IBM System Z10 Enterprise Class Technical Guide

Total Page:16

File Type:pdf, Size:1020Kb

IBM System Z10 Enterprise Class Technical Guide Front cover IBM System z10 Enterprise Class Technical Guide Describes the Enterprise Class server and related features Addresses increasing complexity, rising costs, and energy contraints Discusses infrastructure for the data center of the future Per Fremstad Wolfgang Fries Marian Gasparovic Parwez Hamid Brian Hatfield Dick Jorna Fernando Nogal Karl-Erik Stenfors ibm.com/redbooks International Technical Support Organization IBM System z10 Enterprise Class Technical Guide November 2009 SG24-7516-02 Note: Before using this information and the product it supports, read the information in “Notices” on page xi. Third Edition (November 2009) This edition applies to the IBM System z10 Enterprise Class server, as described in IBM United States Hardware Announcement 108-794, dated October 21, 2008. © Copyright International Business Machines Corporation 2008, 2009. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . xi Trademarks . xii Preface . .xv The team who wrote this book . .xv Become a published author . xvii Comments welcome. xvii Chapter 1. Introducing the System z10 Enterprise Class . 1 1.1 Wanted: an infrastructure (r)evolution. 3 1.1.1 Simplified . 4 1.1.2 Shared . 4 1.1.3 Dynamic . 5 1.1.4 z10 at the core of a dynamic infrastructure. 6 1.1.5 Storage is part of the System z10 stack . 6 1.2 System z10 EC highlights . 7 1.3 System z10 EC Models. 9 1.3.1 Model upgrade paths . 10 1.3.2 Concurrent processing unit conversions. 10 1.4 System functions and features . 10 1.4.1 Processor . 12 1.4.2 Memory subsystem. 13 1.4.3 Central processor complex cage. 13 1.4.4 I/O connectivity . 14 1.4.5 I/O subsystems . 14 1.4.6 Cryptography . 16 1.4.7 Parallel Sysplex support . 17 1.4.8 Reliability, availability, and serviceability. 18 1.5 Performance . 19 1.6 Operating systems and software. 20 Chapter 2. Hardware components . 23 2.1 Frames and cages . 24 2.1.1 Frame A . 24 2.1.2 Frame Z . 26 2.1.3 I/O cages. 26 2.2 Book concept . 27 2.2.1 Book power . 28 2.2.2 Cooling . 28 2.3 Multi-Chip Module . 30 2.4 Processing units and storage control chips. 31 2.4.1 PU chip . 31 2.4.2 Processing unit (core) . 32 2.4.3 SC chip . 34 2.5 Memory . 35 2.5.1 Memory RAS. 38 2.5.2 Memory upgrades . 38 2.5.3 Book replacement and memory . 39 2.5.4 Flexible memory option. 39 © Copyright IBM Corp. 2008, 2009. All rights reserved. iii 2.5.5 Plan-ahead memory . 39 2.6 Connectivity. 41 2.6.1 Redundant I/O interconnect . 44 2.6.2 Enhanced book availability . 44 2.6.3 Book upgrade . 45 2.7 Model configurations . 45 2.7.1 Upgrades . 47 2.7.2 PU characterization. 48 2.7.3 Concurrent PU conversions . 48 2.7.4 Model capacity identifier . 49 2.7.5 Model capacity identifier and MSU values . 50 2.7.6 Capacity Backup . 51 2.7.7 On/Off Capacity on Demand and CPs . 53 2.8 Summary of z10 EC structure . 54 Chapter 3. System design . 57 3.1 Design highlights. 58 3.2 Book design . 59 3.2.1 Book interconnect topology. 64 3.2.2 System control . 65 3.3 Processing unit . ..
Recommended publications
  • MVS Planning: Workload Management
    z/OS Version 2 Release 3 MVS Planning: Workload Management IBM SC34-2662-30 Note Before using this information and the product it supports, read the information in “Notices” on page 235. This edition applies to Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2019-06-24 © Copyright International Business Machines Corporation 1994, 2019. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures................................................................................................................. xi Tables..................................................................................................................xv About this information....................................................................................... xvii Who should use this information..............................................................................................................xvii Where to find more information............................................................................................................... xvii Other referenced documents.................................................................................................................. xviii Information updates on the web...............................................................................................................xix How to send your comments to IBM.....................................................................xxi
    [Show full text]
  • Computer Organization and Architecture Designing for Performance Ninth Edition
    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America.
    [Show full text]
  • IBM System Z Functional Matrix
    IBM System z July 2013 IBM System z Functional Matrix IBM System z This functional matrix consists of a list of features and functions that are supported on IBM System z® servers (this includes the IBM zEnterprise ® EC12 (zEC12), IBM zEnterprise BC12 (zBC12), IBM zEnterprise 196 (z196), IBM zEnterprise 114 (z114), IBM System z10 ® Enterprise Class (z10 ™ EC), IBM System z10 Business Class ™ (z10 BC), IBM System z9 ® Enterprise Class (z9 ® EC), and IBM System z9 Business Class (z9 BC). It is divided into nine functional areas; – Application Programming Interfaces, – Cryptographic features, – I/O, – Business On Demand, – Parallel Sysplex ®, – Performance, – Processor Resource Systems Manager (PR/SM ™) – Reliability, Availability, Serviceability (RAS) – IBM zEnterprise BladeCenter ® Extension (zBX) There is also a legend at the end of the matrix to identify the symbols that are being used. Note: This matrix is not intended to include services, RPQs or specific quantities or measurements related performance, memory size, bandwidth, etc. The intention of this matrix is to provide a comparison of the standard and optional features for the various System z servers. For further details on the features and functions listed in the tables, refer to the system specific reference guide documentation. This document is available from the Library area of Resource Link ™ at: www.ibm.com/servers/resourcelink Key: S = standard O = optional - = not supported zEnterprise System z10 System z9 ™ Application Programming Interface (API) ™ zEC12 zBC12 z196 z114
    [Show full text]
  • IBM System Z9 Enterprise Class
    The server built to help optimize your resources throughout the enterprise IBM System z9 Enterprise Class A “classic” might just be the best Today’s market finds that business needs are changing, and having a com­ petitive advantage isn’t always about having more or being bigger, but more about being smarter and responding faster to change and to your clients. Often, being reactive to change has led to infrastructures with mixed technolo­ gies, spread across an enterprise, that are complex and difficult to control and costly to manage. Integration of appli­ cations and data is limited and difficult. Using internal information to make insightful decisions for the company Highlights can be difficult because knowing you are using the “best” data—that which is ■ Strengthening the role of the ■ Continued improvement in most current and complete—may not mainframe as the data hub of IBM FICON® performance and be possible. the enterprise throughput In many situations, investments have ■ New versatile capacity settings ■ On demand innovative tech­ been made in disparate technologies designed to optimize capacity nologies to help meet ever- that may fall short of meeting their and cost changing business demands goals. Merging information from one branch to another may not be possible ■ IBM System z9™ Integrated and so company direction is set with Information Processor (IBM zIIP) is designed to improve resource optimization and lower the cost of eligible work only a portion of the data at hand, and help achieve advanced I/O function and But data management can be a big in a global economy that can really hurt.
    [Show full text]
  • Ist Das Z/OS (Objekt-) Relationale Datenbank-Produkt
    Betriebssysteme it-Akademie Bayern z/OS und OS/390 Lehrgang 2009 Prof. Dr.-Ing. Wilhelm G. Spruth Teil 9b z/OS Subsysteme bs 0901 ww6 © copyright W. G. Spruth, 10-2000 wgs 03-95 Server Zugriff Unterschied zwischen Einzelplatzrechner und Client/Server Betriebssystemen. NT und Unix werden für beides eingesetzt. OS/390 ist ein reinrassiges Server Betriebssystem. Andere Beispiele für Server Betriebssysteme: Tandem Pathway, DEC Vax. Ein Server Zugriff benötigt spezielle Client Software. Möglichkeiten für selbstgeschriebene Klient-Anwendungen: Sockets, RPC, Corba, DCOM, RMI Zeilenorientierte Klienten: Unix Server Telnet Client OS/390 Server 3270 Client Vax Server VT 100 Client Klienten mit graphischer Oberfläche: NT Server Citrix Client WWW Server Browser Client SAP R/3 Server SAPGUI Client OS/390 Server Servlet, Java Server Page Client Client Server NT OS/390 LAN oder Internet Jedi 3270 Client Telnet, TN3270 es 0537 ww6 wgs 07-00 Typical online use Typical online use 1. A customer uses an ATM, which presents a user- friendly interface for various functions: Withdrawal, query account balance, deposit, transfer, or cash advance from a credit card account. 2. Elsewhere in the same private network, a bank employee in a branch office performs operations such as consulting, fund applications, and money ordering. 3. At the bank’s central office, business analysts tune transactions for improved performance. Other staff use specialized online systems for office automation to perform customer relationship management, budget planning, and stock control. 4. All requests directed to the mainframe computer for processing. 5. Programs running on the mainframe computer perform updates and inquires to the database management system (for example, DB2).
    [Show full text]
  • DB2 V8 Exploitation of IBM Ziip
    Systems & Technology Group Connecting the Dots: LPARs, HiperDispatch, zIIPs and zAAPs Share in Boston,v August 2010 Glenn Anderson IBM Technical Training [email protected] © 2010 IBM Corporation What I hope to cover...... What are dispatchable units of work on z/OS Understanding Enclave SRBs How WLM manages dispatchable units of work The role of HiperDispatch What makes work eligible for zIIP and zAAP specialty engines Dispatching work to zIIP and zAAP engines z/OS Dispatchable Units There are different types of Dispatchable Units (DU's) in z/OS Preemptible Task (TCB) Non Preemptible Service Request (SRB) Preemptible Enclave Service Request (enclave SRB) Independent Dependent Workdependent z/OS Dispatching Work Enclave Services: A Dispatching Unit Standard dispatching dispatchable units (DUs) are the TCB and the SRB TCB runs at dispatching priority of address space and is pre-emptible SRB runs at supervisory priority and is non-pre-emptible Advanced dispatching units Enclave Anchor for an address space-independent transaction managed by WLM Can comprise multiple DUs (TCBs and Enclave SRBs) executing across multiple address spaces Enclave SRB Created and executed like an ordinary SRB but runs with Enclave dispatching priority and is pre-emptible Enclave Services enable a workload manager to create and control enclaves Enclave Characteristics Created by an address space (the "owner") SYS1 AS1 AS2 AS3 One address space can own many enclaves One enclave can include multiple Enclave dispatchable units (SRBs/tasks) executing concurrently in
    [Show full text]
  • IBM Z Server Time Protocol Guide
    Front cover Draft Document for Review August 3, 2020 1:37 pm SG24-8480-00 IBM Z Server Time Protocol Guide Octavian Lascu Franco Pinto Gatto Gobehi Hans-Peter Eckam Jeremy Koch Martin Söllig Sebastian Zimmermann Steve Guendert Redbooks Draft Document for Review August 3, 2020 7:26 pm 8480edno.fm IBM Redbooks IBM Z Server Time Protocol Guide August 2020 SG24-8480-00 8480edno.fm Draft Document for Review August 3, 2020 7:26 pm Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (August 2020) This edition applies to IBM Server Time Protocol for IBM Z and covers IBM z15, IBM z14, and IBM z13 server generations. This document was created or updated on August 3, 2020. © Copyright International Business Machines Corporation 2020. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Draft Document for Review August 3, 2020 8:32 pm 8480TOC.fm Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Comments welcome. .x Stay connected to IBM Redbooks . xi Chapter 1. Introduction to Server Time Protocol . 1 1.1 Introduction to time synchronization . 2 1.1.1 Insertion of leap seconds . 2 1.1.2 Time-of-Day (TOD) Clock . 3 1.1.3 Industry requirements . 4 1.1.4 Time synchronization in a Parallel Sysplex. 6 1.2 Overview of Server Time Protocol (STP) . 7 1.3 STP concepts and terminology . 9 1.3.1 STP facility . 9 1.3.2 TOD clock synchronization .
    [Show full text]
  • IBM System Z10 Business Class - the Smart Choice for Your Business
    IBM United States Hardware Announcement 108-754, dated October 21, 2008 IBM System z10 Business Class - The smart choice for your business. z can do IT better Table of contents 4 Key prerequisites 36 Publications 4 Planned availability dates 38 Services 5 Description 38 Technical information 35 Product positioning 55 IBM Electronic Services 36 Statement of general direction 55 Terms and conditions 36 Product number 57 Pricing 36 Education support 57 Order now 58 Corrections At a glance The IBM® System z10 BC is a world-class enterprise server built on the inherent strengths of the IBM System z® platform. It is designed to deliver new technologies and virtualization that provide improvements in price/performance for key new workloads. The System z10 BC further extends System z leadership in key capabilities with the delivery of granular growth options, business-class consolidation, improved security and availability to reduce risk, and just-in-time capacity deployment helping to respond to changing business requirements. Whether you want to deploy new applications quickly, grow your business without growing IT costs, or consolidate your infrastructure for reduced complexity, look no further - z Can Do IT. The System z10 BC delivers: • The IBM z10 Enterprise Quad Core processor chip running at 3.5 GHz, designed to help improve CPU intensive workloads. • A single model E10 offering increased granularity and scalability with 130 available capacity settings. • Up to a 5-way general purpose processor and up to 5 additional Specialty Engine processors or up to a 10-way IFL or ICF server for increased levels of performance and scalability to help enable new business growth.
    [Show full text]
  • IBM Z Connectivity Handbook
    Front cover IBM Z Connectivity Handbook Octavian Lascu John Troy Anna Shugol Frank Packheiser Kazuhiro Nakajima Paul Schouten Hervey Kamga Jannie Houlbjerg Bo XU Redbooks IBM Redbooks IBM Z Connectivity Handbook August 2020 SG24-5444-20 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. Twentyfirst Edition (August 2020) This edition applies to connectivity options available on the IBM z15 (M/T 8561), IBM z15 (M/T 8562), IBM z14 (M/T 3906), IBM z14 Model ZR1 (M/T 3907), IBM z13, and IBM z13s. © Copyright International Business Machines Corporation 2020. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too! . xi Comments welcome. xi Stay connected to IBM Redbooks . xi Chapter 1. Introduction. 1 1.1 I/O channel overview. 2 1.1.1 I/O hardware infrastructure . 2 1.1.2 I/O connectivity features . 3 1.2 FICON Express . 4 1.3 zHyperLink Express . 5 1.4 Open Systems Adapter-Express. 6 1.5 HiperSockets. 7 1.6 Parallel Sysplex and coupling links . 8 1.7 Shared Memory Communications. 9 1.8 I/O feature support . 10 1.9 Special-purpose feature support . 12 1.9.1 Crypto Express features . 12 1.9.2 Flash Express feature . 12 1.9.3 zEDC Express feature . 13 Chapter 2. Channel subsystem overview . 15 2.1 CSS description . 16 2.1.1 CSS elements .
    [Show full text]
  • IDUG EU 2009 Patric Becker: Leveraging Data Warehouse
    Session: A01 Leveraging Data Warehouse Performance with DB2 9 for z/OS and System z10 Patric Becker IBM Boeblingen Lab 05 October 2009 • 11:30 – 12:30 Platform: DB2 for z/OS This session looks into new feature delivered with IBM System z10 as well as the new capabilities of DB2 9 for z/OS and highlights those options which can be beneficial for Data Warehousing environments in terms of availability and performance. Not all the relevant features can be described at a very granular level, but the idea is to provide information to understand the important features to trigger further analysis to improve the availability and performance of existing Data Warehouses. IBM Deutschland Research & Development GmbH IBM D Research & Development Headquarter IBM Deutschland Research & Development GmbH Schönaicher Straße 220 D-71032 Böblingen Berlin Managing Director Erich Baier Employees 2008 Approx. 1.800 (2.200) Homepage ibm.com/de/entwicklung Very strong development portfolio Mainz Globally integrated in hardware and software Walldorf development One of the biggest IBM R&D location world wide IBM Forschung & Böblingen Acknowledged innovation team Entwicklung ~ 310 patent submissions 2008 München ~ 400 students 2008 IND GmbH ~ 80 new-hires 2007 2 IBM Research & Development Locations worldwide Böblingen Greenock ▲ Yorktown Heights Toronto Hursley ▲ Peking Rochester Krakau Boulder Dublin Moskau Beaverton Paris Fujisawa ▲ Zürich ▲ Tokio Burlington Rom Yasu Yamato Endicott San Jose Shanghai ▲ Almaden East Fishkill Santa Teresa Poughkeepsie
    [Show full text]
  • Basic of Mainframe
    Basic of Mainframe Mainframe computer Mainframe is a very large and expensive computer capable of supporting hundreds, or even thousands, of users simultaneously. In the hierarchy that starts with a simple microprocessor at the bottom and moves to supercomputers at the top, mainframes are just below supercomputers. In some ways, mainframes are more powerful than supercomputers because they support more simultaneous programs. But supercomputers can execute a single program faster than a mainframe. The distinction between small mainframes and minicomputers is vague, depending really on how the manufacturer wants to market its machines. Modern mainframe computers have abilities not so much defined by their single task computational speed (usually defined as MIPS ² Millions of Instructions Per Second) as by their redundant internal engineering and resulting high reliability and security, extensive input- output facilities, strict backward compatibility with older software, and high utilization rates to support massive throughput. These machines often run for years without interruption, with repairs and hardware upgrades taking place during normal operation. Software upgrades are only non-disruptive when Parallel Sysplex is in place, with true workload sharing, so one system can take over another's application, while it is being refreshed. More recently, there are several IBM mainframe installations that have delivered over a decade of continuous business service as of 2007, with hardware upgrades not interrupting service. Mainframes are defined by high availability, one of the main reasons for their longevity, because they are typically used in applications where downtime would be costly or catastrophic. The term Reliability, Availability and Serviceability (RAS) is a defining characteristic of mainframe computers.
    [Show full text]
  • 1. Types of Computers Contents
    1. Types of Computers Contents 1 Classes of computers 1 1.1 Classes by size ............................................. 1 1.1.1 Microcomputers (personal computers) ............................ 1 1.1.2 Minicomputers (midrange computers) ............................ 1 1.1.3 Mainframe computers ..................................... 1 1.1.4 Supercomputers ........................................ 1 1.2 Classes by function .......................................... 2 1.2.1 Servers ............................................ 2 1.2.2 Workstations ......................................... 2 1.2.3 Information appliances .................................... 2 1.2.4 Embedded computers ..................................... 2 1.3 See also ................................................ 2 1.4 References .............................................. 2 1.5 External links ............................................. 2 2 List of computer size categories 3 2.1 Supercomputers ............................................ 3 2.2 Mainframe computers ........................................ 3 2.3 Minicomputers ............................................ 3 2.4 Microcomputers ........................................... 3 2.5 Mobile computers ........................................... 3 2.6 Others ................................................. 4 2.7 Distinctive marks ........................................... 4 2.8 Categories ............................................... 4 2.9 See also ................................................ 4 2.10 References
    [Show full text]