Oxidation of Aryl Ketoximes and Hydrazones with Cerium (IV) Salts Samuel Paul Thackaberry Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Oxidation of Aryl Ketoximes and Hydrazones with Cerium (IV) Salts Samuel Paul Thackaberry Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Oxidation of aryl ketoximes and hydrazones with cerium (IV) salts Samuel Paul Thackaberry Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Thackaberry, Samuel Paul, "Oxidation of aryl ketoximes and hydrazones with cerium (IV) salts " (1968). Retrospective Theses and Dissertations. 3700. https://lib.dr.iastate.edu/rtd/3700 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received g 8-14,825 THACKABERRY, Samuel Paul, 1940- OXroATION OF ARYL KETOXIMES AND HYDRAZONES WITH CERnjM(IV) SALTS. Iowa State University, Ph,D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan OXIDATION OF ARYl KET0XIME8 AND HYDRAZONES WITH CERIUM(IV) SALTS by Samuel Paul Thackaberry A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject : Organic Chemistry Approved : Signature was redacted for privacy. Signature was redacted for privacy. Head Major Department Signature was redacted for privacy. De^ of Graduate' Iowa State University Of Science and Technology Ames, Iowa 1968 il TABLE OF CONTENTS Page INTRODUCTION 1 HISTORICAL 7 Oxidation of Organic Compounds with Cerium(IV) 7 Oxidation of alcohols 9 Oxidation of aldehydes and ketones 21 Oxidation of hydrocarbons 24 Miscellaneous oxidations 27 Oxidation of oximes 51 Oxidation of hydrazones 68 RESULTS AND DISCUSSION 90 Oxidation of Aryl Ketoximes by Cerium(iv) Salts 96 General considerations 96 The reactions 101 The products 122 Isotopic labeling experiments 222 Electron spin resonance studies 253 Oxidation of aryl ketoximes by nitric acid 245 Mechanistic speculations 255 Mass spectra of geminal-dinitro compounds 288 Mass spectra of azine monoxides 511 Oxidation of Hydrazones by Ceric Ammonium Nitrate 521 Reactions and products 522 Mechanistic speculations 555 Mass spectra of azines 544 EXPERIMENTAL 558 Instruments and Methods 558 Materials 559 Experimental for the Oxidation of Oximes by Cerium(iV) Salts 559 Chromatographic procedure 560 ill Experimental for the Oxidation of 9-Fluorenone Oxime (CLVI) by Ceric Ammonium Nitrate )6o Oxidation of 9-fluorenone oxime (CLVI) in methanol ^60 Oxidation of 9-fluorenone oxime (CLVI) in methanol at 0°C )66 Oxidation of 9-fluorenone oxime (CLVI) in deoxygenated methanol ^67 Oxidation of 9-fluorenone oxime (CLVI) in aqueous methanol 370 Oxidation of 9-fluorenone oxime (CLVI) in methanol containing nitric acid Reaction of 9,9-dinitrofluorene (LXIl) with nitric acid in methanol 375 Oxidation of 9-fluorenone oxime (CLVl) in methanol containing ammonium hydroxide 376 Reaction of 9-fluorenone oxime (CLVI) with ammonium hydroxide in methanol 377 Reaction of 9,9-dinitrofluorene (LXIl) with ceric ammonium nitrate in methanol 377 Oxidation of 9-fluorenone oxime (CLVI) in acetone 378 Oxidation of 9-fluorenone oxime (CLVl) in deoxygenated acetone 379 Reaction of 9-fluorenone azine monoxide (CLXIl) with ceric ammonium nitrate in acetone 381 Oxidation of 9-fluorenone oxime (CLVI) in aqueous acetone 383 Oxidation of 9-fluorenone oxime (CLVI) in aqueous acetone containing ammonium nitrate 384 Titration of CLVI in methanol 384 Preparation of 9-fluorenone azine monoxide (CIXII) 385 Preparation of 9-fluorenone azine (CXVIIl) 386 Experimental for the Oxidation of 9-Fluorenone Oxime (CLVI) by Ceric Potassium Nitrate 387 Purification of ceric potassium nitrate 387 Oxidation of 9-fluorenone oxime (CLVI) in methanol 387 Experimental for the Oxidation of 9~Fluorenone Oxime (CLVl) by Ceric Ammonium Sulfate 389 Oxidation of 9-fluorenone oxime (CLVl) in aqueous methanol 389 iv Reaction of Q-fluorenone oxirae (CLVl) with 9-fluorenone azine monoxide (CLXII)in ^ benzene ' 392 Experimental for the Oxidation of 9-Fluorenone Oxime (CLVI) by Ceric Sulfate 393 Oxidation of 9-fluorenone oxime (CLVl) in aqueous methanol 393 Oxidation of 9-fluorenone oxime (CLVl) in methanol containing sulfuric acid 39^ Experimental for the Oxidation of Benzophenone Oxime (LXXVIl) by Ceric Ammonium Nitrate 395 Oxidation of benzophenone oxime (LXXVIl) in methanol 395 Oxidation of benzophenone oxime (LXXVIl) in deoxygenated methanol 398 Oxidation of benzophenone oxime (LXXVIl) in aqueous methanol 400 Oxidation of benzophenone oxime (LXXVIl) in methanol containing nitric acid 402 Oxidation of benzophenone oxime (LXXVIl) in acetone 403 Oxidation of benzophenone oxime (LXXVIl) in deoxygenated acetone 405 Preparation of benzophenone azine monoxide (LXXVIII) 407 Reaction of dinitrodiphenylmethane (LXIX) with nitric acid in methanol 408 Experimental for the Oxidation of 1-Indanone Oxime (CLXIIl) by Ceric Ammonium Nitrate 409 Oxidation of 1-indanone oxime (CLXIIl) in methanol 409 Oxidation of 1-indanone oxime (CLXIIl) in acetone 411 Oxidation of 1-indanone oxime (CLXIIl) in deoxygenated acetone 412 Titration of 1-indanone oxime (CLXIII) 4l4 Reaction of 1,1-dinitroindane (CLXXl) with ceric ammonium nitrate 417 Experimental for the Oxidation of p-Nitroaceto- phenone Oxime (CLXIV) by Ceric Ammonium Nitrate 4l8 Oxidation of p-nitroacetophenone oxime (CLXIV) in methanol 4l8 V Oxidation of £-nitroacetophenone oxime (CLXIV) in aqueous methanol 422 Oxidation of ^-nitroacetophenone oxime (CLXIV) in acetone 426 Experimental for the Oxidation of a-Phenylaceto- phenone Oxime (CLXV) by Ceric Ammonium Nitrate 428 Oxidation of a-phenylacetophenone oxime (CLXV) in methanol 428 Oxidation of a-phenylacetophenone oxime (CLXV) in acetone 432 Experimental for the Oxidation of Acetophenone Oxime (CLXVl) by Ceric Ammonium Nitrate 435 Oxidation of acetophenone oxime (CLXVl) in methanol 435. Oxidation of acetophenone oxime (CLXVl) in acetone 438 Experimental for the Oxidation of p_-Methylaceto- phenone Oxime (CLXVll) by Ceric Ammonium Nitrate / 439 Oxidation of £-methylacetophenone oxime (CLXVIl) in methanol 439 Oxidation of £-methylacetophenone oxime (CLXVIl) in acetone 442 Experimental for the Oxidation of 2,4-Dimethyl- acetophenone Oxime (CLXVIIl) by Ceric Ammonium Nitrate 443 Oxidation of 2,4-dimethylacetophenone oxime (CLXVIIl) in methanol 443 Oxidation of 2,4-dimethylacetophenone oxime (CLXVIIl) in acetone 446 Experimental for the Oxidation of Anthraquinone Monoxime (CLIII) by Ceric Ammonium Nitrate 448 Oxidation of anthraquinone monoxime (CLIII) in methanol-benzene 448 Oxidation of anthraquinone monoxime (CLIII) in acetone 449 VI Experimental for the Oxidation of 9-Xanthenone Oxime (CLXIX) by Ceric Ammonium Nitrate 451 Oxidation of 9-xanthenone oxime (CLXIX) in methanol 451 Oxidation of 9-xanthenone oxime (CLXIX) in aqueous methanol 455 Oxidation of 9-xanthenone oxime (CLXIX) in acetone 456 Experimental for the Oxidation of Oximes by NitrateLabeled Ceric Ammonium Nitrate 457 Preparation of nitrate-^^N labeled ceric ammonium nitrate 457 Oxidation of 9-fluorenone oxime (CLVl) in methanol 457 Oxidation of 1-indanone oxime (CLXIIl) in methanol 462 Reaction of 9-fluorenone oxime (CLVl) with ammonium nitrate in methanol 464 Reaction of 1-indanone oxime (CLXIIl) with ammonium nitrate in methanol 466 Experimental for Electron Spin Resonance Studies 466 Apparatus 466 Results 471 Experimental for the Oxidation of Oximes by Nitric Acid 476 Procedure 476 Oxidation of 9-fluorenone oxime (CLVI) 476 Oxidation of benzophenone oxime (LXXVIl) 477 Oxidation of 1-indanone oxime (CLXIIl) 478 Oxidation of acetophenone oxime fCLXVl) 479 Oxidation of 9-xanthenone oxime (CLXIX) 480 Experimental for the Oxidation of Hydrazones by Ceric Ammonium Nitrate 480 Chromatographic procedure 48l Experimental for the Oxidation of 9-Fluorenone Hydrazone (CXVIl) by Ceric Ammonium Nitrate 48l Oxidation of 9-fluorenone hydrazone (CXVII) in ethanol 481 Preparation of 9-(iiazofluorene (LXXXVIl) 485 vil Oxidation of 9-diazofluorene (LXXXVIl) by eerie ammonium nitrate in ethanol 486 Experimental for the Oxidation of Benzophenone Hydrazone (CXIX) by Ceric Ammonium Nitrate 488 Oxidation of benzophenone hydrazone (CXIX) in ethanol 488 SUMMARY 492 LITERATURE CITED 495 ACKNOWLEDGMENT 504 \ viii I LIST OF FIGURES Page Figure 1. Reaction of diazomethanes with nitric oxide 47 Figure 2. Mechanisms for the oxidation of aliphatic ketoximes by lead tetraacetate 6o Figure 3. Mechanisms for the lead tetraacetate oxidation of hindered ketoximes and aldoximes 67 Figure 4. Mechanism for the peracetic acid oxidation of hydrazones 76 Figure 5. Mechanism for the lead tetraacetate oxi­ dation of N,N-disubstituted ketohydrazones 78 Figure 6. Mechanism for the lead tetraacetate oxi­ dation of N-alkyl and N-arylhydrazones 80 Figure 7. Mechanism for the peracetic acid oxidation of aliphatic ketone- and aldehyde-N-aryl- and N-alkylhydrazones 85 Figure 8. Mechanism for the peracetic acid oxidation of aromatic aldehyde phenylhydrazones 84 Figure 9. Dependence of product formation on temper­ ature in the manganese dioxide oxidation of henzophenone and benzaldehyde phenyl­ hydrazones 85 Figure 10. Mechanism for the manganese dioxide oxi­ dation of ketone phenylhydrazones 86 Figure 11. Mechanism for the manganese dioxide oxi­ dation
Recommended publications
  • BACKGROUND DOCUMENT for DYES METABOLIZED to BENZIDINE (BENZIDINE DYE CLASS)
    NTP REPORT ON CARCINOGENS BACKGROUND DOCUMENT for DYES METABOLIZED TO BENZIDINE (BENZIDINE DYE CLASS) FINAL MARCH1999 Prepared for the October 30-31, 1997, Meeting ofthe Report on Carcinogens Subcommittee ofthe NTP Board ofScientific Counselors Prepared by Integrated Laboratory Systems Post Office Box 13501 Research Triangle Park, North Carolina 27709 NIEHS Contract No. N01-ES-25346 NTP Report on Carcinogens 1997 Background Document for Dyes Metabolized to Benzidine (Benzidine Dye Class) TABLE OF CONTENTS NTP Report on Carcinogens Listing for Dyes Metabolized to Benzidine (Benzidine Dye Class) ...•.......•..•.•.......•...•..•.•.•.••••.•.•.•••.••••••••••••••• 1 Listing Criteria from the Report on Carcinogens, Eighth Edition ••••.••••••.••.•.•.• 3 Supporting Information for Listing .........•...................•.•........•.•.•••.•••.•••.•••.•.••..•... 4 Table 1. Some Regulated Azo Dyes Derived From Benzidine That Have Citations in BIOSIS, CANCERLIT, EMBASE, MEDLINE, RTECS, and/or TOXLINE •.•..•..••..•.••••.•.•.•••.•..•.••••••••••••••••••.•• 5 REFERENCES •.•.•.•.•.••.•.••.•.•.......•..•..•.....•.•..•..•..•.•....•..•..•.•.••••.•.•.••.•••.••••••••••••••.••••• 8 APPENDIX A- Excerpts from IARC (1982a) and IARC Supplements (IARC, 1979; IARC, 1982b; and IARC, 1987) Benzidine .•••...•••.••••••••• A-1 APPENDIX B- Excerpts from IARC (1982a) Direct Black 38, Direct Blue 6, Direct Brown 95 ..•.••.••.••••.••.•••••••.•.••.••••••••.•.•••.•••.•••••••••••••• B-1 APPENDIX C- Excerpts from the NCI Technical Report 13-Week Subchronic Toxicity Studies of Direct
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • Investigations of the Reactivity of Pyridine Carboxylic Acids with Diazodiphenylmethane in Protic and Aprotic Solvents. Part I
    J. Serb. Chem. Soc. 70 (4) 557–567 (2005) UDC 547.821+547.595:543.878 JSCS – 3288 Original scientific paper Investigations of the reactivity of pyridine carboxylic acids with diazodiphenylmethane in protic and aprotic solvents. Part I. Pyridine mono-carboxylic acids ALEKSANDAR D. MARINKOVI]*#, SA[A @. DRMANI]#, BRATISLAV @. JOVANOVI]# and MILICA MI[I]-VUKOVI]# Department of Organic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P. O. Box 3503, 11120 Belgrade, Serbia and Montenegro (e-mail: [email protected]) (Received 14 May, revised 26 July 2004) Abstract: Rate constants for the reaction of diazodiphenylmethane with isomeric pyridine carboxylic acids were determined in chosen protic and aprotic solvents at 30 °C, using the well known UV spectrophotometric method. The values of the rate constants of the investigated acids in protic solvents were higher than those in aprotic solvents. The second order rate constants were correlated with solvent pa- rameters using the Kamlet-Taft solvatochromic equation in the form: log k =logk0 + sp*+aa + bb. The correlation of the obtained kinetic data were performed by means of multiple linear regression analysis taking appropriate solvent parameters. The signs of the equation coefficients were in agreement with the postulated reaction mechanism. The mode of the influence of the solvent on the reaction rate in all the investigated acids are discussed on the basis of the correlation results. Keywords: pyridine carboxylic acids, diazodiphenylmethane, rate constants, solvent parameters, protic and aprotic solvents. INTRODUCTION The relationship between the structure of carboxylic acids and their reactivity with diazodiphenylmethane (DDM) has been studied by many authors,1,2 with particular regard to the influence of the solvent.
    [Show full text]
  • "Synthesis of 1,2-Diacyl-Sn
    "Synthesis of 1,2-diacyl-sn-glycerophosphatidylserine from egg phosphatidylcholine by phosphoramidite methodology" Morillo, M., Sagristá, M.L., de Madariaga, M.A., Eritja, R. Lipids, 31(5), 541-546 (1996). doi: 10.1007/BF02522649 Synthesis of 1,2-Diacyl-sn -Glycerophosphatidylserine from Egg Phosphatidyicholine by Phosphoramidite Methodology Margarita Morillo a, M. Luisa Sagristá a,* , M. Africa de Madariaga a, and Ramón Eritja b aDepartment of Biochemistry and Physiology, Faculty of Chemistry, University of Barcelona, O8028 Barcelona, Spain, and bDepartment of Molecular Genetics, CID-CSIC, 08034 Barcelona, Spain *To whom correspondence should be addressed at the Department of Bio chemistry and Physiology, Faculty of Chemistry, University of Barcelona, Martí i Franqués, 1-11,08028 Barcelona, Spain. Abbreviations: BE, N-t-BOC-L-serine benzhydril ester; BEP, N-t-BOC-L- serine benzhydril ester phosphoramidite; DAG, diacylglycerol; DDM, diazodiphenylmethane; NMR, nuclear magnetic resonance; PC, phosphatidylcholine; PS, phosphatidylserine; P Sp, O-(1,2-diacylglycero-3- phospho-)-N-t-BOC-L-serine benzhydril ester; t-BOC, N-tert - butoxycarbonyl; TES, N-tris(hydroxymethyl)methyl-2-aminoethane- sulfonica cid; TFA, trifluoroacetic acid; TLC, thin-layer chromatography ABSTRACT : A simple chemical method for the synthesis of 1,2-diacyl-sn - glycerophosphatidylserine (PS), with the same fatty acid composition in the sn -1 and sn -2 glycerol positions as egg phosphatidylcholine (PC), is described. PS synthesis was carried out by a phosphite-triester approach, using 2-cyanoethyI- N,N,N' ,N' -tetraisopropylphosphorodiamidite (phosphoramiditate) as the phosphorylating agent, for the formation of phosphate linkage between serine and diacylglycerol. 1,2- Diacylglycerol, obtained from PC hydrolysis by phospholipase C, was coupled with N-t-BOC- L-serine benzhydryl ester phosphoramidite with tetrazole as catalyst.
    [Show full text]
  • Ep 0685459 B1
    Patentamt Europaisches ||| || 1 1| || || || || || || || || ||| || (19) J European Patent Office Office europeen des brevets (11) EP 0 685 459 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) mt ci 6: C07C 245/16, C07B 61/00, of the grant of the patent: B01J31/02, B01J31/26, 07.10.1998 Bulletin 1998/41 C07C 245/14 (21) Application number: 95902975.2 (86) International application number: (22) Dateof filing: 16.12.1994 PCT/JP94/02124 (87) International publication number: WO 95/16666 (22.06.1995 Gazette 1995/26) (54) PROCESS FOR PRODUCING DIAZOMETHANE DERIVATIVE VERFAHREN ZUR HERSTELLUNG VON DIAZOMETHANDERIVATEN PROCEDE DE PRODUCTION DE DERIVE DE DIAZOMETHANE (84) Designated Contracting States: • SASAOKA, Michio AT DE GB NL 1 -1 6, Nakanokoshi Aza Nakase (30) Priority: 17.12.1993 JP 318495/93 Tokushima 771-02 (JP) (43) Date of publication of application: (74) Representative: Barz, Peter, Dr. 06.12.1995 Bulletin 1995/49 Patentanwalt Kaiserplatz 2 (73) Proprietor: 80803 Munchen (DE) OTSUKA KAGAKU KABUSHIKI KAISHA Osaka-shi Osaka-fu 540 (JP) (56) References cited: JP-A-49 080 002 (72) Inventors: • KAWAHARA, Ichiro • J. Chem. Soc, Perkin Trans. 1, Vol. 20 (1975), Itano-gun Tokushima 771-12 (JP) ADAMSON, J. ROBERT et al., "Amino Acids and • WADA, Isao Peptides, II. New Method for Preparing Otsu-cho Naruto-shi Tokushima 772 (JP) Diazodiphenylmethane and Related Compounds", p. 2030-2033, particularly Table 4. CO LO LO CO Note: Within nine months from the publication of the mention of the grant of the European patent, give CO any person may notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin Et Al
    USOO8486374B2 (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin et al. (45) Date of Patent: Jul. 16, 2013 (54) HYDROPHILIC, NON-AQUEOUS (56) References Cited PHARMACEUTICAL CARRIERS AND COMPOSITIONS AND USES U.S. PATENT DOCUMENTS 1,159,250 A 11/1915 Moulton 1,666,684 A 4, 1928 Carstens (75) Inventors: Dov Tamarkin, Maccabim (IL); Meir 1924,972 A 8, 1933 Beckert Eini, Ness Ziona (IL); Doron Friedman, 2,085,733. A T. 1937 Bird Karmei Yosef (IL); Alex Besonov, 2,390,921 A 12, 1945 Clark Rehovot (IL); David Schuz. Moshav 2,524,590 A 10, 1950 Boe Gimzu (IL); Tal Berman, Rishon 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely LeZiyyon (IL); Jorge Danziger, Rishom 2,767,712 A 10, 1956 Waterman LeZion (IL); Rita Keynan, Rehovot (IL); 2.968,628 A 1/1961 Reed Ella Zlatkis, Rehovot (IL) 3,004,894 A 10/1961 Johnson et al. 3,062,715 A 11/1962 Reese et al. 3,067,784. A 12/1962 Gorman (73) Assignee: Foamix Ltd., Rehovot (IL) 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn 3,141,821 A 7, 1964 Compeau (*) Notice: Subject to any disclaimer, the term of this 3,142,420 A 7/1964 Gawthrop patent is extended or adjusted under 35 3,144,386 A 8/1964 Brightenback U.S.C. 154(b) by 1180 days. 3,149,543 A 9, 1964 Naab 3,154,075 A 10, 1964 Weckesser 3,178,352 A 4, 1965 Erickson (21) Appl.
    [Show full text]
  • Hazardous Materials Table Quirements
    Pipeline and Hazardous Materials Safety Admin., DOT § 172.101 Subpart H—Training this part, that person shall perform the function in accordance with this part. 172.700 Purpose and scope. 172.701 Federal-State relationship. [Amdt. 172–29, 41 FR 15996, Apr. 15, 1976, as 172.702 Applicability and responsibility for amended by Amdt. 172–32, 41 FR 38179, Sept. training and testing. 9, 1976] 172.704 Training requirements. Subpart B—Table of Hazardous Subpart I—Safety and Security Plans Materials and Special Provisions 172.800 Purpose and applicability. § 172.101 Purpose and use of haz- 172.802 Components of a security plan. ardous materials table. 172.804 Relationship to other Federal re- (a) The Hazardous Materials Table quirements. (Table) in this section designates the 172.820 Additional planning requirements for transportation by rail. materials listed therein as hazardous 172.822 Limitation on actions by states, materials for the purpose of transpor- local governments, and Indian tribes. tation of those materials. For each listed material, the Table identifies the APPENDIX A TO PART 172—OFFICE OF HAZ- hazard class or specifies that the mate- ARDOUS MATERIALS TRANSPORTATION rial is forbidden in transportation, and COLOR TOLERANCE CHARTS AND TABLES gives the proper shipping name or di- APPENDIX B TO PART 172—TREFOIL SYMBOL rects the user to the preferred proper APPENDIX C TO PART 172—DIMENSIONAL SPEC- IFICATIONS FOR RECOMMENDED PLACARD shipping name. In addition, the Table HOLDER specifies or references requirements in APPENDIX D TO PART 172—RAIL RISK ANAL- this subchapter pertaining to labeling, YSIS FACTORS packaging, quantity limits aboard air- craft and stowage of hazardous mate- AUTHORITY: 49 U.S.C.
    [Show full text]
  • 2.2.Uncatalysed Formation of Peracetic Acid from Hydrogen Peroxide and Acetic Acid
    Peroxide Reactions of Environmental Relevance in Aqueous Solution MELOD MOHAMED Ali UNIS PhD 2010 i Peroxide Reactions of Environmental Relevance in Aqueous Solution MELOD MOHAMED Ali UNIS PhD 2010 ii Peroxide Reactions of Environmental Relevance in Aqueous Solution A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle For the degree of Doctor of Philosophy Research undertaken in the School of Applied Sciences at Northumbria University Oct 2010 iii ACKNOWLEDGEMENTS First and foremost, all praise be to God, Lord of the Universe, the most beneficent, the most merciful who has blessed me through my life with health, patience and ability to pursue and complete this work. I would like to express utmost appreciation to my supervisors Dr. Michael Deary and Dr. Martin Davies for their guidance and cooperation throughout this work, and also special thanks to Dr Michael Deary for his patience, endless support, excellent guidance, and helpful comments throughout my PhD writing. He has always provided valuable, challenging and constructive comments which have encourage me to improve my research skills and demonstrate the work precisely. I would like to thanks Mr Gary Askwith, for his assistance during this research work. I am particularly indebted to the people of my country Libya, who provided me with the opportunity to continue higher studies. I would like to acknowledge my gratitude to the Ministry of Education for the financial support to accomplish this study, which otherwise was impossible to be achieved. Therefore, I wish to be able to repay at least a portion of this debt to my home country.
    [Show full text]
  • Hydarzine Analysis
    A Fast and Sensitive Method for Residual Hydrazine Analysis in Pharmaceutical Samples Vera Leshchinskaya, Priscilla Richberg, Yury Zelechonok*, and Anne Kelly Bristol Myers Squibb Company, P.O.BOX 4000, Princeton, NJ, 08543, * SIELC Technologies, 65 E. Palatine Rd., Suite 221, Prospect Heights, IL 60070 Hydrazine Properties H2N NH2 Hydrazine is a highly reactive molecule widely used in chemical syntheses of intermediates and active pharmaceutical ingredients a known carcinogen - can have an impact on product risk assessment if present in the final drug substance and drug product as an impurity. a small, polar, basic molecule with no chromophore Objective Develop a method for detection of low (ppm) level of hydrazine in pharmaceutical samples and wash solutions. Method criteria: simple sample preparation step efficiency sensitivity ease of transfer Control of Genotoxic Impurities in Pharmaceuticals According to current regulatory guidance, it is assumed that genotoxic compounds have the potential to damage DNA at very low level of exposure. Thus, actual and potential impurities most likely to arise during synthesis, purification, and storage should be identified. Both the EMEA guidelines and a PhRMA white paper propose a limit of 1.5 µg/day for genotoxic impurities in pharmaceuticals. Analytical Challenges in Setting Limits for Genotoxic Impurities Low level (ppm) needs to be detected Many genotoxic impurities are highly reactive and therefore difficult to analyze Sample matrix can be chemically similar and present at extremely
    [Show full text]
  • IJCB 44B(6) 1283-1287.Pdf
    Indian Journal of Chemistry Vol. 44B, June 2005, pp. 1283-1287 Hydroxylic solvent effects on the reaction rates of diazodiphenylmethane with 2-substituted cyclohex-1-enylcarboxylic and 2-substituted benzoic acids: Part II Gordana S Ušćumlić*, Jasmina B Nikolić* & Vera V Krstić* Department of Organic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box. 3503, YU-11000 Belgrade, Serbia & Montenegro E-mail: [email protected] Received 20 April 2004; accepted (revised) 12 October 2004 The rate constants for the reaction of diazodiphenylmethane with 2-substituted cyclohex-1-enylcarboxylic acids, determined in butan-1-ol, 2-methylpropan-1-ol and ethylene glycol, together with the rate constants determined previously in methanol, ethanol, propan-1-ol and propan-2-ol, are correlated using the total solvatochromic equation, of the form log k ∗ = A ο + sπ + aα + bβ, the two parameter model log k = Ao+ sπ* + aα and the single parameter model log k = ∗ Ao + bβ, where π , β and α represent the solvent dipolarity/polarizability, solvent hydrogen bond acceptor basicity and hydrogen bond donor acidity, respectively. The correlation of the kinetic data are carried out by means of multiple linear regression analysis and solvent effects on the reaction rates have been analysed in terms of initial state and transition state contributions. The results obtained for 2-substituted cyclohex-1-enylcarboxylic acids are compared with the results for 2-subsituted benzoic acids under the same experimental conditions. IPC: Int.Cl.7 C 07 C 63/00 Earlier work1-4 showed that in the reaction between γ-hydrogen atoms in the alcohol).
    [Show full text]
  • Recent Developments in Synthetic Chemistry and Biological Activities of Pyrazole Derivatives
    J. Chem. Sci. (2019) 131:70 © Indian Academy of Sciences https://doi.org/10.1007/s12039-019-1646-1 REVIEW ARTICLE Recent developments in synthetic chemistry and biological activities of pyrazole derivatives MUHAMMAD FAISAL∗ , AAMER SAEED∗, SARWAT HUSSAIN, PARSA DAR and FAYAZ ALI LARIK Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan E-mail: [email protected]; [email protected] MS received 10 January 2019; revised 13 March 2019; accepted 18 May 2019 Abstract. Pyrazole, a five-membered heterocycle containing two nitrogen atoms, is extensively found as a core framework in a huge library of heterocyclic compounds that envelops promising agro-chemical, fluorescent and biological potencies. Attributed to its several potential applications, there is a rise in the significance of designing novel pyrazoles, disclosing innovative routes for synthesizing pyrazoles, examining different potencies of pyrazoles, and seeking for potential applications of pyrazoles. This review consists of two parts. The first part provides an overview on the recent developments in synthetic approaches to pyrazoles, which is related to the new or advanced catalysts and other ‘environment-friendly’ procedures, including heterogeneous catalytic systems, ligand-free systems, ultrasound and microwave-assisted reactions. The second part focuses on the recently reported novel biological affinities of pyrazoles. This systematic review covers the published studies from 1990 to date. It is expected that this review will be helpful in future research and for new thoughts in the quest for rational designs for developing more promising pyrazoles. Keywords. Pyrazole; pharmaceutical activities; biological activities; synthesis; green chemistry; polycondensed compounds. 1. Introduction anti-microbial, 11 antitumor, 12,13 anticancer 14 and anti- fungal.
    [Show full text]
  • Colorimetric Method for Detection of Hydrazine Decomposition in Chemical Decontamination Process
    energies Article Colorimetric Method for Detection of Hydrazine Decomposition in Chemical Decontamination Process Jungsoon Park 1,2, Hee-Chul Eun 2,3, Seonbyeong Kim 2, Changhyun Roh 2,3,4,* and So-Jin Park 1,* 1 Department of Chemical Engineering, College of Engineering, Chungnam National University, Daejeon 34134, Korea; [email protected] 2 Decommissioning Technology Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Korea; [email protected] (H.-C.E.); [email protected] (S.K.) 3 Quantum Energy Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea 4 Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea * Correspondence: [email protected] (C.R.); [email protected] (S.-J.P.); Tel.: +82-42-868-8604 (C.R.); +82-42-821-5684 (S.-J.P.) Received: 11 September 2019; Accepted: 18 October 2019; Published: 18 October 2019 Abstract: The aim of nuclear facility decommissioning is to make local settlements safe, sustainable and professedly acceptable. The challenges are the clean-up of the nuclear site and waste management. This means a definite promise in terms of safety and security, taking into account social and environmental accountability. There is an essential need to develop safe and efficient methods for nuclear decommissioning. Thus, chemical decontamination technology is of great significance to the decommissioning of nuclear energy facilities. In particular, chemical decontamination technology is applicable to the pipelines and internal loop. The iron-rich oxides, such as Fe3O4 or NiOFe2O3, of a nuclear power plant should have sound decontamination follow-through and should put through a very small amount of secondary waste.
    [Show full text]