May 30, 1967 H. WALTER ETAL 3,321,920

Total Page:16

File Type:pdf, Size:1020Kb

May 30, 1967 H. WALTER ETAL 3,321,920 May 30, 1967 H. WALTER ETAL 3,321,920 METHOD OF PRODUCING PROPULSIVE FORCES BY INTERMI EXPLOSIONS USING GEM-POLYNITRO AND TTENT HYDRAZINE COMFOUNDS Filed June 29, 1964 INVENTORS 3,321,920 United States Patent Office Patented May 30, 1967 2 3,321,920 Instead of the parabolic thrust chamber shown in FIG. METHOD OF PRODUCING PROPULSIVE FORCES A, a simple cylinder or a frustrum of a cone may be BY INTERMITTENT EXPLOSIONS USNG GEM. used, which is closed at one side and provide with auxil POLYNTRO AND HYDRAZINE COMPOUNDS iaries 2 and 3 as shown in FIG. A. Hans Walter and Benno Walter, Huntsville, Ala., assignors FIGURE B illustrates a jet motor 4 provided down to Brown Engineering Company, Inc., Huntsville, Ala., stream with a divergent exit duct. Explophorics from tanks a corporation of Alabama I and II (not shown) are introduced via check valves 5a Filed June 29, 1964, Ser. No. 378,736 and 5b respectively and spray nozzles 14a and 14b. The 2 Claims. (C. 60-211) detonation waves thus generated travel with supersonic speed downstream. The devices 8 through 13 are to pres The present invention relates to special propellants for 10 surize tanks I and II (not shown) in a conventional man rocket motors and more particularly to some kind of ner, however, in pulsewise rhythms. When the said detona liquid or vaporous bi-propellants that detonate spontane tion shock waves pass by slot 8 in the wall of the chamber, ously upon contact with each other. a pressure pulse is sent through an opening in the laterally Rocket motors are usually powered by ergolic as well adjustable shutter 9 and subsequently through the flat as hypergolic bi-propellants. The former group comprises dome 10 and pipe 11. Following this, the pressure pulses the combination of a liquid fuel like kerosene, alcohol or actuate the heat-impermeable piston 12, which is posi hydrogen with oxygen or nitric acid. The ignition of these tioned by spring 13. Piston 12 generates pressure pulses propellants is performed by spark plugs, glow coils or of air or any fluid, which pressurizes both tanks contain pyrotechnical igniters. If the mixing ratio of the two bi ing the explophorics with the more or less delayed pressure propellants is not efficiently controlled, motor blasts will 20 pulses inside of 4. The divergent duct may be provided occur when re-igniting. This risk may be prevented by ap with inlets 7 to induct ambient air in order to perform plying hypergolic bi-propellants, which ignite spontane supersonic aftercombustion of unburnt constituents of the ously when contacting each other, thus preventing safely explosion gases. Additional cheap fuel, like kerosene or any detonations. Hypergolic oxidizers are nitric acid, low boiling gasoline, may likewise be passed into the nitrogen dioxide, and hydrogen peroxide. 25 divergent part, where it will undergo supersonic after Now we have found that using special oxidizers in combustion with ambient air. By this way, the expenses combination with strongly reducing fuels, reacting with for propellants may be greatly decreased. spontaneous and immediate detonations, offers a new and It will be noted that the new motors do not show any advantageous method for producing repulsive forces in 30 convergent-divergent De Laval nozzle. This does not ex rocket motors. In this case the thrust is produced by clude a construction of the walls of the new thrust travelling shock waves. chambers with slight constrictions for the purpose of One of the most important objects of the present in modifying the flow of the shock waves. However, any vention is to provide a high efficiency propulsion method, choking must be prevented. in which thrust chambers without convergent-divergent Now the present invention provides special oxidizers nozzles apply. It is known that the most vulnerable part 35 which offer explophoric properties, that is, properties of all chemical rocket motors is the nozzle throat with that cause a spontaneous detonation to be produced when the erosion limiting the time of powered flight to some the oxidizer comes in contact with reducing fuel. Ex minutes and less. This problem is completely solved by plophoric oxidizers were found to be gem-polynitro the above said thrust chambers without nozzles, which 40 organic compounds in which at least two nitro groups are allow greatly prolonged flight times. linked to one carbon atom, like tetranitromethane, nitro It is another object of the present invention to provide form, beta trinitroethanol, hexanitroethane or pernitro a method for producing repulsive forces, by which any butane, preferably dissolved in nitric acid, tetranitro risk of the occurrence of motor blasts is prevented. ethane potassium in solution and fluoro trinitromethane. It is still another object of the present invention to pro Another type of explophoric oxidizer involves com vide a method in which no igniters whatever are needed. pounds of fluorine with chlorine, viz., chloro trifluoride; it is another object of the present invention to provide with oxygen like difluoro oxide or with nitrogen, like fuel-oxidizer components, hencetoforth called explo nitrogen trifluoride, tetrafluoro hydrazine, difluoro amine phorics, which detonate immediately and spontaneously and fluorinated organic amines. upon contact to each other. 50 The third type of explophoric oxdizer comprises azido For better understanding of the nature and object of compounds like sodium azide, ammonium azide or beta the invention, reference is made to the following descrip azido ethanol, which are explophoric not only with reduc tion and drawings. ing fuels but likewise with acids. Referring to FIG. A, 1 shows an explophoric thrust The above listed explophoric oxidizers may be applied chamber in the form of a paraboloid. An oxidizing and a 55 either as such, or in form of mixtures respectively in so reducing explophoric, contained in tank I and tank II lutions with each other or with non-explophoric oxidizers respectively (not shown), are introduced into 1 via check like nitric acid or hydrogen peroxide. valves 2a and 2b respectively and slightly constricted noz Reducing fuels reacting explophorically with the afore zles 3a and 3b respectively. The two explophorics, when said oxidizers are sodium-potassium alloys, hydrides of introduced, meet at abcut the focal point, whereby a boron and of aluminum, alkyls of magnesium, of zinc downstream travelling detonation shock wave is generated, 60 and of aluminum, moreover hydrazine, mono- and unsym thus producing thrust. A rarefaction wave reflected back metrical di-methyl hydrazine, diamino guanidine, carbo will generate a pressure decrease. This will actuate 2a and dihydrazide, triamino guanidine, formic acid, and acrylic 2b and suck in explophorics, liquid and/or gaseous ones, acid. from tanks I and II. The subsequent detonation with its Both types of explophorics may be applied either as strong pressure rise will close again the check valves 2a 65 such or in form of mixtures of oxidizing explophorics or and 2b, thus terminating the detonation cycle. The fre of reducing ones. They may likewise be applied as so quency of intermittent detonations may be furthermore lutions. This provides the use, not only of liquid ex controlled by varying the form of motor 1, oscillating plophorics, but likewise of solid and gaseous ones. These with organ pipe quarter waves. In this way the pulsating 70 several combinations furnish a simple means to control detonations are controlled without the co-use of mechani the induction- or detonation-delay within larger ranges. cally actuated valves. This in turn represents a control of the number of inter 3,321,920 3. 4. mittent detonations per unit time and, hence, a control Furthermore engines, powered by gas detonations, are of the thrust. to be initiated by spark plugs, pilot flames or similar A further control is furnished by varying the ratio of means, whereby a track of variable length of a slow com oxidizing and reducing explophorics. For instance, tetra bustion precedes the formation of the steady detonation nitromethane and hydrazine offer prompt detonation in Wave, thus giving rise to serious off-design operations. any ratio while liquid sodium-potassium alloy and beta This, again, differs fundamentally from explophoric op trinitroethanol offer various detonation frequencies, de eration, which involves instantaneously fully established pending largely on the mutual ratio as well as on the detonations. There is likewise a fundamental difference particle size. in comparison to conventional high explosives, which re By way of example with the explophoric combination quire the co-operation of a primer or a booster in order of tetranitromethane-hydrazine in the ratio of 60.5% to O to develop fully established detonations. 39.5% weight respectively, a specific impulse is achieved We claim: as high as 306 sec. It should furthermore be emphasized, 1. A method for producing thrust by detonation waves that external cooling of the new motors by convection in an explophoric thrust chamber in the form of a di and radiation can be performed more easily and efficiently 5 vergent exit duct, which comprises injecting intermittently than in conventional rocket motors. a gem-polynitro oxidizer and a hydrazinic fuel from Pulse jet propulsion, viz., the German V-1, likewise Separate sources. produced thrust by intermittent detonation; however, 2. A method for producing thrust by detonation waves they apply only for the air breathing operation. More in an explophoric thrust chamber in the form of a parab over, the number of explosion cycles is unduly reduced, 20 oloid, which comprises injecting intermittently a gem since the periodic refilling of the pulse jet with ambient polynitro oxidizer and a hydrazinic fuel from separate air requires a considerable time delay. So, they cannot SOCCS. compete with the conventional rocket motors and apply for very low altitudes and low speeds of flight only.
Recommended publications
  • Basic Description for Ground and Air Hazardous
    BASIC DESCRIPTION FOR GROUND AND AIR GROUND AND AIR HAZARDOUS MATERIALS SHIPMENTS GROUND SHIPMENTS AIR SHIPMENTS SHIPMENTS HAZARD DOT DOT CLASS OR MAXIMUM EXEMPTION, GROUND EXEMPTION, HAZARDOUS MATERIALS DESCRIPTIONS DIVISION I.D. NUMBER LABEL(S) REQUIRED OR QUANTITY PER SPECIAL SERVICE TO LABEL(S) REQUIRED OR MAXIMUM NET CARGO SPECIAL NON-BULK AND PROPER SHIPPING NAME (Subsidiary if (ALSO MARK PACKING EXEMPTION, SPECIAL PERMIT INNER PERMIT CANADA EXEMPTION, SPECIAL PERMIT QUANTITY PER AIRCRAFT PERMIT SPECIAL EXCEPTIONS PACKAGING (ALSO MARK ON PACKAGE) applicable) ON PACKAGE) GROUP OR EXCEPTION RECEPTACLE OR 173.13 PERMITTED OR EXCEPTION PACKAGE** QUANTITY OR 173.13 PROVISIONS §173.*** §173.*** (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) Accellerene, see p-Nitrosodimethylaniline Accumulators, electric, see Batteries, wet etc Accumulators, pressurized, pneumatic or hydraulic (containing non-flammable gas), see Articles pressurized, pneumatic or hydraulic (containing non-flammable gas) FLAMMABLE FLAMMABLE Acetal 3 UN1088 II LIQUID * YES LIQUID * 5 L 150 202 FLAMMABLE Acetaldehyde 3 UN1089 I LIQUID YES Forbidden None 201 May not be regulated when shipped via UPS Acetaldehyde ammonia 9 UN1841 III ground YES CLASS 9 * 30 kg 30 kg 155 204 FLAMMABLE FLAMMABLE Acetaldehyde oxime 3 UN2332 III LIQUID * YES LIQUID * 25 L 150 203 CORROSIVE, CORROSIVE, Acetic acid, glacial or Acetic acid solution, FLAMMABLE FLAMMABLE A3, A6, with more than 80 percent acid, by mass 8 (3) UN2789 II LIQUID * YES LIQUID * 1 L A7, A10 154 202 Acetic
    [Show full text]
  • List of Reactive Chemicals
    LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction.
    [Show full text]
  • Hazardous Materials Table Quirements
    Pipeline and Hazardous Materials Safety Admin., DOT § 172.101 Subpart H—Training this part, that person shall perform the function in accordance with this part. 172.700 Purpose and scope. 172.701 Federal-State relationship. [Amdt. 172–29, 41 FR 15996, Apr. 15, 1976, as 172.702 Applicability and responsibility for amended by Amdt. 172–32, 41 FR 38179, Sept. training and testing. 9, 1976] 172.704 Training requirements. Subpart B—Table of Hazardous Subpart I—Safety and Security Plans Materials and Special Provisions 172.800 Purpose and applicability. § 172.101 Purpose and use of haz- 172.802 Components of a security plan. ardous materials table. 172.804 Relationship to other Federal re- (a) The Hazardous Materials Table quirements. (Table) in this section designates the 172.820 Additional planning requirements for transportation by rail. materials listed therein as hazardous 172.822 Limitation on actions by states, materials for the purpose of transpor- local governments, and Indian tribes. tation of those materials. For each listed material, the Table identifies the APPENDIX A TO PART 172—OFFICE OF HAZ- hazard class or specifies that the mate- ARDOUS MATERIALS TRANSPORTATION rial is forbidden in transportation, and COLOR TOLERANCE CHARTS AND TABLES gives the proper shipping name or di- APPENDIX B TO PART 172—TREFOIL SYMBOL rects the user to the preferred proper APPENDIX C TO PART 172—DIMENSIONAL SPEC- IFICATIONS FOR RECOMMENDED PLACARD shipping name. In addition, the Table HOLDER specifies or references requirements in APPENDIX D TO PART 172—RAIL RISK ANAL- this subchapter pertaining to labeling, YSIS FACTORS packaging, quantity limits aboard air- craft and stowage of hazardous mate- AUTHORITY: 49 U.S.C.
    [Show full text]
  • Energeticchemical Search This Site
    energeticchemical Search this site Experimental Explosive Chemistry Under Construction-1 Nitro Alkanes Under Construction-2 Links NitroAlkanes are, in general, insensitive, and quite energetic when detonated. However, the secondary nitro compounds, Distillation and Crystallization whether the two nitro groups are on the same carbon or adjoining carbons, are thermally unstable. Recent Additions, Updates 2,2-dinitro propane has a melting point of 51.5degC, and is thermally unstable when warmed. At 75degC, it loses a 2/3rds Compositions of its weight after two days. It should be used soon after it is made, or be kept cold. 1,2-dinitroethane is described as being Less Energetic Basic Compounds fairly reactive, but I am unsure as to how it is. Explosive Effects and Applications By Jonas A. Zukas Sitemap Trinitromethane Trinitromethane, while still giving off mildly poisonous fumes, is far less toxic than tetranitromethane. You would be well 3650 advised to avoid ever preparing tetranitromethane, which was once considered for use as a chemical weapon. (should it be desired to have the compound synthesized despite this, tetranitromethane is produced in high yield by the treatment of days since Project Due Date acetic anhydride with concentrated nitric acid) Join Our Discussion A mixture of nitromethane and NaOH will form the salt of nitromethane, sodium 'nitromethanate'. Bubble in nitrogen dioxide into a solution of this salt, and trinitromethane can be obtained, because the intermediate aci- form of nitromethane, which is vulnerable to oxidation, is formed. The aci-form is probably CH2=NO2H. Alternatively, bubble mixed nitric oxides into a solution of sodium nitrite and nitromethane (which is sparingly soluble in water), then bubble in only nitrogen dioxide.
    [Show full text]
  • New Reactions of Nitro Compounds
    This dissertation has been 62-2176 microfilmed exactly as received KAPLAN, Ralph Benjamin, 1920- NEW REACTIONS OF NITRO COMPOUNDS. The Ohio State University, Ph.D., 1950 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan NEW REACTIONS OF NITRO COMPOUNDS DISSERTATION Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By RALPH B. KAPLAN, B.A., The Ohio State University 1950 Approved by: Adviser TABLE OF CONTENTS Page INTRODUCTION Acknowledgments Statement of the Problem SECTION I REACTION OF SODIUM NITROALKANES WITH VARIOUS NITRATING AGENTS 1 I. Discussion 1 A. Introduction 1 B. Agents Investigated 2 1. Nltryl Chloride 2 a. Preparation 2 b. Review of thé Reactions of Nltryl Chloride With Organic Reagents U c. Reaction of Sodium 2-Nltropropane With Nltryl Chloride 6 d. Reaction of Sodium 2-Nltropropane with Nltryl Chloride and Aluminum Chloride 11 2. Mixed Nitric and Sulfuric Acid 12 a. Reaction of Sodium 2-Nltropropane With Mixed Nitric and Sulfuric Acid 12 3. Methyl Nitrate Ih a. Reaction of Sodium 2-Nltropropane and of Potassium Nltroethane l4 I. Alkyl Nitrates as Nitrating Agents 14 II. Discussion of Results 15 Page II. Experimental 21 A. Agents Investigated 21 1. Nltryl Chloride 21 a. Preparation 21 1. Intermediates; Chlorosulfonlc Acid and Nitric Acid, Anhydrous 11. Procedure for Making Nltryl-Chloride h. Reaction of Nltryl Chloride with a Secondary Nltroalkane 2k 1. 2-Nltropropane 11. Sodium 2-Nltropropane c. Reaction of Sodium 2-Nltropropane, Nltryl Chloride and Aluminum Chloride. 27 2. Reaction of Sodium 2-Nltropropane With Mixed Nitric and Sulfuric Acids 28 3.
    [Show full text]
  • Orbital Evolution, Activity, and Mass Loss of Comet C/1995 O1 (Hale
    Version September 12, 2017 Preprint typeset using LATEX style emulateapj v. 08/22/09 ORBITAL EVOLUTION, ACTIVITY, AND MASS LOSS OF COMET C/1995 O1 (HALE-BOPP). I. CLOSE ENCOUNTER WITH JUPITER IN THIRD MILLENNIUM BCE AND EFFECTS OF OUTGASSING ON THE COMET’S MOTION AND PHYSICAL PROPERTIES Zdenek Sekanina1 & Rainer Kracht2 1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 2Ostlandring 53, D-25335 Elmshorn, Schleswig-Holstein, Germany Version September 12, 2017 ABSTRACT This comprehensive study of comet C/1995 O1 focuses first on investigating its orbital motion over a period of 17.6 yr (1993–2010). The comet is suggested to have approached Jupiter to 0.005 AU on 2251 November 7, in general conformity with Marsden’s (1999) proposal of a Jovian encounter nearly 4300− yr ago. The variations of sizable nongravitational effects with heliocentric distance correlate with the evolution of outgassing, asymmetric relative to perihelion. The future orbital period will shorten to 1000 yr because of orbital-cascade resonance effects. We find that the sublimation curves of parent molecules∼ are fitted with the type of a law used for the nongravitational acceleration, determine their orbit-integrated mass loss, and conclude that the share of water ice was at most 57%, and possibly less than 50%, of the total outgassed mass. Even though organic parent molecules (many still unidentified) had very low abundances relative to water individually, their high molar mass and sheer number made them, summarily, important potential mass contributors to the total production of gas. The mass loss of dust per orbit exceeded that of water ice by a factor of 12, a dust loading high enough to imply a major role for heavy organic molecules of low volatility in∼ accelerating the minuscule dust particles in the expanding halos to terminal velocities as high as 0.7 km s−1.
    [Show full text]
  • Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables
    ANL-05/20 TAE 960 Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables Alexander Burcat Faculty of Aerospace Engineering, Technion – Israel Institute of Technology Branko Ruscic Chemistry Division, Argonne National Laboratory September 2005 Argonne National Laboratory is managed by The University of Chicago for the U. S. Department of Energy About Argonne National Laboratory Argonne is managed by The University of Chicago for the U.S. Department of Energy under contract W-31-109-Eng-38. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Chemistry of Explosives 1 Search This Site
    Chemistry of Explosives 1 Search this site HOME 1,2,3-TRIAZOLES Nitroalkanes 1,2,4-TRIAZOLES BASIC EXPLOSIVE NitroAlkanes are, in general, insensitive, and quite energetic when detonated. However, the secondary nitro compounds, whether DADNE the two nitro groups are on the same carbon or adjoining carbons, are thermally unstable. DIAZO PRIMARIES 2,2-dinitro propane has a melting point of 51.5degC, and is thermally unstable when warmed. At 75degC, it loses a 2/3rds of its weight after two days. It should be used soon after it is made, or be kept cold. 1,2-dinitroethane is described as being fairly reactive, DPT but I am unsure as to how it is. Explosive Effects and Applications By Jonas A. Zukas FURAZAN Trinitromethane NHN NITROALKANES Trinitromethane, while still giving off mildly poisonous fumes, is far less toxic than tetranitromethane. You would be well advised to NITROCUBANE avoid ever preparing tetranitromethane, which was once considered for use as a chemical weapon. (should it be desired to have the NITROGUANIDINE compound synthesized despite this, tetranitromethane is produced in high yield by the treatment of acetic anhydride with concentrated nitric acid) NITROLIC ACIDS PERCHLORATES A mixture of nitromethane and NaOH will form the salt of nitromethane, sodium 'nitromethanate'. Bubble in nitrogen dioxide into a solution of this salt, and trinitromethane can be obtained, because the intermediate aci- form of nitromethane, which is vulnerable to PYRAZOLE oxidation, is formed. The aci-form is probably CH2=NO2H. Alternatively, bubble mixed nitric oxides into a solution of sodium nitrite TETRAZENE and nitromethane (which is sparingly soluble in water), then bubble in only nitrogen dioxide.
    [Show full text]
  • UPS Chemical Table
    UPS Chemical Table - 49 CFR Version (Ground and Air Packages) BASIC DESCRIPTION FOR GROUND AND AIR GROUND AND AIR HAZARDOUS MATERIALS SHIPMENTS GROUND SHIPMENTS AIR SHIPMENTS SHIPMENTS Symbols: "‡" Requires a Technical Name / "*" For Ltd Qty see 49 CFR Part 173.*** / "**" See 49 CFR 173.27 for inner receptacle requirements / "▲" Accepted as CAO if amount is listed / "♦" PG = "II" or blank / "♦♦" PG = "III" or blank / "#" Sub-risk may be omitted from shipping papers if 49 CFR 172.400a(c) criteria met. (ref 172.202(a)(3)) CARGO HAZARD DOT PASSENGER AIRCRAFT DOT CLASS OR EXEMPTION, GROUND LTD QTY AIRCRAFT MAX NET EXEMPTION, HAZARDOUS MATERIALS DESCRIPTIONS DIVISION I.D. NUMBER LABEL(S) REQUIRED OR SPECIAL SERVICE TO LABEL(S) REQUIRED OR MAX NET MAX NET PER SPECIAL NON-BULK AND PROPER SHIPPING NAME (Subsidiary if (ALSO MARK PACKING EXEMPTION, SPECIAL PERMIT OR PERMIT CANADA EXEMPTION, SPECIAL PERMIT OR PER PER PACKAGE PERMIT SPECIAL EXCEPTIONS PACKAGING (ALSO MARK ON PACKAGE) applicable) ON PACKAGE) GROUP EXCEPTION OR 173.13 PERMITTED EXCEPTION PACKAGE** PACKAGE** ▲ OR 173.13 PROVISIONS §173.*** §173.*** (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) Accellerene, see p-Nitrosodimethylaniline Accumulators, electric, see Batteries, wet etc Accumulators, pressurized, pneumatic or hydraulic (containing non-flamable gas), see Articles pressurized, pneumatic or hydraulic (containing non-flamable gas) Accumulators, pressurized, pneumatic or hydraulic (containing non-flammable gas), see Articles pressurized, pneumatic or hydraulic
    [Show full text]
  • INFORMATION to USERS the Quality of This Reproduction Is
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeefc Road. Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 PART 1: STUDIES OF SYNTHESES OF MONO- AND DINITROACETYLENES, ACETYLENIC NITRITES AND NITROSOKETENES PART 2: INVESTIGATION OF GENERATION AND THE FATE OF 2- PYRROLYLMETHYLENES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher J.
    [Show full text]
  • 132 Subpart A—General Subpart B—Table of Hazardous Materials
    § 172.1 49 CFR Ch. I (10–1–12 Edition) 172.606 Carrier information contact. this part, that person shall perform the function in accordance with this part. Subpart H—Training [Amdt. 172–29, 41 FR 15996, Apr. 15, 1976, as 172.700 Purpose and scope. amended by Amdt. 172–32, 41 FR 38179, Sept. 172.701 Federal-State relationship. 9, 1976] 172.702 Applicability and responsibility for training and testing. Subpart B—Table of Hazardous 172.704 Training requirements. Materials and Special Provisions Subpart I—Safety and Security Plans § 172.101 Purpose and use of haz- 172.800 Purpose and applicability. ardous materials table. 172.802 Components of a security plan. (a) The Hazardous Materials Table 172.804 Relationship to other Federal re- (Table) in this section designates the quirements. materials listed therein as hazardous 172.820 Additional planning requirements materials for the purpose of transpor- for transportation by rail. tation of those materials. For each 172.822 Limitation on actions by states, listed material, the Table identifies the local governments, and Indian tribes. hazard class or specifies that the mate- APPENDIX A TO PART 172—OFFICE OF HAZ- rial is forbidden in transportation, and ARDOUS MATERIALS TRANSPORTATION gives the proper shipping name or di- COLOR TOLERANCE CHARTS AND TABLES rects the user to the preferred proper APPENDIX B TO PART 172—TREFOIL SYMBOL shipping name. In addition, the Table APPENDIX C TO PART 172—DIMENSIONAL SPEC- IFICATIONS FOR RECOMMENDED PLACARD specifies or references requirements in HOLDER this subchapter pertaining to labeling, APPENDIX D TO PART 172—RAIL RISK ANAL- packaging, quantity limits aboard air- YSIS FACTORS craft and stowage of hazardous mate- rials aboard vessels.
    [Show full text]
  • Hazardous Materials Shipping Guide
    Hazardous Materials Shipping Guide FedEx Ground Package Systems Inc. is committed to the safe transportation of hazardous materials. It is very important that each person engaged in the transportation of hazardous materials become thoroughly familiar with the Title 49CFR (Code of Federal Regulations). This guide is intended only to assist you in your preparation of hazardous materials shipped via FedEx Ground Package Systems Inc. It is the shipper’s responsibility to ensure each hazardous material package is in compliance with applicable Department of Transportation (D.O.T.) regulations and FedEx Ground Package Systems Inc. requirements. Failure to comply with these regulations and requirements may subject the shipper and carrier to fines and penalties. Due to the changing nature of D.O.T. regulations and other information, it is impossible to guarantee absolute accuracy of the material contained in this guide. FedEx Ground Package Systems Inc., therefore, cannot assume any responsibility for omissions, errors, misprinting, or ambiguity contained within this guide and shall not be held liable in any degree for any loss or injury caused by such omission or error presented in this publication. The FedEx Ground Hazardous Materials Shipping Guide is intended to simplify Title 49 CFR. FedEx Ground Package Systems Inc. reserves the right to be more restrictive than the federal regulations (49 CFR). Customers should be thoroughly familiar with the applicable sections of this guide when shipping hazardous materials via FedEx Ground Package Systems
    [Show full text]