bioRxiv preprint doi: https://doi.org/10.1101/013987; this version posted January 19, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 2 3 RATES OF KARYOTYPIC EVOLUTION IN ESTRILDID FINCHES DIFFER BETWEEN 4 ISLAND AND CONTINENTAL CLADES 5 6 Daniel M. Hooper1,2 and Trevor D. Price3 7 8 1Commitee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637 9 2 E-mail:
[email protected] 10 3Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 11 12 13 Sunday, January 18, 2015 14 15 16 Running head: Chromosome inversions in finches 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 bioRxiv preprint doi: https://doi.org/10.1101/013987; this version posted January 19, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 2 35 Reasons why chromosomal rearrangements spread to fixation and frequently distinguish 36 related taxa remain poorly understood. We used cytological descriptions of karyotype to 37 identify large pericentric inversions between species of Estrildid finches (family 38 Estrildidae) and a time-dated phylogeny to assess the genomic, geographic, and 39 phylogenetic context of karyotype evolution in this group.