A Search for Transiting Extrasolar Planets from the Southern Hemisphere

Total Page:16

File Type:pdf, Size:1020Kb

A Search for Transiting Extrasolar Planets from the Southern Hemisphere A Search for Transiting Extrasolar Planets from the Southern Hemisphere Duane Willis Hamacher II Faculty of Science University of New South Wales A thesis submitted in satisfaction of the requirements for the degree of Master of Science 28 July 2008 For Melvin... RIP. STATEMENT OF ORIGINALITY I hereby declare that this submission is my own work and to the best of my knowl- edge it contains no materials previously published or written by another person, nor material to which a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgment is made in this thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. (Signed)............................................................. ii PREFACE The majority of the work in this thesis focused on APT observations and follow– up observations of planet candidates and is being submitted for publication in Hamacher et al. (2008). Below is a summary of the work in which the candidate participated, noting work that was used in this thesis but was not done by the candidate: The remote observing operating procedures of the APT as well as mainte- • nance, repairs, and modifications were implemented and carried out by M. Ashley and A. Phillips. The transit detection algorithm was written by Aigrain & Irwin (2004). • The data reduction pipeline was written by M. Irwin and implemented • by M. Hidas and M. Ashley. Modifications to the pipeline in order to accommodate 40-inch telescope data were performed by J. Christiansen and M. Ashley. APT observations up to February 2006 were conducted by M. Hidas, J. • Christainsen, M. Ashley, J. Webb., A. Phillips, A. Derekas, S. Crothers, and R. Smalley. Observations from February 2006 to March 2007 were conducted by the candidate, M. Hidas, M. Ashley, J. Christiansen, J. Webb, S. Curran, T. Britton, and T. Young. Visual inspection of the APT light curves was done by the candidate, J. • Christiansen, T. Young, T. Britton, and M. Hidas. 40-inch telescope observations were conducted by the candidate, M. Hidas, • J. Christiansen, T. Britton, and T. Young – the details of which are given in Table A. 2.3-m telescope observations were conducted by J. Christiansen, T. Young, • T. Britton, and the candidate. 2.3-m spectroscopic data were reduced by J. Christiansen. • iii 3.9-m AAT spectroscopic data were obtained by C. Tinney and reduced by • J. Christiansen. S. Curran assisted in reduction of 40-inch data, though the candidate later • re-reduced all of the data after making modifications to the pipeline and using a new set of quality dome flats. Candidate selection criteria were discussed in detail with M. Hidas and J.K. • Webb. Details of the data reduction pipeline can be found in Hidas et al. (2005) • and Irwin & Lewis (2001). The candidate’s role in this project primarily involved: Assisting with APT observations; • Assisting in reduction of APT data; • Period estimation and initial candidate selection; • Applying selection criteria to all candidates; • Data mining of all candidates; • Adaptation and implementation of the new selection strategy; • Selecting priority candidates for follow-up observations; • Assisting in the initial development of a systematics identification program • (with M. Kardan); Operation of the 40-inch telescope, data reduction, and analysis of APT • and SuperWASP candidates that were followed-up ( 50 nights); ∼ Analysis of APT candidate spectra. • iv Acknowledgements I would like to thank my advisor John Webb and co-advisor Michael Ashley for providing me with the opportunity and funding to work on this project to completion. I wish to thank Marton Hidas and the other members of the APT group for their assistance, Sue Fraser and Di Edler in the First Year Physics labs for providing me with free Panadol while supervising First Year labs, the technicians and staff at SSO (including Bob Shobbrook, Donna Burton, Andre Phillips, and Peter Wood), Michael Gillon and David Weldrake at the ESO, family and friends, PHD Comics, the UNSW Judo Club, ANU for allotting me time on the SSO telescopes, and the ASA for hosting the annual Harley Wood Winter School (aka Alcohol Tolerance School). And finally, Tui Britton – my better half – whom has been there through the rough and rocky road of my thesis. Abstract To date, more than 300 planets orbiting stars other than our sun have been discovered using a range of observing techniques, with new discoveries occuring monthly. The work in this thesis focused on the detection of exoplanets using the transit method. Planets orbiting close to their host stars have a roughly 10 per cent chance of eclipsing (transiting) the star, with Jupiter–sized planets causing a one per cent dip in the flux of the star over a few hours. A wealth of orbital and physical information on the system can be extracted from these systems, including the planet density which is essential in constraining models of planetary formation. To detect these types of planets requires monitoring tens of thousands of stars over a period of months. To accomplish this, we conduct a wide-field survey using the 0.5-meter Automated Patrol Telescope (APT) at Siding Spring Observatory (SSO) in NSW, Australia. Once candidates were selected from the data–set, selection criteria were ap- plied to separate the likely planet candidates from the false–positives. For this thesis, the methods and instrumentation used in attaining data and selecting planet candidates are discussed, as well as the re- sults and analysis of the planet candidates selected from star fields observed from 2004–2007. Of the 65 planet candidates initially selected from the 25 target fields observed, only two were consistent with a planet transit. These candi- dates were later determined to be eclipsing binary stars based on fol- low up observations using the 40-inch telescope, 2.3-m telescope, and the 3.9-m Anglo-Australian Telescope, all located at SSO. Addition- ally, two planet candidates from the SuperWASP-North consortium were observed on the 40-inch telescope. Both proved to be eclipsing binary stars. While no planets were found, our search methods and results are consistent with successful transit surveys targeting simi- lar fields with stars in a similar magnitude range and using similar methods. Contents 1 Introduction 1 1.1 Foreword . 1 1.2 A Brief History of Planet Hunting . 2 1.3 Basic Physics . 3 1.3.1 Kepler’s Laws of Planetary Motion . 4 1.3.2 Radial Velocity Derivation . 6 1.4 Types of Planet Searches . 7 1.4.1 Radial Velocity . 8 1.4.2 Microlensing . 9 1.4.3 Direct Imaging . 12 1.4.4 Astrometry . 13 1.4.5 Pulsar Timing . 14 1.4.6 Polarimetry . 14 1.4.7 Transit . 15 1.4.7.1 Transit Timing . 20 1.4.7.2 The Rossiter–McLaughlin Effect . 20 2 Methods 22 2.1 Observing Site and Telescope . 23 2.1.1 Siding Spring Observatory . 23 2.1.2 Automated Patrol Telescope . 23 2.1.3 APT Operation . 24 2.2 Photometric Precision . 25 2.2.1 Identifying Noise Sources . 25 2.2.2 Poisson Noise . 26 viii CONTENTS 2.2.3 Atmospheric Effects . 27 2.2.3.1 Scintillation . 27 2.2.3.2 Atmospheric Seeing . 27 2.2.3.3 Colour–Dependence of Extinction . 28 2.2.4 CCD Effects . 28 2.2.4.1 Flat–Fielding . 29 2.2.4.2 Blending . 29 2.2.4.3 Under–sampling of Images . 30 2.2.4.4 Intra–pixel Sensitivity Variations . 30 2.2.5 Raster Scan Technique . 30 2.3 Observing Strategy . 31 2.4 Data Reduction . 34 2.4.1 Why Aperture Photometry? . 34 2.4.2 Image Processing . 34 2.4.3 Sky Subtraction . 35 2.4.4 Object Detection & Catalogue Generation . 35 2.4.5 Aperture Photometry . 37 2.4.6 Photometric Calibration . 37 2.5 Systematics Removal . 39 2.5.1 Sources of Systematics . 39 2.5.2 Trend Filtering Algorithm . 40 2.6 Transit Detection . 45 2.6.1 Transit Detection Algorithm . 45 2.6.2 Visual Inspection . 45 2.7 Transit Characteristics . 46 2.7.1 Period . 46 2.7.2 Transit Depth . 47 2.7.3 Transit Shape . 50 2.7.4 Out–of–Transit Features . 50 2.7.4.1 Secondary Transit . 51 2.7.4.2 Ellipsoidal Variations . 51 2.8 Candidate Selection Strategy . 55 2.9 Phase 1 – Initial Selection . 56 ix CONTENTS 2.9.1 Selecting Priority Candidates . 59 2.9.1.1 The Colour Index Method . 60 2.9.1.2 The Seager & Mallen–Ornelas Method . 60 2.9.1.3 The Mandel & Algol Method . 63 2.9.1.4 The Photometric Diagnostic . 64 2.9.1.5 Separating Giants and Dwarfs . 65 2.10 Phase 2: Higher–Resolution Photometry . 67 2.10.1 The 40-inch Telescope . 68 2.10.2 40-inch Telescope Data Reduction . 69 2.11 Phase 3: Medium–Resolution Spectroscopy . 70 2.12 Phase 4: High–Resolution Spectroscopy . 71 2.13 Summary of Methodology . 72 3 Results & Analysis 75 3.1 Candidate Selection Flowchart . 75 3.1.1 High Priority . 76 3.1.2 Low Priority . 76 3.2 Initial Results . 77 3.3 Phase 1 Candidates . 79 3.4 Phase 2 and 3 Candidates . 79 3.4.1 UNSW-TR-29 . 87 3.4.2 UNSW-TR-41 . 89 3.5 Follow-up of Non–Priority Candidates . 92 3.5.1 UNSW-TR-54 . 97 3.5.2 UNSW-TR-55 .
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Exoplanet Characterization with Nirspec
    Exoplanet Characterization with NIRSpec Jeff Valenti (STScI), Stephan Birkmann (ESA) Bernhard Dorner (MPIA) 1. Coupling optics 1 2. Fore optics 3. Filters 4. Focus 8 3 5. Apertures 6 4 6. Collimator 9 7. Gratings 7 5 2 8. Camera 9. Detectors 10. Lamps 10 1 NIRSpec Apertures Aperture Spectral Spatial S1600 1.6” 1.6” S400 0.4” 3.65” S200 0.2” 3.2” IFU 36 x 0.1” 3.6” MSA 2 x 95” 2 x 87” The S1600 aperture was designed for exoplanet observations 2 Noise Due to Jitter 1σ Jitter Jitter of 7 mas causes relative noise of 4 x 10-5 From PhD thesis Bernhard Dorner 3 NIRSpec Optical Configurations Grating Filter Wavelengths Resolution PRISM CLEAR 0.6 – 5.0 30 – 300 “100” F070LP 0.7 – 1.2 500 – 850 G140M F100LP 1.0 – 1.8 “1000” G235M F170LP 1.7 – 3.0 700 – 1300 G395M F290LP 2.9 – 5.0 F070LP 0.7 – 1.2 1300 – 2300 G140H F100LP 1.0 – 1.8 “2700” G235H F170LP 1.7 – 3.0 1900 – 3600 G395H F290LP 2.9 – 5.0 4 http://www.cosmos.esa.int/web/jwst/nirspec-performances 5 6 http://www.cosmos.esa.int/web/jwst/nirspec-performances Example of High-Resolution Model Spectra G395H Figure 4b of Burrows, Budaj, & Hubeny (2008) 7 Thermal Emission from a Hot Jupiter Adapted from Figure 4b of Burrows, Budaj, & Hubeny (2008) 8 Integrations and Exposures " An “exposure” is a sequence of integrations. " An “integration” is a sequence of groups, sampled up-the-ramp " One or more resets between integrations, but no other overheads " Currently using pixel-by-pixel resets, but row-by-row possible 9 Subarrays NX NY Frame time (s) Notes 2048 512 10.74 Full frame, 4 amps 2048 256 5.49
    [Show full text]
  • THE MASS of KOI-94D and a RELATION for PLANET RADIUS, MASS, and INCIDENT FLUX∗
    The Astrophysical Journal, 768:14 (19pp), 2013 May 1 doi:10.1088/0004-637X/768/1/14 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE MASS OF KOI-94d AND A RELATION FOR PLANET RADIUS, MASS, AND INCIDENT FLUX∗ Lauren M. Weiss1,12, Geoffrey W. Marcy1, Jason F. Rowe2, Andrew W. Howard3, Howard Isaacson1, Jonathan J. Fortney4, Neil Miller4, Brice-Olivier Demory5, Debra A. Fischer6, Elisabeth R. Adams7, Andrea K. Dupree7, Steve B. Howell2, Rea Kolbl1, John Asher Johnson8, Elliott P. Horch9, Mark E. Everett10, Daniel C. Fabrycky11, and Sara Seager5 1 B-20 Hearst Field Annex, Astronomy Department, University of California, Berkeley, Berkeley, CA 94720, USA; [email protected] 2 NASA Ames Research Center, Moffett Field, CA 94035, USA 3 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 4 Department of Astronomy & Astrophysics, University of California, Santa Cruz, 1156 High Street, 275 Interdisciplinary Sciences Building (ISB), Santa Cruz, CA 95064, USA 5 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 6 Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06510-8101, USA 7 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 8 California Institute of Technology, 1216 E. California Blvd., Pasadena, CA 91106, USA 9 Southern Connecticut State University, Department of Physics, 501 Crescent St., New Haven, CT 06515, USA 10 National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719, USA 11 The Department of Astronomy and Astrophysics, University of Chicago, 5640 S.
    [Show full text]
  • A GROUND-BASED ALBEDO UPPER LIMIT for HD 189733B from POLARIMETRY Sloane J
    The Astrophysical Journal, 813:48 (11pp), 2015 November 1 doi:10.1088/0004-637X/813/1/48 © 2015. The American Astronomical Society. All rights reserved. A GROUND-BASED ALBEDO UPPER LIMIT FOR HD 189733b FROM POLARIMETRY Sloane J. Wiktorowicz1,2, Larissa A. Nofi3,1, Daniel Jontof-Hutter4,5, Pushkar Kopparla6, Gregory P. Laughlin1, Ninos Hermis1, Yuk L. Yung6, and Mark R. Swain7 1 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA; [email protected] 2 Remote Sensing Department, The Aerospace Corporation, El Segundo, CA 90245, USA 3 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA 4 Department of Astronomy, Davey Laboratory, Pennsylvania State University, University Park, PA 16802, USA 5 NASA Ames Research Center, Moffett Field, CA 94035, USA 6 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 7 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Received 2015 July 13; accepted 2015 September 29; published 2015 October 27 ABSTRACT We present 50 nights of polarimetric observations of HD 189733 in the B band using the POLISH2 aperture- integrated polarimeter at the Lick Observatory Shane 3-m telescope. This instrument, commissioned in 2011, is designed to search for Rayleigh scattering from short-period exoplanets due to the polarized nature of scattered light. Since these planets are spatially unresolvable from their host stars, the relative contribution of the planet-to- total system polarization is expected to vary with an amplitude of the order of 10 parts per million (ppm) over the course of the orbit.
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • Looking for New Earth in the Coming Decade
    Detection of Earth-like Planets with NWO With discoveries like methane on Mars (Mumma et al. 2009) and super-Earth planets orbiting nearby stars (Howard et al. 2009), the fields of exobiology and exoplanetary science are breaking new ground on almost a weekly basis. These two fields will one day merge, with the high goal of discovering Earth-like planets orbiting nearby stars and the subsequent search for signs of life on those planets. The Kepler mission will soon place clear bounds on the frequency of terrestrial-sized planets (Basri et al. 2008). Beyond that, the great challenge is to determine their true natures. Are terrestrial exoplanets anything like Earth, with life forms able to thrive even on the surface? What is the range of conditions under which Earth-like and other habitable worlds can arise? Every stellar system in the solar neighborhood is entirely unique, and it is almost certain that anything that can happen, will. With current and near-term technology, we can make great strides in finding and characterizing planets in the habitable zones of nearby stars. Given reasonable mission specifications for the New Worlds Observer, the layout of the stars in the solar neighborhood, and their variable characteristics (especially exozodiacal dust) a direct imaging mission can detect and characterize dozens of Earths. Not only does direct imaging achieve detection of planets in a single visit, but photometry, spectroscopy, polarimetry and time-variability in those signals place strong constraints on how those planets compare to our own, including plausible ranges in planet mass and atmospheric and internal structure.
    [Show full text]
  • ON the INCLINATION DEPENDENCE of EXOPLANET PHASE SIGNATURES Stephen R
    The Astrophysical Journal, 729:74 (6pp), 2011 March 1 doi:10.1088/0004-637X/729/1/74 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ON THE INCLINATION DEPENDENCE OF EXOPLANET PHASE SIGNATURES Stephen R. Kane and Dawn M. Gelino NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125, USA; [email protected] Received 2011 December 2; accepted 2011 January 5; published 2011 February 10 ABSTRACT Improved photometric sensitivity from space-based telescopes has enabled the detection of phase variations for a small sample of hot Jupiters. However, exoplanets in highly eccentric orbits present unique opportunities to study the effects of drastically changing incident flux on the upper atmospheres of giant planets. Here we expand upon previous studies of phase functions for these planets at optical wavelengths by investigating the effects of orbital inclination on the flux ratio as it interacts with the other effects induced by orbital eccentricity. We determine optimal orbital inclinations for maximum flux ratios and combine these calculations with those of projected separation for application to coronagraphic observations. These are applied to several of the known exoplanets which may serve as potential targets in current and future coronagraph experiments. Key words: planetary systems – techniques: photometric 1. INTRODUCTION and inclination for a given eccentricity. We further calculate projected separations at apastron as a function of inclination The changing phases of an exoplanet as it orbits the host star and determine their correspondence with maximum flux ratio have long been considered as a means for their detection and locations.
    [Show full text]
  • Link 1. JA Acosta-Pulido, I. Agudo, R. Barrena
    # Author Year Title Journal Vol. Page [Count Tel. (Instrument) Link ry] 1. J. A. Acosta‐pulido, I. Agudo, R. Barrena, C. Ramos Almeida, A. 2010 The redshift and broad‐band spectral energy distribution of A&A 519 A5 [ES] WHT (LIRIS) http://www.aanda.org/index.php?op Manchado and P. Rodríguez‐Gil NRAO 150 tion=com_article&access=standard&I temid=129&url=/articles/aa/full_htm l/2010/11/aa13953‐09/aa13953‐ 09.html 2. R. Alonso, H. J. Deeg, P. Kabath and M. Rabus 2010 Ground‐based Near‐infrared Observations of the Secondary AJ 139 1481 [CH] WHT (LIRIS) http://iopscience.iop.org/1538‐ Eclipse of CoRoT‐2b 3881/139/4/1481/fulltext 3. J. P. Anderson, R. A. Covarrubias, P. A. James, M. Hamuy and S. 2010 Observational constraints on the progenitor metallicities of MNRAS 407 2660 [CL] WHT (ISIS) http://onlinelibrary.wiley.com/doi/10 M. Habergham core‐collapse supernovae .1111/j.1365‐2966.2010.17118.x/full 4. Iair Arcavi, Avishay Gal‐Yam, Mansi M. Kasliwal, Robert M. 2010 Core‐collapse Supernovae from the Palomar Transient ApJ 721 777 [IL] WHT (ISIS) http://iopscience.iop.org/0004‐ Quimby, Eran O. Ofek, Shrinivas R. Kulkarni, Peter E. Nugent, S. Factory: Indications for a Different Population in Dwarf 637X/721/1/777/fulltext Bradley Cenko, Joshua S. Bloom, Mark Sullivan, D. Andrew Galaxies Howell, Dovi Poznanski, Alexei V. Filippenko, Nicholas Law, Isobel Hook, Jakob Jönsson, Sarah Blake, Jeff Cooke, Richard Dekany, Gustavo Rahmer, David Hale, Roger Smith, Jeff Zolkower, Viswa Velur, Richard Walters, John Henning, Kahnh Bui, Dan McKenna and Janet Jacobsen 5.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Super Earth Explorer: a Coronagraphic Off-Axis Space Telescope
    DRAFT Super Earth Explorer: A Coronagraphic Off-Axis Space Telescope Schneider J.a, Boccaletti A.b, Mawet D.e Baudoz P.b, Beuzit J.-L.c, Doyon R.d Marley M.e, Stam D g., Tinetti Gh. Traub W. f, Trauger J.f, Aylward A.h, Cho J. Y-K. i , Keller C.-U. J , Udry S.k, and the SEE-COAST Team 1 a LUTH, Paris Observatory; b LESIA, Paris Observatory; c LAOG; d U. Montreal, e NASA/Ames, f Jet Propulsion Laboratory, California Institute of Technology; g SRON; hUCL, ; i Queen Mary, U. London, J U. Utrecht,, k Geneva Observatory jean.schneider.obspm.fr keywords: exoplanets, coronagraphy Accepted in “Experimental Astronomy” 1 Full list at the end of the paper 1 Abstract: The Super-Earth Explorer is an Off-Axis Space Telescope (SEE-COAST) designed for high contrast imaging. Its scientific objective is to make the physico-chemical characterization of exoplanets possibly down to 2 Earth radii . For that purpose it will analyze the spectral and polarimetric properties of the parent starlight reflected by the planets, in the wavelength range 400-1250 nm 1. Scientific Objectives The currently known planetary systems from indirect detection show a huge diversity in the orbits (semi-major axis and eccentricity), masses, and, in a few cases, radii of their planets. If we add to this the observation that the planets in our Solar System differ strongly from each other, there is no doubt that more information on the physical characteristics of exoplanets will reveal not only new and unexpected scenarios but also answers and a better understanding.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]