Hazardous Materials Table Quirements

Total Page:16

File Type:pdf, Size:1020Kb

Hazardous Materials Table Quirements Pipeline and Hazardous Materials Safety Admin., DOT § 172.101 Subpart H—Training this part, that person shall perform the function in accordance with this part. 172.700 Purpose and scope. 172.701 Federal-State relationship. [Amdt. 172–29, 41 FR 15996, Apr. 15, 1976, as 172.702 Applicability and responsibility for amended by Amdt. 172–32, 41 FR 38179, Sept. training and testing. 9, 1976] 172.704 Training requirements. Subpart B—Table of Hazardous Subpart I—Safety and Security Plans Materials and Special Provisions 172.800 Purpose and applicability. § 172.101 Purpose and use of haz- 172.802 Components of a security plan. ardous materials table. 172.804 Relationship to other Federal re- (a) The Hazardous Materials Table quirements. (Table) in this section designates the 172.820 Additional planning requirements for transportation by rail. materials listed therein as hazardous 172.822 Limitation on actions by states, materials for the purpose of transpor- local governments, and Indian tribes. tation of those materials. For each listed material, the Table identifies the APPENDIX A TO PART 172—OFFICE OF HAZ- hazard class or specifies that the mate- ARDOUS MATERIALS TRANSPORTATION rial is forbidden in transportation, and COLOR TOLERANCE CHARTS AND TABLES gives the proper shipping name or di- APPENDIX B TO PART 172—TREFOIL SYMBOL rects the user to the preferred proper APPENDIX C TO PART 172—DIMENSIONAL SPEC- IFICATIONS FOR RECOMMENDED PLACARD shipping name. In addition, the Table HOLDER specifies or references requirements in APPENDIX D TO PART 172—RAIL RISK ANAL- this subchapter pertaining to labeling, YSIS FACTORS packaging, quantity limits aboard air- craft and stowage of hazardous mate- AUTHORITY: 49 U.S.C. 5101–5128, 44701; 49 rials aboard vessels. CFR 1.53. (b) Column 1: Symbols. Column 1 of the SOURCE: Amdt. 172–29, 41 FR 15996, Apr. 15, Table contains six symbols (‘‘+’’, ‘‘A’’, 1976, unless otherwise noted. ‘‘D’’, ‘‘G’’, ‘‘I’’ and ‘‘W’’) as follows: (1) The plus (+) sign fixes the proper Subpart A—General shipping name, hazard class and pack- ing group for that entry without regard § 172.1 Purpose and scope. to whether the material meets the defi- nition of that class, packing group or This part lists and classifies those any other hazard class definition. When materials which the Department has the plus sign is assigned to a proper designated as hazardous materials for shipping name in Column (1) of the purposes of transportation and pre- § 172.101 Table, it means that the mate- scribes the requirements for shipping rial is known to pose a risk to humans. papers, package marking, labeling, and When a plus sign is assigned to mix- transport vehicle placarding applicable tures or solutions containing a mate- to the shipment and transportation of rial where the hazard to humans is sig- those hazardous materials. nificantly different from that of the [Amdt. 172–29, 41 FR 15997, Apr. 15, 1976, as pure material or where no hazard to amended by 66 FR 45379, Aug. 28, 2001] humans is posed, the material may be described using an alternative shipping § 172.3 Applicability. name that represents the hazards posed by the material. An appropriate alter- (a) This part applies to— nate proper shipping name and hazard (1) Each person who offers a haz- class may be authorized by the Asso- ardous material for transportation, and ciate Administrator. (2) Each carrier by air, highway, rail, (2) The letter ‘‘A’’ denotes a material or water who transports a hazardous that is subject to the requirements of material. this subchapter only when offered or (b) When a person, other than one of intended for transportation by aircraft, those provided for in paragraph (a) of unless the material is a hazardous sub- this section, performs a packaging la- stance or a hazardous waste. A ship- beling or marking function required by ping description entry preceded by an 123 VerDate Aug<31>2005 07:50 Nov 14, 2008 Jkt 214210 PO 00000 Frm 00133 Fmt 8010 Sfmt 8010 Y:\SGML\214210.XXX 214210 erowe on PROD1PC63 with CFR § 172.101 49 CFR Ch. I (10–1–08 Edition) ‘‘A’’ may be used to describe a material be used in place of the word ‘‘flam- for other modes of transportation pro- mable’’. vided all applicable requirements for (2) Punctuation marks and words in the entry are met. italics are not part of the proper ship- (3) The letter ‘‘D’’ identifies proper ping name, but may be used in addition shipping names which are appropriate to the proper shipping name. The word for describing materials for domestic ‘‘or’’ in italics indicates that terms in transportation but may be inappro- the sequence may be used as the proper priate for international transportation shipping name, as appropriate. under the provisions of international (3) The word ‘‘poison’’ or ‘‘poisonous’’ regulations (e.g., IMO, ICAO). An alter- may be used interchangeably with the nate proper shipping name may be se- word ‘‘toxic’’ when only domestic lected when either domestic or inter- transportation is involved. The abbre- national transportation is involved. viation ‘‘n.o.i.’’ or ‘‘n.o.i.b.n.’’ may be (4) The letter ‘‘G’’ identifies proper used interchangeably with ‘‘n.o.s.’’. shipping names for which one or more (4) Except for hazardous wastes, when technical names of the hazardous ma- qualifying words are used as part of the terial must be entered in parentheses, proper shipping name, their sequence in association with the basic descrip- in the package markings and shipping tion. (See § 172.203(k).) paper description is optional. However, (5) The letter ‘‘I’’ identifies proper the entry in the Table reflects the pre- shipping names which are appropriate ferred sequence. for describing materials in inter- (5) When one entry references an- national transportation. An alternate other entry by use of the word ‘‘see’’, if proper shipping name may be selected both names are in Roman type, either when only domestic transportation is name may be used as the proper ship- involved. ping name (e.g., Ethyl alcohol, see Eth- (6) The letter ‘‘W’’ denotes a material anol). that is subject to the requirements of (6) When a proper shipping name in- this subchapter only when offered or cludes a concentration range as part of intended for transportation by vessel, the shipping description, the actual unless the material is a hazardous sub- concentration, if it is within the range stance or a hazardous waste. A ship- stated, may be used in place of the con- ping description entry preceded by a centration range. For example, an ‘‘W’’ may be used to describe a mate- aqueous solution of hydrogen peroxide rial for other modes of transportation containing 30 percent peroxide may be provided all applicable requirements described as ‘‘Hydrogen peroxide, aque- for the entry are met. ous solution with not less than 20 percent (c) Column 2: Hazardous materials de- but not more than 40 percent hydrogen scriptions and proper shipping names. peroxide’’ or ‘‘Hydrogen peroxide, aque- Column 2 lists the hazardous materials ous solution with 30 percent hydrogen descriptions and proper shipping names peroxide’’. of materials designated as hazardous (7) Use of the prefix ‘‘mono’’ is op- materials. Modification of a proper tional in any shipping name, when ap- shipping name may otherwise be re- propriate. Thus, Iodine monochloride quired or authorized by this section. may be used interchangeably with Io- Proper shipping names are limited to dine chloride. In ‘‘Glycerol alpha- those shown in Roman type (not monochlorohydrin’’ the term ‘‘mono’’ italics). is considered a prefix to the term (1) Proper shipping names may be ‘‘chlorohydrin’’ and may be deleted. used in the singular or plural and in ei- (8) Use of the word ‘‘liquid’’ or ther capital or lower case letters. ‘‘solid’’. The word ‘‘liquid’’ or ‘‘solid’’ Words may be alternatively spelled in may be added to a proper shipping the same manner as they appear in the name when a hazardous material spe- ICAO Technical Instructions or the cifically listed by name may, due to IMDG Code. For example ‘‘aluminum’’ differing physical states, be a liquid or may be spelled ‘‘aluminium’’ and ‘‘sul- solid. When the packaging specified in fur’’ may be spelled ‘‘sulphur’’. How- Column 8 is inappropriate for the phys- ever, the word ‘‘inflammable’’ may not ical state of the material, the table 124 VerDate Aug<31>2005 07:50 Nov 14, 2008 Jkt 214210 PO 00000 Frm 00134 Fmt 8010 Sfmt 8010 Y:\SGML\214210.XXX 214210 erowe on PROD1PC63 with CFR Pipeline and Hazardous Materials Safety Admin., DOT § 172.101 provided in paragraph (i)(4) of this sec- comprised of two or more hazardous tion should be used to determine the materials in the same hazard class, appropriate packaging section. shall be described using an appropriate (9) Hazardous wastes. If the word shipping description (e.g., ‘‘Flammable ‘‘waste’’ is not included in the haz- liquid, n.o.s.’’). The name that most ap- ardous material description in Column propriately describes the material 2 of the Table, the proper shipping shall be used; e.g., an alcohol not listed name for a hazardous waste (as defined by its technical name in the Table in § 171.8 of this subchapter), shall in- shall be described as ‘‘Alcohol, n.o.s.’’ clude the word ‘‘Waste’’ preceding the rather than ‘‘Flammable liquid, n.o.s.’’. proper shipping name of the material. Some mixtures may be more appro- For example: Waste acetone. priately described according to their (10) Mixtures and solutions. (i) A mix- application, such as ‘‘Coating solution’’ ture or solution not identified specifi- or ‘‘Extracts, flavoring liquid’’ rather cally by name, comprised of a haz- than by an n.o.s.
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Calculating Heat of Formation Values of Energetic Compounds: a Comparative Study
    University of Northern Iowa UNI ScholarWorks Faculty Publications Faculty Work 2016 Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study Michael S. Elioff Millersville University of Pennsylvania Jordon Hoy University of Northern Iowa See next page for additional authors Let us know how access to this document benefits ouy Copyright ©2016 Michael S. Elioff, Jordan Hoy, and John A. Bumpus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This work is licensed under a Creative Commons Attribution 4.0 License. Follow this and additional works at: https://scholarworks.uni.edu/che_facpub Part of the Chemistry Commons Recommended Citation Elioff, Michael S.; Hoy, Jordon; and Bumpus, John A., "Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study" (2016). Faculty Publications. 1. https://scholarworks.uni.edu/che_facpub/1 This Article is brought to you for free and open access by the Faculty Work at UNI ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Authors Michael S. Elioff, Jordon Hoy, and John A. Bumpus This article is available at UNI ScholarWorks: https://scholarworks.uni.edu/che_facpub/1 Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2016, Article ID 5082084, 11 pages http://dx.doi.org/10.1155/2016/5082084 Research Article Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study Michael S. Elioff,1 Jordan Hoy,2 and John A.
    [Show full text]
  • Alphabetical Index of Substances and Articles
    ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES - 355 - NOTES TO THE INDEX 1. This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in Chapter 3.2. 2. For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations “sec” and “tert”; and the letters “N” (nitrogen), “n” (normal), “o” (ortho) “m” (meta), “p” (para) and “N.O.S.” (not otherwise specified). 3. The name of a substance or article in block capital letters indicates a proper shipping name. 4. The name of a substance or article in block capital letters followed by the word “see” indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs). 5. An entry in lower case letters followed by the word “see” indicates that the entry is not a proper shipping name; it is a synonym. 6. Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name. 7. A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking. - 356 - INDEX Name and description Class UN No. Name and description Class UN No. Accumulators, electric, see 4.3 3292 Acid mixture, nitrating acid, see 8 1796 8 2794 8 2795 Acid mixture, spent, nitrating acid, see 8 1826 8 2800 8 3028 Acraldehyde, inhibited, see 6.1 1092 ACETAL 3 1088
    [Show full text]
  • Basic Description for Ground and Air Hazardous
    BASIC DESCRIPTION FOR GROUND AND AIR GROUND AND AIR HAZARDOUS MATERIALS SHIPMENTS GROUND SHIPMENTS AIR SHIPMENTS SHIPMENTS HAZARD DOT DOT CLASS OR MAXIMUM EXEMPTION, GROUND EXEMPTION, HAZARDOUS MATERIALS DESCRIPTIONS DIVISION I.D. NUMBER LABEL(S) REQUIRED OR QUANTITY PER SPECIAL SERVICE TO LABEL(S) REQUIRED OR MAXIMUM NET CARGO SPECIAL NON-BULK AND PROPER SHIPPING NAME (Subsidiary if (ALSO MARK PACKING EXEMPTION, SPECIAL PERMIT INNER PERMIT CANADA EXEMPTION, SPECIAL PERMIT QUANTITY PER AIRCRAFT PERMIT SPECIAL EXCEPTIONS PACKAGING (ALSO MARK ON PACKAGE) applicable) ON PACKAGE) GROUP OR EXCEPTION RECEPTACLE OR 173.13 PERMITTED OR EXCEPTION PACKAGE** QUANTITY OR 173.13 PROVISIONS §173.*** §173.*** (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) Accellerene, see p-Nitrosodimethylaniline Accumulators, electric, see Batteries, wet etc Accumulators, pressurized, pneumatic or hydraulic (containing non-flammable gas), see Articles pressurized, pneumatic or hydraulic (containing non-flammable gas) FLAMMABLE FLAMMABLE Acetal 3 UN1088 II LIQUID * YES LIQUID * 5 L 150 202 FLAMMABLE Acetaldehyde 3 UN1089 I LIQUID YES Forbidden None 201 May not be regulated when shipped via UPS Acetaldehyde ammonia 9 UN1841 III ground YES CLASS 9 * 30 kg 30 kg 155 204 FLAMMABLE FLAMMABLE Acetaldehyde oxime 3 UN2332 III LIQUID * YES LIQUID * 25 L 150 203 CORROSIVE, CORROSIVE, Acetic acid, glacial or Acetic acid solution, FLAMMABLE FLAMMABLE A3, A6, with more than 80 percent acid, by mass 8 (3) UN2789 II LIQUID * YES LIQUID * 1 L A7, A10 154 202 Acetic
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • Investigations of the Reactivity of Pyridine Carboxylic Acids with Diazodiphenylmethane in Protic and Aprotic Solvents. Part I
    J. Serb. Chem. Soc. 70 (4) 557–567 (2005) UDC 547.821+547.595:543.878 JSCS – 3288 Original scientific paper Investigations of the reactivity of pyridine carboxylic acids with diazodiphenylmethane in protic and aprotic solvents. Part I. Pyridine mono-carboxylic acids ALEKSANDAR D. MARINKOVI]*#, SA[A @. DRMANI]#, BRATISLAV @. JOVANOVI]# and MILICA MI[I]-VUKOVI]# Department of Organic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P. O. Box 3503, 11120 Belgrade, Serbia and Montenegro (e-mail: [email protected]) (Received 14 May, revised 26 July 2004) Abstract: Rate constants for the reaction of diazodiphenylmethane with isomeric pyridine carboxylic acids were determined in chosen protic and aprotic solvents at 30 °C, using the well known UV spectrophotometric method. The values of the rate constants of the investigated acids in protic solvents were higher than those in aprotic solvents. The second order rate constants were correlated with solvent pa- rameters using the Kamlet-Taft solvatochromic equation in the form: log k =logk0 + sp*+aa + bb. The correlation of the obtained kinetic data were performed by means of multiple linear regression analysis taking appropriate solvent parameters. The signs of the equation coefficients were in agreement with the postulated reaction mechanism. The mode of the influence of the solvent on the reaction rate in all the investigated acids are discussed on the basis of the correlation results. Keywords: pyridine carboxylic acids, diazodiphenylmethane, rate constants, solvent parameters, protic and aprotic solvents. INTRODUCTION The relationship between the structure of carboxylic acids and their reactivity with diazodiphenylmethane (DDM) has been studied by many authors,1,2 with particular regard to the influence of the solvent.
    [Show full text]
  • List of Reactive Chemicals
    LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction.
    [Show full text]
  • "Synthesis of 1,2-Diacyl-Sn
    "Synthesis of 1,2-diacyl-sn-glycerophosphatidylserine from egg phosphatidylcholine by phosphoramidite methodology" Morillo, M., Sagristá, M.L., de Madariaga, M.A., Eritja, R. Lipids, 31(5), 541-546 (1996). doi: 10.1007/BF02522649 Synthesis of 1,2-Diacyl-sn -Glycerophosphatidylserine from Egg Phosphatidyicholine by Phosphoramidite Methodology Margarita Morillo a, M. Luisa Sagristá a,* , M. Africa de Madariaga a, and Ramón Eritja b aDepartment of Biochemistry and Physiology, Faculty of Chemistry, University of Barcelona, O8028 Barcelona, Spain, and bDepartment of Molecular Genetics, CID-CSIC, 08034 Barcelona, Spain *To whom correspondence should be addressed at the Department of Bio chemistry and Physiology, Faculty of Chemistry, University of Barcelona, Martí i Franqués, 1-11,08028 Barcelona, Spain. Abbreviations: BE, N-t-BOC-L-serine benzhydril ester; BEP, N-t-BOC-L- serine benzhydril ester phosphoramidite; DAG, diacylglycerol; DDM, diazodiphenylmethane; NMR, nuclear magnetic resonance; PC, phosphatidylcholine; PS, phosphatidylserine; P Sp, O-(1,2-diacylglycero-3- phospho-)-N-t-BOC-L-serine benzhydril ester; t-BOC, N-tert - butoxycarbonyl; TES, N-tris(hydroxymethyl)methyl-2-aminoethane- sulfonica cid; TFA, trifluoroacetic acid; TLC, thin-layer chromatography ABSTRACT : A simple chemical method for the synthesis of 1,2-diacyl-sn - glycerophosphatidylserine (PS), with the same fatty acid composition in the sn -1 and sn -2 glycerol positions as egg phosphatidylcholine (PC), is described. PS synthesis was carried out by a phosphite-triester approach, using 2-cyanoethyI- N,N,N' ,N' -tetraisopropylphosphorodiamidite (phosphoramiditate) as the phosphorylating agent, for the formation of phosphate linkage between serine and diacylglycerol. 1,2- Diacylglycerol, obtained from PC hydrolysis by phospholipase C, was coupled with N-t-BOC- L-serine benzhydryl ester phosphoramidite with tetrazole as catalyst.
    [Show full text]
  • Ep 0685459 B1
    Patentamt Europaisches ||| || 1 1| || || || || || || || || ||| || (19) J European Patent Office Office europeen des brevets (11) EP 0 685 459 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) mt ci 6: C07C 245/16, C07B 61/00, of the grant of the patent: B01J31/02, B01J31/26, 07.10.1998 Bulletin 1998/41 C07C 245/14 (21) Application number: 95902975.2 (86) International application number: (22) Dateof filing: 16.12.1994 PCT/JP94/02124 (87) International publication number: WO 95/16666 (22.06.1995 Gazette 1995/26) (54) PROCESS FOR PRODUCING DIAZOMETHANE DERIVATIVE VERFAHREN ZUR HERSTELLUNG VON DIAZOMETHANDERIVATEN PROCEDE DE PRODUCTION DE DERIVE DE DIAZOMETHANE (84) Designated Contracting States: • SASAOKA, Michio AT DE GB NL 1 -1 6, Nakanokoshi Aza Nakase (30) Priority: 17.12.1993 JP 318495/93 Tokushima 771-02 (JP) (43) Date of publication of application: (74) Representative: Barz, Peter, Dr. 06.12.1995 Bulletin 1995/49 Patentanwalt Kaiserplatz 2 (73) Proprietor: 80803 Munchen (DE) OTSUKA KAGAKU KABUSHIKI KAISHA Osaka-shi Osaka-fu 540 (JP) (56) References cited: JP-A-49 080 002 (72) Inventors: • KAWAHARA, Ichiro • J. Chem. Soc, Perkin Trans. 1, Vol. 20 (1975), Itano-gun Tokushima 771-12 (JP) ADAMSON, J. ROBERT et al., "Amino Acids and • WADA, Isao Peptides, II. New Method for Preparing Otsu-cho Naruto-shi Tokushima 772 (JP) Diazodiphenylmethane and Related Compounds", p. 2030-2033, particularly Table 4. CO LO LO CO Note: Within nine months from the publication of the mention of the grant of the European patent, give CO any person may notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Energeticchemical Search This Site
    energeticchemical Search this site Experimental Explosive Chemistry Under Construction-1 Nitro Alkanes Under Construction-2 Links NitroAlkanes are, in general, insensitive, and quite energetic when detonated. However, the secondary nitro compounds, Distillation and Crystallization whether the two nitro groups are on the same carbon or adjoining carbons, are thermally unstable. Recent Additions, Updates 2,2-dinitro propane has a melting point of 51.5degC, and is thermally unstable when warmed. At 75degC, it loses a 2/3rds Compositions of its weight after two days. It should be used soon after it is made, or be kept cold. 1,2-dinitroethane is described as being Less Energetic Basic Compounds fairly reactive, but I am unsure as to how it is. Explosive Effects and Applications By Jonas A. Zukas Sitemap Trinitromethane Trinitromethane, while still giving off mildly poisonous fumes, is far less toxic than tetranitromethane. You would be well 3650 advised to avoid ever preparing tetranitromethane, which was once considered for use as a chemical weapon. (should it be desired to have the compound synthesized despite this, tetranitromethane is produced in high yield by the treatment of days since Project Due Date acetic anhydride with concentrated nitric acid) Join Our Discussion A mixture of nitromethane and NaOH will form the salt of nitromethane, sodium 'nitromethanate'. Bubble in nitrogen dioxide into a solution of this salt, and trinitromethane can be obtained, because the intermediate aci- form of nitromethane, which is vulnerable to oxidation, is formed. The aci-form is probably CH2=NO2H. Alternatively, bubble mixed nitric oxides into a solution of sodium nitrite and nitromethane (which is sparingly soluble in water), then bubble in only nitrogen dioxide.
    [Show full text]
  • CHEM Safety Manual
    Department of Chemistry Safety Manual October 2018 Safety Committee Department of Chemistry Hong Kong University of Science and Technology Table of Contents 1.0 Introduction 2.0 Safety Policy and Responsibility for Safety 2.1 Department Head 2.2 Department of Chemistry Safety Committee 2.3 Laboratory Supervisors 2.4 Researchers 2.5 HSEO 3.0 Information, Training, Safety Clearance, and Safety Clearance at Termination 3.1 Initial Training 3.2 Information on Hazardous Substances 3.3 Additional Safety Information 3.4 Safety Clearance at Termination 4.0 Personal Protective Equipment and Safety Engineering Controls 4.1 Eye Protection 4.2 Protective Apparel 4.3 Respirators 4.4 Laboratory Fume Cupboards 4.5 Fire Extinguishers, Safety Showers, and Eyewash Facilities 5.0 Standard Operating Procedures for Work with Hazardous Substances 5.1 Classes of Hazardous Substances 5.2 General Procedures for Work with Toxic Substances 5.3 General Procedures for Work with Flammable and Explosive Substances 6.0 Procedures for Work with Particularly Hazardous Substances 6.1 Identification and Classification of Particularly Hazardous Substances 6.2 Designated Areas 6.3 General Procedures for Work with Substances of Moderate to High Chronic or High Acute Toxicity 6.4 Additional Procedures for Work with Substances of Known High Chronic Toxicity 6.5 Specific Handling Procedures for Some Common Particularly Hazardous Substances 7.0 Proper Planning of Laboratory Work 7.1 Recognition and Assessment 7.2 Planning for the Unexpected: What Could Go Wrong? 7.3 Site Selection
    [Show full text]
  • Organic Chemistry of Explosives
    JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives Dr. Jai Prakash Agrawal CChem FRSC (UK) Former Director of Materials Defence R&D Organisation DRDO House, New Delhi, India email: [email protected] Dr. Robert Dale Hodgson Consultant Organic Chemist, Syntech Chemical Consultancy, Morecambe, Lancashire, UK Website: http://www.syntechconsultancy.co.uk email: [email protected] iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives i JWBK121-FM October 11, 2006 21:10 Char Count= 0 ii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives Dr. Jai Prakash Agrawal CChem FRSC (UK) Former Director of Materials Defence R&D Organisation DRDO House, New Delhi, India email: [email protected] Dr. Robert Dale Hodgson Consultant Organic Chemist, Syntech Chemical Consultancy, Morecambe, Lancashire, UK Website: http://www.syntechconsultancy.co.uk email: [email protected] iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Copyright C 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher.
    [Show full text]