Alla Ricerca Di Pianeti Extrasolari: Casi Di Studio in Statistica Stellare

Total Page:16

File Type:pdf, Size:1020Kb

Alla Ricerca Di Pianeti Extrasolari: Casi Di Studio in Statistica Stellare Università degli Studi di Padova Dipartimento di Scienze Statistiche Corso di Laurea Magistrale in Scienze Statistiche Alla ricerca di pianeti extrasolari: casi di studio in Statistica stellare Relatore: Prof.ssa Alessandra Rosalba Brazzale Dipartimento di Scienze Statistiche Laureando: Umberto Simola Matricola N: 1056444 Anno accademico 2013/2014 Challenge me. Doubt me. Disrespect me. Tell me i am older. Tell me i am slower. Tell me i can no longer fly. I want you to. Michael Jordan Ringraziamenti Desidero innanzitutto ringraziare la mia relatrice, la prof.ssa Alessandra Brazzale, per avermi concesso l’opportunità di approfondire un tema che da sempre mi affascina, per le conversazioni stimolanti e motivanti che ab- biamo avuto modo di intrattenere in questi mesi e per la libertà di iniziativa che mi ha lasciato. Ringrazio inoltre i professori, in particolare il prof. Sartori ed il prof. Mazzuco per la cortesia e la disponibilità che mi hanno dimostrato nell’indi- rizzarmi su alcuni aspetti metodologici dell’elaborato. Grazie inoltre a tutti gli amici che ho avuto modo di conoscere in questi cinque anni di Scienze Statistiche ed in particolar modo a Carlo, Ilaria e Camilla, con i quali ho condiviso le gioie e i dolori della stesura della tesi in questi mesi. Un grazie particolare anche ai miei amici “parigini” Fabrizio, Gabriele, Giulia e Federico, cui ci lega un’amicizia di vecchia data la cui distanza geografica ha rafforzato. Desidero inoltre ringraziare gli “astronomi” Andrea e Michele, per avermi aiutato nella scelta dell’argomento di tesi e per essersi sempre dimostrati estremamente disponibili nel rispondere alle mie domande e curiosità di carattere astronomico. Ringrazio infine i miei genitori, mia sorella e i miei parenti, che mi sono sempre stati vicini ed incoraggiato nello studio. v vi Indice Elenco delle figure ix Elenco delle tabelle xiii Introduzione 1 1 Identificazione di pianeti extrasolari 3 1.1 Breve storia dei pianeti extrasolari . 3 1.2 Metodi per l’individuazione di pianeti extrasolari . 5 1.2.1 Metodi diretti . 5 1.2.1.1 Coronografia ottica . 6 1.2.1.2 Tecniche interferometriche . 6 1.2.2 Metodi indiretti . 7 1.2.2.1 Metodo della Velocità Radiale . 7 1.2.2.2 Metodo del Transito . 15 1.2.2.3 Metodo Astrometrico . 18 1.2.2.4 Metodo del Gravitational Lensing . 19 1.2.2.5 Metodo Pulsar Timing . 21 1.2.2.6 Confronto tra i metodi indiretti . 22 2 Stima dei parametri orbitali di pianeti extrasolari 25 2.1 L’anomalia vera . 25 2.1.1 La matrice di dati . 26 2.1.2 L’equazione di Keplero . 27 2.2 Il modello statistico di partenza . 29 2.3 Un primo modello: sistema binario stella-pianeta con orbita circolare . 30 2.3.1 Stima dei parametri orbitali del pianeta extrasolare 51 Pegasi b .......................... 30 2.4 Una complicazione: sistema binario stella-pianeta con orbita eccentrica . 36 2.4.1 Analisi per 51 Pegasi b senza assumere la circolarità dell’orbita . 39 vii viii Indice 2.4.2 Analisi per HD 131496 b . 45 2.4.3 Ulteriori considerazioni sull’algoritmo usato per recu- perare i parametri orbitali . 50 3 Approccio bayesiano per la stima dei parametri orbitali di un pianeta extrasolare 55 3.1 Il modello statistico di partenza . 57 3.2 Sistema binario stella-pianeta con orbita circolare . 57 3.2.1 Distribuzioni a priori . 57 3.2.2 Stima dei parametri orbitali del pianeta extrasolare 51 Pegasi b .......................... 60 3.3 Sistema binario stella-pianeta con orbita eccentrica . 64 3.3.1 Distribuzioni a priori . 64 3.3.2 Analisi per 51 Pegasi b senza assumere la circolarità dell’orbità . 65 3.3.3 Analisi per HD 131496 b . 65 Conclusioni 71 Appendice 73 A Modelli non lineari 75 A.1 Cos’è un modello non lineare? . 75 A.2 Minimi Quadrati non lineari . 76 A.2.1 Metodo di Gauss-Newton . 78 A.2.2 Metodo di Levenberg-Marquardt . 80 A.2.3 Metodo di Quasi-Newton . 81 A.2.4 Convergenza dei metodi del gradiente . 82 A.2.5 Confronto tra i metodi del gradiente e condizioni di arresto . 83 A.3 Metodo della massima verosimiglianza . 84 A.4 Teoria asintotica . 86 A.4.1 Consistenza dello stimatore . 86 A.4.2 Normalità asintotica dello stimatore . 87 A.4.3 Problemi di verifica di ipotesi . 87 B Statistica bayesiana 89 B.1 Il teorema di Bayes . 89 B.2 Indici di sintesi della distribuzione a posteriori . 90 B.3 Algoritmi Markov Chain Monte Carlo . 91 B.3.1 Le catene di Markov . 91 B.3.2 Gibbs-Sampling . 92 B.3.3 Metropolis-Hastings . 93 Indice ix B.3.4 Adaptive Metropolis-Hastings . 93 B.3.5 Convergenza degli algoritmi MCMC . 95 C La ricerca del periodo orbitale del pianeta extrasolare e l’at- tività stellare 97 C.1 La Trasformata di Fourier . 98 C.2 Il periodogramma di Lomb-Scargle . 99 C.3 Il periodogramma di Lomb-Scargle generalizzato . 100 C.3.1 La probabilità di falso allarme . 101 C.4 Problemi distorsivi legati all’attività stellare . 103 C.4.1 Limb Darkening . 103 C.4.2 Rotazione stellare . 104 C.4.3 Starspots ed eterogeneità superficiale della stella . 104 C.4.4 Atmosfera stellare . 104 C.4.5 Problematiche tipiche del metodo del transito . 105 D Codice R 107 D.1 Modello Frequentista: Sistema Binario Orbita Circolare . 107 D.2 Modello Frequentista: Sistema Binario Orbita Eccentrica . 111 D.3 Modello Bayesiano: Sistema Binario Orbita Circolare . 121 D.4 Modello Bayesiano: Sistema Binario Orbita Eccentrica . 126 D.5 Modello Bayesiano: Sistema Binario Orbita Eccentrica esteso 130 Riferimenti Bibliografici 136 x Indice Elenco delle figure 1.1 L’esopianeta Fomalhaut b, scoperto attraverso tecniche inter- ferometriche. Nei due anni in cui è stato monitorato, si nota come l’esopianeta si stia muovendo lungo un’orbita kepleriana. [http://spacetelescope.org/images/html/heic0821a.html] . 7 1.2 Rispetto alla situazione iniziale, il redshift si manifesta con uno spostamento sistematico delle linee spettrali della stella verso il rosso dello spettro, mentre il blueshift con uno verso il blu. [http://www.astro.cornell.edu . 9 1.3 Attraverso l’analisi spettroscopica è possibile individuare una periodica fase di blueshift alternato a refshift di cui è respon- sabile lo “star’s wobble”. Da ciò si deduce la possibile pre- senza di un pianeta extrasolare orbitante attorno alla stella. [http://exoplanets.org/doppler.html] . 10 1.4 Condizione geometrica affinchè il metodo della velocità radia- le possa essere utilizzato per ricercare pianeti extrasolari. Per i=90◦ l’orbita è vista di taglio e la velocità radiale oscilla tra vs e - vs, passando due volte per lo zero ad ogni ciclo orbitale. Per i=0 invece l’orbita è vista di faccia e, pertanto, la ve- locità radiale della stella appare sempre nulla all’osservatore. [Lasunncty] . 11 1.5 Velocità radiale della stella 51 Pegasi, depurata dalle fluttua- zioni sistematiche degli strumenti di misurazione. Dall’ispe- zione di questo grafico è possibile ricavare immediatamente il periodo orbitale, l’ampiezza e i valori massimi e minimi della velocità radiale della stella. [www.exoplanets.org] . 12 1.6 L’asse y rappresenta il piano del cielo mentre la circonferenza è la stella. Sia a il semiasse maggiore del pianeta e i l’inclina- zione del piano orbitale rispetto al piano del cielo. Il transito del pianeta extrasolare è osservabile, indirettamente, purchè h sia minore di R, il raggio della stella. 16 1.7 Il transito di un pianeta provoca un’attenuazione nel flusso di fotoni emessi dalla stella. [www.cnes.fr] . 17 xi xii Elenco delle figure 1.8 Spostamento del Sole nel piano del cielo, dovuto all’azione dei pianeti che compongono il sitema planetario. [Solarysystem- barycenter.gif] . 20 1.9 A sinistra si nota come la stella che transita in corrispondenza di quella presa a riferimento funzioni come una lente. Nel caso in cui la stella ospiti un esopianeta, non vi è solo un effetto primario, ma anche uno secondario, evidenziato dal picco che rende la funzione del flusso di luminosità asimmetrica (b). [www.eso.org] . 21 2.1 L’anomalia vera νt ha per vertice la stella s e per lati la dire- zione del periastro e la posizione p del pianeta lungo l’orbita. L’anomalia media Mt ha per vertice il centro dell’orbita e per lati cz e cy. L’anomalia eccentrica Et ha per vertice ancora il centro dell’orbita e per lati cz e cx. [web.nmsu.edu] . 28 2.2 Periodogramma di Lomb-Scargle per 51 Pegasi. Dall’analisi grafica si nota un picco di frequenza poco prima del raggiun- gimento del quinto giorno del periodo orbitale. 31 2.3 Curva che interpola le misurazioni della velocità radiale di 51 Pegasi, assumendo che l’orbita sia circolare. 33 2.4 Analisi grafica dei residui. 34 2 2.5 Grafico dei contorni per i parametri V0, K, P , t0 e log(s ) usando la statistica di Wald (linea tratteggiata), il test radice con segno (linea blu) e l’approssimazione di Skovgaard (linea rossa). 35 2.6 Curva che interpola le misurazioni della velocità radiale di 51 Pegasi nei corrispondenti valori dell’anomalia vera, assumen- do che l’orbita sia eccentrica. 42 2.7 Analisi grafica dei residui. 42 2 2.8 Grafico dei contorni per i parametri K, !, V0, e log(s ) usando la statistica di Wald (linea tratteggiata), il test radice con segno (linea blu) e l’approssimazione di Skovgaard (linea rossa). 43 2.9 Analisi grafica della devianza, o somma dei residui al qua- drato, dei modelli costruiti, usando il vettore completo per le epoche di passaggio al periastro.
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • P Lanetary Postc Ards
    Suggested Discussion Questions for Planetary PostCards That star is hotter/colder than our Sun. How do you Planetary PostCards think that might affect its planets? Here is where one of the planets orbits that star. What would it be like to live on this planet (or one of its moons)? If Earth was orbiting that star, what might be different? Artist: Lynette Cook 55 Cancri System How big do you suppose this planet is compared to Abbreviations and terms used on PostCards the planets in our Solar System? RA = Right Ascension Do you think we have found all the planets in this Dec = Declination system? mag = apparent visual magnitude AU = Astronomical Unit, the distance between the Earth and Our fastest spacecraft travels 42 miles per second. It the Sun: 93 million miles or 150 million km would take 5,000 years for that spacecraft to go one Light year = The distance light travels in a year. Light travels at light year. How long would it take to reach this star 186,000 miles per second or 300,000 km per second. Light which is ____ light years away? from the Sun takes 8 minutes to reach Earth. Jupiter mass = 1.9 x1027 kg. Jupiter is about 300 times more How different do you think Earth will be in that massive than Earth (approximate difference between a large period of time? bowling ball and a small marble) Temperature of the stars is in degrees Celsius Cepheus Draco Ursa Ursa Minor gamma Cephei 39' º mag: 3.2 mag: Dec: 77 Dec: RA: 23h 39m RA: Ursa MajorUrsa Star: Gamma Cephei Planet: Gamma Cephei b Star’s System Compared to Our Solar System How far in How Hot? light years? °C Neptune 150 7000 Uranus < Sun 100 Saturn Star > 5000 Gamma Cephei b > 50 3000 Jupiter < 39 < Companion Star Sun 1000 Planet (year discovered): b (2002) The brightest star with a planet is Avg Distance From Star: 2 AU (Earth from Sun = 1 AU) a Binary star AND it’s a Red Giant! Orbit: Its small “companion star” gets as 2.5 years close as 12 AU in a 40-year orbit.
    [Show full text]
  • Planetquest Outreach Toolkit Manual and Resources Cd
    Outreach ToolKit Manual DISTRIBUTED FOR MEMBERS OF THE NASA NIGHT SKY NETWORK THE NIGHT SKY NETWORK IS SPONSORED AND SUPPORTED BY JPL'S PLANETQUEST PUBLIC ENGAGEMENT PROGRAM. PLANETQUEST IS A PART OF JPL’S NAVIGATOR PROGRAM, WHICH ENCOMPASSES SEVERAL OF NASA'S EXTRA-SOLAR PLANET- FINDING MISSIONS, INCLUDING THE KECK INTERFEROMETER, THE SPACE INTERFEROMETRY MISSION (SIM), THE TERRESTRIAL PLANET FINDER (TPF), THE LARGE BINOCULAR TELESCOPE INTERFEROMETER (LBTI), AND THE MICHELSON SCIENCE CENTER. NASA NIGHT SKY NETWORK: http://nightsky.jpl.nasa.gov/ PLANETQUEST: http://planetquest.jpl.nasa.gov/ Contacts The non-profit Astronomical Society of the Pacific (ASP), one of the nation’s leading organizations devoted to astronomy and space science education, is managing the Night Sky Network in cooperation with JPL. Learn more about the ASP at http://www.astrosociety.org. For support contact: Astronomical Society of the Pacific (ASP) 390 Ashton Avenue San Francisco, CA 94112 415-337-1100 ext. 116 [email protected] Copyright © 2004 NASA/JPL and Astronomical Society of the Pacific. Copies of this manual and documents may be made for educational and public outreach purposes only and are to be supplied at no charge to participants. Any other use is not permitted. CREDITS: All photos and images in the ToolKit Manual unless otherwise noted are provided courtesy of Marni Berendsen and Rich Berendsen. Your Club’s Membership in the NASA Night Sky Network Welcome to the NASA Night Sky Network! Your membership in the Night Sky Network will provide many opportunities for your club to expand its public education and outreach. Your club has at least two members who are the Night Sky Network Club Coordinators.
    [Show full text]
  • Moving Heaven and Earth for Khufu: Were the Trial Passages at Giza Components of a Rudimentary Stellar Observatory?
    The Journal of Ancient Egyptian Architecture vol. 4, 2020 Moving heaven and earth for Khufu: Were the Trial Passages at Giza components of a rudimentary stellar observatory? David Ian Lightbody Cite this article: D. I. Lightbody, ‘Moving heaven and earth for Khufu: Were the Trial Passages at Giza components of a rudimentary stellar observatory?’, JAEA 4, 2020, pp. 29-53. JAEA www.egyptian-architecture.com ISSN 2472-999X Published under Creative Commons CC-BY-NC 2.0 JAEA 4, 2020, pp. 29-53. www.egyptian-architecture.com Moving heaven and earth for Khufu: Were the Trial Passages at Giza components of a rudimentary stellar observatory? David Ian Lightbody1 Abstract: This article describes a digital archaeological experiment to test a new hypothesis that explains the purpose and unusual form of the so-called Trial Passages at Giza. The enigmatic connected passages are carved into the bedrock on the east side of the Great Pyramid of Khufu and have been interpreted in various ways over the decades since they were first cleared. Based on a new analysis of their design, it is proposed here that they could serve very well as a place from which to observe the northern stars. Prolonged and accurate measurement of the stars of the circumpolar region of the northern sky could have been made from inside the main inclined passage, which rises from south to north. Accurate location of the Northern Celestial Pole (NCP) during these observations could have facilitated the accurate cardinal alignment of sides of the Great Pyramid. Other details of the architecture support this interpretation, and are set out here for consideration.
    [Show full text]
  • Reach for the Stars***
    T1 T2 T3 T4 T5 SCORE: 150 / 150 + Bonus 2 KEY: Alternative, acceptable answers are given in brackets Bonus: Name NASA’s 6 space shuttles – 1 bonus point per 3 correct answers. (2 pts total) Atlantis Challenger Columbia Discovery Endeavour Enterprise TEAM NAME/NUMBER: _____________________________________________________________, #__________ COMPETITORS’ NAMES: _________________________________________________ __________________________________________________ Time is NOT a tiebreaker. Tiebreakers will be the individual section scores, in this order: Ic, Ia, IIb, Ib, Id, IIa. Some questions are designated as further tiebreakers. You have 50 minutes to complete this test to the best of your ability. Good luck. Go! ***Reach for the Stars*** 1 SECTION Ia: Identify the DSOs on the image sheet (letters on the image sheet correspond to the letters below) and answer the accompanying questions (1 pt each, 35 pts total). A. Cas A i. This DSO is the strongest source (outside of our solar system) of what kind of electromagnetic radiation? Radio (waves) B. Veil Nebula i. What is an alternate name for this DSO? (Hint: has to do with a constellation.) Cygnus Loop C. Andromeda Galaxy i. What is this DSO’s Messier catalog number? M31 [31] ii. Which other DSO is likely to collide with this DSO in about 2.5 million years? Milky Way Galaxy D. Pleiades i. Approximately how old are the stars in this DSO? Accept 75-150 million years ii. What constellation is this DSO found in? Taurus E. Crab Nebula i. What object causes this DSO’s x-ray emissions? Crab Pulsar [neutron star, pulsar] ii. When was the supernova that created this nebula seen from Earth? 1054 F.
    [Show full text]
  • Instruction Manual
    iOptron® GEM28 German Equatorial Mount Instruction Manual Product GEM28 and GEM28EC Read the included Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument and uses a magnetic gear meshing mechanism. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging or adjusting the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper gear meshing/slippage will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ................................................................................................................................................. 3 1. GEM28 Overview .......................................................................................................................................... 5 2. GEM28 Terms ................................................................................................................................................ 6 2.1. Parts List .................................................................................................................................................
    [Show full text]
  • Michael Carroll How We Find Them, Communicate with Them, And
    Michael Carroll Earths of Distant Suns How We Find Them, Communicate with Them, and Maybe Even Travel There Earths of Distant Suns Michael Carroll Earths of Distant Suns How We Find Them, Communicate with Them, and Maybe Even Travel There Michael Carroll Fellow, International Association of Astronomical Artists Littleton , CO , USA ISBN 978-3-319-43963-1 ISBN 978-3-319-43964-8 (eBook) DOI 10.1007/978-3-319-43964-8 Library of Congress Control Number: 2016951720 © Springer International Publishing Switzerland 2017 Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Th e use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Th e publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • A Data Viewer for R
    Paul Murrell A Data Viewer for R A Data Viewer for R Paul Murrell The University of Auckland July 30 2009 Paul Murrell A Data Viewer for R Overview Motivation: STATS 220 Problem statement: Students do not understand what they cannot see. What doesn’t work: View() A solution: The rdataviewer package and the tcltkViewer() function. What else?: Novel navigation interface, zooming, extensible for other data sources. Paul Murrell A Data Viewer for R STATS 220 Data Technologies HTML (and CSS), XML (and DTDs), SQL (and databases), and R (and regular expressions) Online text book that nobody reads Computer lab each week (worth 0.5%) + three Assignments 5 labs + one assignment on R Emphasis on creating and modifying data structures Attempt to use real data Paul Murrell A Data Viewer for R Example Lab Question Read the file lab10.txt into R as a character vector. You should end up with a symbol habitats that prints like this (this shows just the first 10 values; there are 192 values in total): > head(habitats, 10) [1] "upwd1201" "upwd0502" "upwd0702" [4] "upwd1002" "upwd1102" "upwd0203" [7] "upwd0503" "upwd0803" "upwd0104" [10] "upwd0704" Paul Murrell A Data Viewer for R The file lab10.txt upwd1201 upwd0502 upwd0702 upwd1002 upwd1102 upwd0203 upwd0503 upwd0803 upwd0104 upwd0704 upwd0804 upwd1204 upwd0805 upwd1005 upwd0106 dnwd1201 dnwd0502 dnwd0702 dnwd1002 dnwd1102 dnwd1202 dnwd0103 dnwd0203 dnwd0303 dnwd0403 dnwd0503 dnwd0803 dnwd0104 dnwd0704 dnwd0804 dnwd1204 dnwd0805 dnwd1005 dnwd0106 uppl0502 uppl0702 uppl1002 uppl1102 uppl0203 uppl0503
    [Show full text]
  • Brightest Stars : Discovering the Universe Through the Sky's Most Brilliant Stars / Fred Schaaf
    ffirs.qxd 3/5/08 6:26 AM Page i THE BRIGHTEST STARS DISCOVERING THE UNIVERSE THROUGH THE SKY’S MOST BRILLIANT STARS Fred Schaaf John Wiley & Sons, Inc. flast.qxd 3/5/08 6:28 AM Page vi ffirs.qxd 3/5/08 6:26 AM Page i THE BRIGHTEST STARS DISCOVERING THE UNIVERSE THROUGH THE SKY’S MOST BRILLIANT STARS Fred Schaaf John Wiley & Sons, Inc. ffirs.qxd 3/5/08 6:26 AM Page ii This book is dedicated to my wife, Mamie, who has been the Sirius of my life. This book is printed on acid-free paper. Copyright © 2008 by Fred Schaaf. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada Illustration credits appear on page 272. Design and composition by Navta Associates, Inc. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copy- right.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    Where Are the Distant Worlds? Star Maps About the Activity Where are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only A small (red) flashlight • on how long you want to observe. • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Visible Stars With Planets 7 Star Maps 8 © 2013 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star. And I can tell you some about what those systems might look like.
    [Show full text]
  • On the Transit Potential of the Planet Orbiting Iota Draconis
    Submitted for publication in the Astrophysical Journal A Preprint typeset using LTEX style emulateapj v. 11/10/09 ON THE TRANSIT POTENTIAL OF THE PLANET ORBITING IOTA DRACONIS Stephen R. Kane1, Sabine Reffert2, Gregory W. Henry3, Debra Fischer4, Christian Schwab2, Kelsey I. Clubb4, Christoph Bergmann2 Submitted for publication in the Astrophysical Journal ABSTRACT Most of the known transiting exoplanets are in short-period orbits, largely due to the bias inherent in detecting planets through the transit technique. However, the eccentricity distribution of the known radial velocity planets results in many of those planets having a non-negligible transit probability. One such case is the massive planet orbiting the giant star iota Draconis, a situation where both the orientation of the planet’s eccentric orbit and the size of the host star inflate the transit probability to a much higher value than for a typical hot Jupiter. Here we present a revised fit of the radial velocity data with new measurements and a photometric analysis of the stellar variability. We provide a revised transit probability, an improved transit ephemeris, and discuss the prospects for observing a transit of this planet from both the ground and space. Subject headings: planetary systems – techniques: photometric – stars: individual (ι Draconis) 1. INTRODUCTION large transit probabilities due to the size of the host stars The detection of exoplanetary transits has revolution- (Assef et al. 2009). Giant stars present significant chal- ized the way we view giant planets, both in their variety lenges, however, to those who intend to monitor those of structures (Batygin et al. 2009) and their formation stars for the purpose of detecting exoplanetary tran- processes (Veras et al.
    [Show full text]