference proceedings and in PhD theses. We also searched Nature and Science as due to the perceived high impact of these journals. The bibliography for the years 2002 to 2011 were therefore compiled from only the core journals listed above. Online search engines were used to select papers containing a set of strings in the paper text: "William Herschel Telescope" OR "William Herschel Telescopes" OR "WHT" OR "Isaac Newton Telescope" OR "Isaac Newton Telescopes" OR "INT telescope" OR "Jacobus Kapteyn Telescope" OR "Jacobus Kapteyn Telescopes" OR "JKT" OR "ING Wide Field Survey" OR "INT Wide Field Survey" OR "La Palma archive" OR "ING archive” OR "Wide Field Survey" OR "Isaac Newton Group (ING) Archive" OR "WFS archive" OR "ING@WFS" OR "INT WFS" OR "Isaac Newton Group" OR "IPHAS OR La Palma" OR "Canary Islands" OR "WFC@INT" OR "INT/WFC" Papers were manually searched for proofs of having used ING data. To some extent this assessment is subjective since it is not always clear what constitutes making use of data from our telescopes. In principal and in general a paper should make direct use of observations in order to qualify. Papers which refer to data presented in earlier papers (derivative papers) are not counted. For every paper the following information was recorded: author list, year of publication, title, journal name, volume, first page, nationality of first author’s institution, telescope used and instrument. If the data came from one of the ING data archives then this was recorded in the instrument field as follows: “archive” refers to the ING archive, “WFS” refers to the INT Wide-Field Survey archive, and “IPHAS” refers to the archive of the INT/WFC photometric Hα survey of the northern Galactic plane. If the observations were obtained as part of an ING service or override proposal, then this is shown as “service” or “O/R” respectively in the instrument field. Appendix A shows the bibliography compiled this way. Papers are sorted by year and telescope and in alphabetical order of the first author. Nationalities appear in brackets and instruments in parentheses. What follows is an analysis of this bibliography. Note that if a paper makes use of more than one telescope we count that paper for each telescope. Similarly, if a paper makes use of more than one instrument, that paper is counted against each instrument. ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 3 2. Analysis. 2.1. Paper counts. Number of refereed papers per year from first light. Number of refereed papers per year. ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 4 Number of refereed papers per year. Cumulative number of refereed published papers per year and telescope. ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 5 Cumulative number of refereed papers per year from first light. Year WHT INT JKT Total Year WHT INT JKT Total 1984 — 1 — 1 2001 91 46 25 162 1985 — 10 3 13 2002 93 72 26 191 1986 — 24 8 32 2003 82 44 17 143 1987 — 36 16 52 2004 103 69 26 198 1988 5 52 12 69 2005 77 80 18 175 1989 15 58 15 88 2006 104 67 12 183 1990 37 54 26 117 2007 85 72 10 167 1991 39 63 19 121 2008 94 50 16 160 1992 42 56 25 123 2009 98 67 7 172 1993 55 70 30 155 2010 90 60 3 153 1994 78 63 44 185 2011 122 72 3 197 1995 90 81 29 200 Total 1924 1631 592 4147 1996 100 84 52 236 1997 113 77 35 225 1998 118 72 38 228 1999 115 78 46 239 Paper counts per telescope and year. ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 6 2.2. Paper authorship. Nationality of first author's main institution in refereed papers that used data from the ING telescopes. Other nationalities contribute ~27% (1984-1997) and ~36% (1998-2011) to the total number of papers. 2.3. Paper instrument use. Use of instrument data in WHT's refereed papers (papers are counted as many times as used instruments). All private includes INTEGRAL. Archives means papers that use data retrieved from the ING Archive, and not included in the other categories. INGRID refers to when it was used without adaptive optics. NAOMI includes INGRID, OASIS and OSCA in combination with adaptive optics. ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 7 Use of instrument data in INT's refereed papers (papers are counted as many times as used instruments). The archival papers mostly use data from the WFC. All private includes the private instruments. Other ING includes other common- user instruments not listed individually. 2.4. Paper count check. Paper counts by ING (blue) and retrieved from ADSLabs (red, http://labs.adsabs.harvard.edu/fulltext/) as a result of scanning the refereed journals listed below, and searching for a list of specific keywords: "William Herschel Telescope" OR "William Herschel Telescopes" OR "WHT". While the ING counts only include papers that make a direct use of the data, the ADS counts include all the papers that contain the searched keywords. The dashed line shows the ADS paper count but including all the refereed journals in the ADS database. ING Technical Note No. 134 “ING Bibliography and Analysis 2002-2011” - Page 8 Paper counts by ING (blue) and retrieved from ADSLabs (red, http://labs.adsabs.harvard.edu/fulltext/) as a result of scanning the refereed journals listed below, and searching for a list of specific keywords: "Isaac Newton Telescope" OR "Isaac Newton Telescopes" OR "INT telescope". While the ING counts only include papers that make a direct use of the data, the ADS counts include all the papers that contain the searched keywords. The dashed line shows
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Multi-Colour Analysis of Galaxy Clusters with Radio Halos And/Or Relics
    MULTI-COLOUR ANALYSIS OF GALAXY CLUSTERS WITH RADIO HALOS AND/OR RELICS L. S. Legodi Supervisors: Dr N. Oozeer (SKA Africa, AIMS, NWU) & Prof. T. Jarrett (UCT) Astronomy Department University of Cape Town (UCT) A research project submitted in partial fulfilment of the requirements for the National Astrophysics and Space Science Programme (NASSP) M.Sc. degree. University of Cape Town September 2014 This work is funded fully by the South African National Research Foundation (SA NRF) and the the Square Kilometre Array South Africa (SKA SA) project through their postgraduate student scholarship. Opinions expressed and conclusions made, are those of the author and not necessarily those of the SA NRF, SKA SA, NASSP and/or UCT. The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Abstract Galaxy clusters can be sites of considerable dynamic activity due to intra-cluster and inter-cluster interactions. These interactions include cluster-cluster mergers which are accompanied by large release of energy observed via thermal 44 X-ray emission (LX ∼ 10 ergs/s). The work presented here focuses on clusters that exhibit extended (∼ 1 Mpc) diffuse radio sources (low surface brightness ∼ 1−0:1 µJy.arcsec−2 at 1.4 GHz) called radio relics and radio halos.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • I. Is There an Accretion Mode Dichotomy in Radio-Loud AGN?
    MNRAS 440, 269–297 (2014) doi:10.1093/mnras/stu263 Advance Access publication 2014 March 10 An X-ray survey of the 2 Jy sample – I. Is there an accretion mode dichotomy in radio-loud AGN? B. Mingo,1,2‹ M. J. Hardcastle,1 J. H. Croston,3 D. Dicken,4 D. A. Evans,5 R. Morganti6,7 and C. Tadhunter8 1School of Physics, Astronomy & Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 2Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 3School of Physics and Astronomy, University of Southampton, Southampton SO17 1SJ, UK 4Institut d’Astrophysique Spatiale, Universite´ Paris Sud, F-91405 Orsay, France 5Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo, the Netherlands 7Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands 8Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK Accepted 2014 February 6. Received 2014 February 6; in original form 2013 May 31 ABSTRACT We carry out a systematic study of the X-ray emission from the active nuclei of the 0.02 <z< 0.7 2 Jy sample, using Chandra and XMM–Newton observations. We combine our results with those from mid-infrared, optical emission-line and radio observations, and add them to those of the 3CRR sources. We show that the low-excitation objects in our samples show signs of radiatively inefficient accretion. We study the effect of the jet-related emission on the various luminosities, confirming that it is the main source of soft X-ray emission for our sources.
    [Show full text]
  • Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies
    Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation McDonald, Michael et. al., "Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies." Astrophysical Journal 858, 1 (May 2018): no. 45 doi. 10.3847/1538-4357/AABACE ©2018 Authors As Published 10.3847/1538-4357/AABACE Publisher American Astronomical Society Version Final published version Citable link https://hdl.handle.net/1721.1/125311 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 858:45 (15pp), 2018 May 1 https://doi.org/10.3847/1538-4357/aabace © 2018. The American Astronomical Society. All rights reserved. Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies M. McDonald1 , M. Gaspari2,5 , B. R. McNamara3 , and G. R. Tremblay4 1 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; [email protected] 2 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544-1001, USA 3 Department of Physics & Astronomy, University of Waterloo, Canada 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Received 2018 January 6; revised 2018 March 13; accepted 2018 March 27; published 2018 May 3 Abstract We present a study of 107 galaxies, groups, and clusters spanning ∼3 orders of magnitude in mass, ∼5 orders of magnitude in central galaxy star formation rate (SFR), ∼4 orders of magnitude in the classical cooling rate (MMrrt˙ coolº< gas() cool cool) of the intracluster medium (ICM), and ∼5 orders of magnitude in the central black hole accretion rate.
    [Show full text]
  • WASP Page 1 Hubble Eyes Aging Stars Science News, Vol. 148
    WASP Warren Astronomical Society Paper Volume 27, number 11 $1.00 for non-members November 1995 DATING THE COSMOS COMPUTER CHATTER ANNUAL HOLIDAY AWARDS Hubble eyes aging stars Larry F. Kalinowski Science News, Vol. 148, September 2,1995 submitted by Lorna Simmons Everyone knows you can't be older than your mother. But over the past year, observations with the Hubble Space Telescope and several other Comet DeVico has just passed perihelion in instruments seem to have contradicted this cardi- early October, so its beginning to fade from its maxi- nal rule. On the one hand, measurements of the mum brightness of 5.6. It was recovered in its seventy- speed at which the most distant galaxies are mov- four year orbit by independent comet observers Naka- ing from Earth suggest that the universe may be mura, Tanaka and Utsunomiya. It becomes a sixth no older than 8 billion to 12 billion years (SN: magnitude object on the night of the Macomb meeting, 10/8;94, p.232). On the other hand, astronomers October 19. Early reports say it has two tails. A morn- ing object, only, about fifteen degrees above the hori- estimate he ages of our galaxy's oldest stars at zon before twilight begins, it's easily observed as it 13 billion to 16 billion years. leaves Leo and enters the Ursa Major-Coma Berenices Now, new findings from Hubble may provide a area of the sky. However, it is quickly moving closer to step toward resolving this cosmic conundrum. the horizon and will become increasingly more difficult In viewing the globular cluster M4, the dense to observe during the rest of the month.
    [Show full text]
  • The Luminosity Function of the Milky Way Satellites
    Draft version June 3, 2018 A Preprint typeset using LTEX style emulateapj v. 02/07/07 THE LUMINOSITY FUNCTION OF THE MILKY WAY SATELLITES S. Koposov1,2, V. Belokurov2, N.W. Evans2, P.C. Hewett2, M.J. Irwin2, G. Gilmore2, D.B. Zucker2, H.-W. Rix1, M. Fellhauer2, E.F. Bell1, E.V. Glushkova3 Draft version June 3, 2018 ABSTRACT We quantify the detectability of stellar Milky Way satellites in the Sloan Digital Sky Survey (SDSS) Data Release 5. We show that the effective search volumes for the recently discovered SDSS–satellites depend strongly on their luminosity, with their maximum distance, Dmax, substantially smaller than the Milky Way halo’s virial radius. Calculating the maximum accessible volume, Vmax, for all faint detected satellites, allows the calculation of the luminosity function for Milky Way satellite galaxies, accounting quantitatively for their detectability. We find that the number density of satellite galaxies continues to rise towards low luminosities, but may flatten at MV 5; within the uncertainties, the ∼− 0.1(MV +5) luminosity function can be described by a single power law dN/dMV = 10 10 , spanning × luminosities from MV = 2 all the way to the luminosity of the Large Magellanic Cloud. Comparing these results to several semi-analytic− galaxy formation models, we find that their predictions differ significantly from the data: either the shape of the luminosity function, or the surface brightness distributions of the models, do not match. Subject headings: Galaxy: halo – Galaxy: structure – Galaxy: formation – Local Group 1. INTRODUCTION ing satellite” problem. First identified by Klypin et al. In Cold Dark Matter (CDM) models, large spiral (1999) and Moore et al.
    [Show full text]
  • THE POLARIZATION of RADIO GALAXIES -Its Structure at Low Frequencies
    STELLINGEN behorende bij het proefschrift THE POLARIZATION OF RADIO GALAXIES -its structure at low frequencies- 1. De structuur van de polarisatieverdelingen in uitgebreide extragalactische radiobronnen toont aan dat de veelgemaakte aanname van cilinder symmetrie voor de radiocomponenten onvolledig is (dit proefschrift). 2. Voor multispectrale vergelijkingen van radiokaarten van uitgebreide extragalactische stelsels ware het gewenst dat de Westerbork Synthese Radio Telescoop wordt uitgebreid met ontvangers bij een frequentie ergens tussen 610 MHz en 1400 MHz. 3. Het verloop van de spectrale index in zogenaamde edge-brightened double radio sources is slechts afhankelijk van de spectrale indices van de hot spots (dit proefschrift). 4. In de radiosterrenkunde blijft de theorie te ver achter bij de vele goede waarnemingen. 5. Om een goede astronoom te zijn moet men geloven dat het te bestuderen object de sleutel tot het heelal levert. 6. Bemande ruimtevaart moet waar mogelijk vermeden worden. 7. Sporters moeten zelf kunnen beslissen of zij een politiek omstreden evenement boycotten of niet. 8. Gelijktijdige pauze op alle Nederlandse astronomische instituten verhoogt de doelmatigheid. 9. De verwijzing private communication in wetenschappelijke literatuur is onacceptabel. 10. Het niet respecteren van Oost-Europese sportprestaties miskent het fenomeen topsport. 11. De huidige opzet van de dames tafeltennis competitie is nadelig voor het algehele dames spelniveau. W.J. Jagers Leiden, 2 december 1986 THE POLARIZATION OF RADIO GALAXIES its structure at low frequencies THE POLARIZATION OF RADIO GALAXIES its structure at low frequencies PROEFSCHRIFT ter verkrijging van de graad van Doctor in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magnificus Dr.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Australian Sky & Telescope
    TRANSIT MYSTERY Strange sights BINOCULAR TOUR Dive deep into SHOOT THE MOON Take amazing as Mercury crosses the Sun p28 Virgo’s endless pool of galaxies p56 lunar images with your smartphone p38 TEST REPORT Meade’s 25-cm LX600-ACF P62 THE ESSENTIAL MAGAZINE OF ASTRONOMY Lasers and advanced optics are transforming astronomy p20 HOW TO BUY THE RIGHT ASTRO CAMERA p32 p14 ISSUE 93 MAPPING THE BIG BANG’S COSMIC ECHOES $9.50 NZ$9.50 INC GST LPI-GLPI-G LUNAR,LUNAR, PLANETARYPLANETARY IMAGERIMAGER ANDAND GUIDERGUIDER ASTROPHOTOGRAPHY MADE EASY. Let the LPI-G unleash the inner astrophotographer in you. With our solar, lunar and planetary guide camera, experience the universe on a whole new level. 0Image Sensor:'+(* C O LOR 0 Pixel Size / &#*('+ 0Frames per second/Resolution• / • / 0 Image Format: #,+$)!&))'!,# .# 0 Shutter%,*('#(%%#'!"-,,* 0Interface: 0Driver: ASCOM compatible 0GuiderPort: 0Color or Monochrome Models (&#'!-,-&' FEATURED DEALERS: MeadeTelescopes Adelaide Optical Centre | www.adelaideoptical.com.au MeadeInstrument The Binocular and Telescope Shop | www.bintel.com.au MeadeInstruments www.meade.com Sirius Optics | www.sirius-optics.com.au The device to free you from your handbox. With the Stella adapter, you can wirelessly control your GoTo Meade telescope at a distance without being limited by cord length. Paired with our new planetarium app, *StellaAccess, astronomers now have a graphical interface for navigating the night sky. STELLA WI-FI ADAPTER / $#)'$!!+#!+ #$#)'#)$##)$#'&*' / (!-')-$*')!($%)$$+' "!!$#$)(,#%',).( StellaAccess app. Available for use on both phones and tablets. /'$+((()$!'%!#)'*")($'!$)##!'##"$'$*) stars, planets, celestial bodies and more /$,'-),',### -' ($),' /,,,$"$')*!!!()$$"%)!)!($%( STELLA is controlled with Meade’s planetarium app, StellaAccess. Available for purchase for both iOS S and Android systems.
    [Show full text]
  • RESEARCH PROGRAMS 140-Foot Telescope
    VS/G LI NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia r Quarterly Report October 1, 1981 - December 31, 1981 RESEARCH PROGRAMS 140-foot Telescope Hours Scheduled observing 1955.75 Scheduled maintenance and equipment changes 179.25 Scheduled tests and calibration 1.00 Time lost due to: equipment failure 34.75 power 9.50 weather 133.25 interference 0.00 The following line programs were conducted during this quarter. No. Observer (s) Program T-156 I. Kazes (Meudon, France) Observations to study giant molecular B. Turner clouds at the main 18 cm OH line frequencies. T-145 B. Turner Search within the 13-16 GHz range for new molecular species. S-233 L. Buxton (Illinois) Observations at 20.9 and 24.4 GHz to E. Campbell (Illinois) search for the HCN dimer (HCN) 2 . W. Flygare (Illinois) P. Jewell (Illinois) M. Schenewerk (Illinois) L. Snyder (Illinois) B-381 R. Brown Observations at 5-cm to confirm and extend the detection of recombination line emission from 3C 245 and a search for this type of emission from other QSOs. S-246 M. Bell (NRC, Canada) Search at 5 cm for recombination lines E. Seaquist (Toronto) in compact extragalactic sources. No. Observer(s) Program M-176 L. Avery (NRC, Canada) Observations at 18.2 GHz of the J=241 N. Broten (NRC, Canada) transition of HC3N, generally toward J. MacLeod (NRC, Canada) dark clouds. H. Matthews (NRC, Canada T. Oka (Chicago) The following continuum programs were conducted during this quarter. No. Observer (s) Program C-194 M. Condon (unaffiliated) Survey at 14.5 cm of extragalactic J.
    [Show full text]
  • Broadband Spectral Modelling of Bent Jets of Active Galactic Nuclei Arxiv
    Broadband spectral modelling of bent jets of Active Galactic Nuclei A Thesis submitted to the University of Mumbai for the Ph. D. (SCIENCE) Degree in PHYSICS Submitted By B. Sunder Sahayanathan Under the Guidance of Dr. A. K. Mitra Astrophysical Sciences Division arXiv:1109.0618v2 [astro-ph.HE] 7 Sep 2011 Bhabha Atomic Research Centre Trombay, Mumbai - 400085 October 2010 In memory of my beloved grandma Josephine... Abstract The understanding of the physics of relativistic jets from active galactic nuclei (AGN) is still incomplete. A way to understand the different features of the AGN jets is to study it broadband spectra. In general, within the limits of present observations, AGN jets are observed in radio-to-X-ray energy band and they exhibit various intrinsic features such as knots. Particularly, the blazar jets which are pointed towards the observer, are observed in radio-to-γ-ray and their radio maps exhibit internal jet structures. Moreover, the high energy emission from blazars show rapid variability. In this thesis, models have been developed to study the radiation emission processes from the knots of AGN jets as well as for blazar jets. A continuous injection plasma model is devel- oped to study the X-ray emission from the knots of sources 1136-135, 1150+497, 1354+195 and 3C 371. The knot dynamics is then studied within the framework of internal shock model. In such a scenario, knots are formed due to the collision of two successive matter blobs emitted sporadically from the central engine of AGN. Shocks, generated in such col- lisions, accelerate electrons to relativistic energies.
    [Show full text]