Orbital Evolution, Activity, and Mass Loss of Comet C/1995 O1 (Hale

Total Page:16

File Type:pdf, Size:1020Kb

Orbital Evolution, Activity, and Mass Loss of Comet C/1995 O1 (Hale Version September 12, 2017 Preprint typeset using LATEX style emulateapj v. 08/22/09 ORBITAL EVOLUTION, ACTIVITY, AND MASS LOSS OF COMET C/1995 O1 (HALE-BOPP). I. CLOSE ENCOUNTER WITH JUPITER IN THIRD MILLENNIUM BCE AND EFFECTS OF OUTGASSING ON THE COMET’S MOTION AND PHYSICAL PROPERTIES Zdenek Sekanina1 & Rainer Kracht2 1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 2Ostlandring 53, D-25335 Elmshorn, Schleswig-Holstein, Germany Version September 12, 2017 ABSTRACT This comprehensive study of comet C/1995 O1 focuses first on investigating its orbital motion over a period of 17.6 yr (1993–2010). The comet is suggested to have approached Jupiter to 0.005 AU on 2251 November 7, in general conformity with Marsden’s (1999) proposal of a Jovian encounter nearly 4300− yr ago. The variations of sizable nongravitational effects with heliocentric distance correlate with the evolution of outgassing, asymmetric relative to perihelion. The future orbital period will shorten to 1000 yr because of orbital-cascade resonance effects. We find that the sublimation curves of parent molecules∼ are fitted with the type of a law used for the nongravitational acceleration, determine their orbit-integrated mass loss, and conclude that the share of water ice was at most 57%, and possibly less than 50%, of the total outgassed mass. Even though organic parent molecules (many still unidentified) had very low abundances relative to water individually, their high molar mass and sheer number made them, summarily, important potential mass contributors to the total production of gas. The mass loss of dust per orbit exceeded that of water ice by a factor of 12, a dust loading high enough to imply a major role for heavy organic molecules of low volatility in∼ accelerating the minuscule dust particles in the expanding halos to terminal velocities as high as 0.7 km s−1. In Part II, the comet’s nucleus will be modeled as a compact cluster of massive fragments to conform to the integrated nongravitational effect. Subject headings: comets: individual (C/1995 O1) — methods: data analysis 1. INTRODUCTION: MAKING CASE FOR A CLOSE one year before the 1997 perihelion and that the orbit had ENCOUNTER WITH JUPITER originally been more elongated, with a period of slightly The celebrated comet C/1995 O1 (Hale-Bopp) was ex- longer than 4200 yr. Obviously, the object did not arrive ceptional in a number of ways, one of which was its enor- from the Oort Cloud; its previous perihelion passage had mous intrinsic brightness. This trait rendered it possible occurred in the course of the 23rd century BCE. to discover and observe the comet at very large helio- As described by Marsden, this was only a minor part centric distance and to collect astrometric observations of the story. Because the comet’s ascending node places over a long period of time. Discovered visually on 1995 it practically on Jupiter’s orbit, extremely close encoun- July 23, more than 600 days before perihelion, as an ob- ters with the planet are possible, and Marsden (1999) ject of mag 10.5–10.8 (Hale & Bopp 1995), the comet argued that this was precisely what happened 42 cen- was subsequently recognized at mag 18 on a plate taken turies ago on the comet’s approach to perihelion. He even on 1993 April 27 with the 124-cm UK Schmidt telescope ventured to propose that the comet had been captured of the Siding Spring Observatory near Coonabarabran, by Jupiter’s gravity from its original Oort-Cloud-type, N.S.W., Australia (McNaught 1995), 3.9 yr before per- highly elongated orbit. ihelion and 13.0 AU from the Sun. With the latest as- In his investigation, Marsden (1999) was handicapped trometrically measured images from 2010 December 4 by a relatively short interval of time that the comet’s observations then spanned. The last observation he em- arXiv:1703.00928v2 [astro-ph.EP] 11 Sep 2017 (when 30.7 AU from the Sun!), taken with the 220-cm f/8.0 Ritchey-Chr`etien reflector of the European South- ployed was dated 1998 February 8, so that the observed ern Observatory’s Station at La Silla, Chile (Sarneczky orbital arc was only 4.8 yr long, not much more than a et al. 2011), the observed orbital arc covers a period of quarter of the interval of time available nowadays. 17.6 yr, with 13.7 yr of post-perihelion astrometry — an The fascinating problem of the long-term orbital evo- unprecedented feat for a single-apparition comet. lution of C/1995 O1 and the related issues warrant a new No less astonishing is the orbital history of the comet investigation, given in particular that the much greater (Marsden 1999). Soon after its discovery, the orbit could span of astrometric observations currently available al- substantially be improved thanks to the Siding Spring lows us to conduct a considerably more profound exam- pre-discovery observation. Although Marsden eventually ination of the orbital scenario and its potential implica- determined that the near-perihelion osculating orbital tions than it was possible a dozen or more years ago [for period equalled about 2530 yr, he noticed that this was some later efforts similar to Marsden’s (1999), see, e.g., due in part to the perturbations by Jupiter during the Szutowicz et al. (2002) or Kr´olikowska (2004)]. We fur- comet’s approach to within 0.8 AU of the planet about ther propose to confront our approach and results with evidence from the comet’s physical observations made in Electronic address: [email protected] the course of the 1997 apparition and to draw conclusions [email protected] from this data interaction. 2 Sekanina & Kracht 2. DATA, TOOLS, AND METHOD OF APPROACH two consecutive solutions — before and after elimination We began by collecting 3581 astrometric observations of the poor-quality data — could cause that some data of comet C/1995 O1 from the database maintained by points with the residuals slightly exceeding the limit in the Minor Planet Center.1 This is a complete list of the the first solution (and therefore removed from the set of comet’s currently available astrometric data in equinox used observations) just satisfied the limit in the second J2000. Besides the single pre-discovery observation in solution (and were to be incorporated back into the set); 1993 (McNaught 1995), the data set contains 830 obser- while other data points with the residuals just satisfy- vations from the year 1995, 1458 from 1996, 653 from ing the limit in the first solution (and therefore kept in 1997, 295 from 1998, 198 from 1999, 50 from 2000, 51 the set) slightly exceeded the limit in the second solution from 2001, 9 from 2002, 14 from 2003, 14 from 2005 (and were now to be removed from the set). In order to (of which 6 from January–February and 8 from July– comply with the cutoff rule, it was necessaary to iterate August), 5 observations from 2007 October, and 3 from the process until the number of astrometric observations 2010 December 4.2 that passed the test fully stabilized. As described in Section 3 below, the single observa- The primary objective of the first phase of our orbit- ′′ determination effort was to subject the collected set of tion of 1993 is known to be accurate to about 1 , while astrometric observations to tests in order to extract a nearly a half of the observations from 2005 and all from subset of high-accuracy observations. To ensure that this 2007-2010 were made with large telescopes; the more ad- has indeed been achieved requires an introduction of a vanced solutions (Sections 6.2–6.3) showed a posteriori cutoff or threshold of choice for removing from the col- that these data points satisfied the tight limit and were lection all individual observations whose (observed mi- not subjected to the aforementioned test. nus computed) residuals in right ascension, (O C) , With these basic rules in mind, we applied an orbit- − RA determination code EXORB7 , written by A. Vitagliano, or declination, (O C)Decl, exceed the limit. In practice, the task is made difficult− by the fact that a residual ex- both in its gravitational and nongravitational modes. Us- ceeding the limit does so for one of two fundamentally ing the JPL DE421 ephemeris, the code accounts for the different reasons: either because the astrometric position perturbations by the eight planets, by Pluto, and by the is of poor quality or because the comet’s motion is mod- three most massive asteroids, as well as for the relativis- eled inadequately. The aim of the procedure is to reject tic effect. The nongravitational accelerations are incor- the data points with large residuals that are of the first porated directly into the equations of motion (Section 4). category but not of the second category; to discriminate The code employs a least-squares optimization method between the two categories requires an incorporation of to derive the resulting elements and other parameters. an efficient filter. Typically, the category into which an 3. PAST WORK AND PURELY GRAVITATIONAL observation with a large residual belongs is revealed by SOLUTIONS comparing, with one another, observations over a lim- ited orbital arc: if all or most of them exhibit systematic The comet’s pre-discovery image from 1993, measured residuals, the problem is in the comet’s modeled motion; by McNaught (1995), is of major significance, because it if one or a few stand out in reference to the majority, it extends the observed orbital arc by 27 months.
Recommended publications
  • A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository The Astrophysical Journal Supplement Series, 224:9 (33pp), 2016 May doi:10.3847/0067-0049/224/1/9 © 2016. The American Astronomical Society. All rights reserved. A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES P. B. Rimmer and Ch Helling School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK; [email protected] Received 2015 June 3; accepted 2015 October 22; published 2016 May 23 ABSTRACT There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life andprebiotic chemistry outside the solar system. We present an ion–neutral chemical network constructed from scratch, STAND2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. STAND2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one- dimensionalphotochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO2,H2, CO, and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present.
    [Show full text]
  • Hordern House Rare Books Pty
    77 vICTORIA STREET • POTTS POINT • SyDNEy NSw 2011 • AUSTRAlia • TElephONE (02) 9356 4411 • fAx (02) 9357 3635 HORDERN HOUSE RARE BOOKS PTY. LTD. A.B.N. 94 193 459 772 E-MAIL: [email protected] INTERNET: www.hordern.com DIRECTORS: ANNE McCORMICK • DEREK McDONNELL HORDERN HOUSE RARE BOOKS • MANUSCRIPTS • PAINTINGS • PRINTS • RARE BOOKS • MANUSCRIPTS • PAINTINGS • PRINTS • RARE BOOKS • MANUSCRIPTS • PAINTINGS Acquisitions • October 2015 Important Works on Longitude 2. [BOARD OF LONGITUDE]. The 3. [BUREAU DES LONGITUDES]. Nautical Almanac and Astronomical Connaissance des tems, a l’usage des Ephemeris, for the Year 1818. Astronomes et des Navigateurs pour l’an X… Octavo, very good in original polished calf, faithfully rebacked. London, John Octavo, folding world map and two Murray 1815. folding tables; an attractive copy in contemporary marbled calf, gilt, red Rare copy of the Nautical Almanac for spine label. Paris, l’Imprimerie de la 1818, a fundamental inclusion in the République, Fructidor, An VII, that is shipboard library of any Admiralty- circa August 1799. sponsored voyage. The Almanac was used for reckoning the longitude at sea A handsome copy of this rare work by the lunar method, and was closely by the French Bureau des Longitudes, studied by officers of the Royal Navy. for use by naval officers for the year The continued publication of such 1802 and 1803. The volume includes a almanacs is further proof that the handsome map of the world showing invention of the chronometer, (whilst the track of a solar eclipse that revolutionary), did not completely occurred in August of that year. Much supersede the necessity for other fail- like the British equivalent, these tables 1.
    [Show full text]
  • WHERE WAS MEAN SOLAR TIME FIRST ADOPTED? Simone Bianchi INAF-Osservatorio Astrofisico Di Arcetri, Largo E. Fermi, 5, 50125, Flor
    WHERE WAS MEAN SOLAR TIME FIRST ADOPTED? Simone Bianchi INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125, Florence, Italy [email protected] Abstract: It is usually stated in the literature that Geneva was the first city to adopt mean solar time, in 1780, followed by London (or the whole of England) in 1792, Berlin in 1810 and Paris in 1816. In this short paper I will partially revise this statement, using primary references when available, and provide dates for a few other European cities. Although no exact date was found for the first public use of mean time, the primacy seems to belong to England, followed by Geneva in 1778–1779 (for horologists), Berlin in 1810, Geneva in 1821 (for public clocks), Vienna in 1823, Paris in 1826, Rome in 1847, Turin in 1849, and Milan, Bologna and Florence in 1860. Keywords: mean solar time 1 INTRODUCTION The inclination of the Earth’s axis with respect to the orbital plane and its non-uniform revolution around the Sun are reflected in the irregularity of the length of the day, when measured from two consecutive passages of the Sun on the meridian. Though known since ancient times, the uneven length of true solar days became of practical interest only after Christiaan Huygens (1629 –1695) invented the high-accuracy pendulum clock in the 1650s. For proper registration of regularly-paced clocks, it then became necessary to convert true solar time into mean solar time, obtained from the position of a fictitious mean Sun; mean solar days all having the same duration over the course of the year.
    [Show full text]
  • Le Bureau Des Longitudes: Imitation Du Board of Longitude Britannique?
    Le Bureau des longitudes : imitation du Board of Longitude britannique ? Martina Schiavon To cite this version: Martina Schiavon. Le Bureau des longitudes : imitation du Board of Longitude britannique ?. 2018. hal-03218044 HAL Id: hal-03218044 https://hal.univ-lorraine.fr/hal-03218044 Submitted on 5 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Le Bureau des longitudes : imitation du Board of Longitude britannique ? Martina Schiavon Figure 1 - Salle de réunion du Bureau des longitudes (Source : Bureau des longitudes) Premières réflexions après la mise en ligne des procès-verbaux du Bureau des longitudes Dans son rapport sur les besoins actuels du Bureau des longitudes du 22 septembre 1920, l’astronome et mathématicien Marie-Henri Andoyer (1862-1929) revenait ainsi sur la création du Bureau : « Le nom même de “Bureau des Longitudes” est la simple traduction du nom anglais de l’établissement analogue “Board of Longitude”, chargé de publier le Nautical Almanach pour l’usage des marins et de rechercher les meilleures méthodes pour résoudre le problème fondamental de la détermination des longitudes, soit sur mer, soit à terre.
    [Show full text]
  • Siméon-Denis Poisson Mathematics in the Service of Science
    S IMÉ ON-D E N I S P OISSON M ATHEMATICS I N T H E S ERVICE O F S CIENCE E XHIBITION AT THE MATHEMATICS LIBRARY U NIVE RSIT Y O F I L L I N O I S A T U RBANA - C HAMPAIGN A U G U S T 2014 Exhibition on display in the Mathematics Library of the University of Illinois at Urbana-Champaign 4 August to 14 August 2014 in association with the Poisson 2014 Conference and based on SIMEON-DENIS POISSON, LES MATHEMATIQUES AU SERVICE DE LA SCIENCE an exhibition at the Mathematics and Computer Science Research Library at the Université Pierre et Marie Curie in Paris (MIR at UPMC) 19 March to 19 June 2014 Cover Illustration: Portrait of Siméon-Denis Poisson by E. Marcellot, 1804 © Collections École Polytechnique Revised edition, February 2015 Siméon-Denis Poisson. Mathematics in the Service of Science—Exhibition at the Mathematics Library UIUC (2014) SIMÉON-DENIS POISSON (1781-1840) It is not too difficult to remember the important dates in Siméon-Denis Poisson’s life. He was seventeen in 1798 when he placed first on the entrance examination for the École Polytechnique, which the Revolution had created four years earlier. His subsequent career as a “teacher-scholar” spanned the years 1800-1840. His first publications appeared in the Journal de l’École Polytechnique in 1801, and he died in 1840. Assistant Professor at the École Polytechnique in 1802, he was named Professor in 1806, and then, in 1809, became a professor at the newly created Faculty of Sciences of the Université de Paris.
    [Show full text]
  • Basic Description for Ground and Air Hazardous
    BASIC DESCRIPTION FOR GROUND AND AIR GROUND AND AIR HAZARDOUS MATERIALS SHIPMENTS GROUND SHIPMENTS AIR SHIPMENTS SHIPMENTS HAZARD DOT DOT CLASS OR MAXIMUM EXEMPTION, GROUND EXEMPTION, HAZARDOUS MATERIALS DESCRIPTIONS DIVISION I.D. NUMBER LABEL(S) REQUIRED OR QUANTITY PER SPECIAL SERVICE TO LABEL(S) REQUIRED OR MAXIMUM NET CARGO SPECIAL NON-BULK AND PROPER SHIPPING NAME (Subsidiary if (ALSO MARK PACKING EXEMPTION, SPECIAL PERMIT INNER PERMIT CANADA EXEMPTION, SPECIAL PERMIT QUANTITY PER AIRCRAFT PERMIT SPECIAL EXCEPTIONS PACKAGING (ALSO MARK ON PACKAGE) applicable) ON PACKAGE) GROUP OR EXCEPTION RECEPTACLE OR 173.13 PERMITTED OR EXCEPTION PACKAGE** QUANTITY OR 173.13 PROVISIONS §173.*** §173.*** (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) Accellerene, see p-Nitrosodimethylaniline Accumulators, electric, see Batteries, wet etc Accumulators, pressurized, pneumatic or hydraulic (containing non-flammable gas), see Articles pressurized, pneumatic or hydraulic (containing non-flammable gas) FLAMMABLE FLAMMABLE Acetal 3 UN1088 II LIQUID * YES LIQUID * 5 L 150 202 FLAMMABLE Acetaldehyde 3 UN1089 I LIQUID YES Forbidden None 201 May not be regulated when shipped via UPS Acetaldehyde ammonia 9 UN1841 III ground YES CLASS 9 * 30 kg 30 kg 155 204 FLAMMABLE FLAMMABLE Acetaldehyde oxime 3 UN2332 III LIQUID * YES LIQUID * 25 L 150 203 CORROSIVE, CORROSIVE, Acetic acid, glacial or Acetic acid solution, FLAMMABLE FLAMMABLE A3, A6, with more than 80 percent acid, by mass 8 (3) UN2789 II LIQUID * YES LIQUID * 1 L A7, A10 154 202 Acetic
    [Show full text]
  • List of Reactive Chemicals
    LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction.
    [Show full text]
  • Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether Pedersen, Troels Dyhr Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Pedersen, T. D. (2011). Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. - 1 - - Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether PhD Thesis Troels Dyhr Pedersen DTU Mechanical Engineering Department of Mechanical Engineering - 2 - - Table of contents 1 FOREWORD 6 2 NOMENCLATURE 7 3 RÉSUMÉ 8 4 RESUMÉ (DANSK) 10 5 INTRODUCTION 12 5.1 About HCCI combustion 12 5.2 Background of this project 13 5.3 Scope of investigation 14 5.3.1 The study on combustion
    [Show full text]
  • Hazardous Materials Table Quirements
    Pipeline and Hazardous Materials Safety Admin., DOT § 172.101 Subpart H—Training this part, that person shall perform the function in accordance with this part. 172.700 Purpose and scope. 172.701 Federal-State relationship. [Amdt. 172–29, 41 FR 15996, Apr. 15, 1976, as 172.702 Applicability and responsibility for amended by Amdt. 172–32, 41 FR 38179, Sept. training and testing. 9, 1976] 172.704 Training requirements. Subpart B—Table of Hazardous Subpart I—Safety and Security Plans Materials and Special Provisions 172.800 Purpose and applicability. § 172.101 Purpose and use of haz- 172.802 Components of a security plan. ardous materials table. 172.804 Relationship to other Federal re- (a) The Hazardous Materials Table quirements. (Table) in this section designates the 172.820 Additional planning requirements for transportation by rail. materials listed therein as hazardous 172.822 Limitation on actions by states, materials for the purpose of transpor- local governments, and Indian tribes. tation of those materials. For each listed material, the Table identifies the APPENDIX A TO PART 172—OFFICE OF HAZ- hazard class or specifies that the mate- ARDOUS MATERIALS TRANSPORTATION rial is forbidden in transportation, and COLOR TOLERANCE CHARTS AND TABLES gives the proper shipping name or di- APPENDIX B TO PART 172—TREFOIL SYMBOL rects the user to the preferred proper APPENDIX C TO PART 172—DIMENSIONAL SPEC- IFICATIONS FOR RECOMMENDED PLACARD shipping name. In addition, the Table HOLDER specifies or references requirements in APPENDIX D TO PART 172—RAIL RISK ANAL- this subchapter pertaining to labeling, YSIS FACTORS packaging, quantity limits aboard air- craft and stowage of hazardous mate- AUTHORITY: 49 U.S.C.
    [Show full text]
  • Document on Foundation of Bureau Des Longitudes (Pdf)
    Brief History of the Bureau des Longitudes After hearing a report read by the abbé Grégoire, the Bureau des Longitudes was created by a law of the National Convention of the 7 messidor year III (June 25 1795). The purpose was to reassume "the mastery of the seas from the English", through the improvement of the determination of longitudes at sea. Charged with the compilation of Knowledge of the Times and perfecting the astronomical tables, he had responsibility for the Paris observatory, the observatory of the Military school and all the astronomy instruments that belonged to the Nation. The ten founding members had been: Lagrange, Laplace, Lalande, Delambre, Méchain, Cassini, Bougainville, Borda, Buache and Caroché. It was charged, by the decree of January 30 1854 with a larger mission bringing to it, in addition realization of the ephemerides by its "Calculations Service" created in 1802, to organize several big scientific expeditions: geodetic measurements, observation of solar eclipses, observation of the passage of Venus in front of the Sun, works that were published in the Annals of the Bureau des Longitudes. It participated equally in the foundation of several scientific organisations such as the International Office of Time (1919), the Group of Researches of Spatial Géodésie (1971) and the International Earth Rotation Service (1988). Law of the year III and Regulations FOUNDATION OF THE OFFICE OF THE LONGITUDES Report made to the National Convention in its meeting of the 7 messidor year III (June 25 1795), by the Representative of the People GRÉGOIRE, on the establishment of the Office of the Longitudes.
    [Show full text]
  • Energeticchemical Search This Site
    energeticchemical Search this site Experimental Explosive Chemistry Under Construction-1 Nitro Alkanes Under Construction-2 Links NitroAlkanes are, in general, insensitive, and quite energetic when detonated. However, the secondary nitro compounds, Distillation and Crystallization whether the two nitro groups are on the same carbon or adjoining carbons, are thermally unstable. Recent Additions, Updates 2,2-dinitro propane has a melting point of 51.5degC, and is thermally unstable when warmed. At 75degC, it loses a 2/3rds Compositions of its weight after two days. It should be used soon after it is made, or be kept cold. 1,2-dinitroethane is described as being Less Energetic Basic Compounds fairly reactive, but I am unsure as to how it is. Explosive Effects and Applications By Jonas A. Zukas Sitemap Trinitromethane Trinitromethane, while still giving off mildly poisonous fumes, is far less toxic than tetranitromethane. You would be well 3650 advised to avoid ever preparing tetranitromethane, which was once considered for use as a chemical weapon. (should it be desired to have the compound synthesized despite this, tetranitromethane is produced in high yield by the treatment of days since Project Due Date acetic anhydride with concentrated nitric acid) Join Our Discussion A mixture of nitromethane and NaOH will form the salt of nitromethane, sodium 'nitromethanate'. Bubble in nitrogen dioxide into a solution of this salt, and trinitromethane can be obtained, because the intermediate aci- form of nitromethane, which is vulnerable to oxidation, is formed. The aci-form is probably CH2=NO2H. Alternatively, bubble mixed nitric oxides into a solution of sodium nitrite and nitromethane (which is sparingly soluble in water), then bubble in only nitrogen dioxide.
    [Show full text]
  • Les Annales Du Bureau Des Longitudes Travaux Faits Par L
    Annales du Bureau des longitudes (1877-1949) MARTINA SCHIAVON L.H.S.P. – Archives Henri Poincaré (UMR 7117 – CNRS) Université de Lorraine (France) Circulating Mathematics via Journals: The Rise of Internationalisation 1850-1920 Conference at the Mittag-Leffler Institute, Wednesday, 22 June 2016 Djursholm • Titles : Key elements 1877 : Annales du Bureau des longitudes et de l’observatoire astronomique de Montsouris 1882 Annales du Bureau des longitudes : travaux faits à l’observatoire astronomique de Montsouris (section navale) et mémoires diverses >1911 Annales du Bureau des longitudes 1949 in collaboration with the CNRS • Publisher (and Redaction Schiavon M. committee) : Bureau des longitudes Associated publisher : Ministère de la Marine • Printer : Jean-Albert Gauthier- Villars • Publication : 1877 – 1949 Digitized © Gallica (13th numbers) Plan • Why the Annales ? • Testing a periodization - crossing various elements on the diffusion of the Annales • Why the end ? M. Schiavon Schiavon M. Plan • Why the Annales ? • Testing a periodization - crossing various elements on the diffusion of the Annales • Why the end ? M. Schiavon Schiavon M. Reading the Bureau des longitudes minutes (1877-1878) « Les procès-verbaux du Bureau des longitudes. Un patrimoine numérisé (1795-1932) » http://bdl.ahp-numerique.fr/ • Minute of the 24th Mai 1876: « Il est donné lecture au bureau d'une lettre de monsieur le ministre de la marine accordant une subvention annuelle de deux mille francs pour la publication dans les annales du bureau des observations faites par les officiers de marine attachés à l'observatoire de MontSouris ». (©“Bureau des Longitudes - Séance du mercredi 24 mai 1876”, Les procès-verbaux du Bureau des longitudes , consulté le 13 juin 2016, http://purl.oclc.org/net/bdl/items/show/3269).
    [Show full text]