Panamint Lake 87 Included in Panamint/Argus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Upper Neogene Stratigraphy and Tectonics of Death Valley — a Review
Earth-Science Reviews 73 (2005) 245–270 www.elsevier.com/locate/earscirev Upper Neogene stratigraphy and tectonics of Death Valley — a review J.R. Knott a,*, A.M. Sarna-Wojcicki b, M.N. Machette c, R.E. Klinger d aDepartment of Geological Sciences, California State University Fullerton, Fullerton, CA 92834, United States bU. S. Geological Survey, MS 975, 345 Middlefield Road, Menlo Park, CA 94025, United States cU. S. Geological Survey, MS 966, Box 25046, Denver, CO 80225-0046, United States dTechnical Service Center, U. S. Bureau of Reclamation, P. O. Box 25007, D-8530, Denver, CO 80225-0007, United States Abstract New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from N3.58 Ma to b1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ~3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. -
Draft DRECP and EIR/EIS CHAPTER II.4
Draft DRECP and EIR/EIS CHAPTER II.4. ALTERNATIVE 1 II.4 ALTERNATIVE 1 Alternative 1 is one of five action alternatives considered and analyzed in the Desert Renewable Energy Conservation Plan (DRECP or Plan) and Environmental Impact Report/Environmental Impact Statement (EIR/EIS). The description of Alternative 1 is first provided at an interagency level (Section II.4.1), which describes all Plan elements of the alternative. After the interagency description, the individual elements of the alternative are described, including the Bureau of Land Management (BLM) Land Use Plan Amendment (LUPA) elements of the DRECP (Section II.4.2), the Natural Community Conservation Plan (NCCP) elements of the DRECP (Section II.4.3), and the General Conservation Plan (GCP) elements of the DRECP (Section II.4.4). II.4.1 Interagency Description of Alternative 1 The interagency description of Alternative 1 includes the following main sections: Overview of Alternative 1, Conservation Strategy, Monitoring and Adaptive Management Program, Description of the Covered Activities, and Plan Implementation. The description of Alternative 1 for the DRECP and EIR/EIS encompasses the overall conservation strategy and description of Covered Activities on federal and nonfederal lands (i.e., state, county, city, and privately owned lands) within the Plan Area. II.4.1.1 Overview of Alternative 1 The following provides a Plan-wide overview of Alternative 1. Alternative 1 integrates the renewable energy and resource conservation with other existing uses in the Plan Area and includes BLM LUPA elements, NCCP elements, and GCP elements. Under Alternative 1 for the DRECP, an interagency conservation strategy for the Plan Area would be established that includes a streamlined process for the permitting of renewable energy and transmission development on both federal and nonfederal lands and a BLM LUPA providing Conservation and Management Actions (CMAs) for resources throughout the Plan Area on BLM-administered lands. -
Interest and the Panamint Shoshone (E.G., Voegelin 1938; Zigmond 1938; and Kelly 1934)
109 VyI. NOTES ON BOUNDARIES AND CULTURE OF THE PANAMINT SHOSHONE AND OWENS VALLEY PAIUTE * Gordon L. Grosscup Boundary of the Panamint The Panamint Shoshone, also referred to as the Panamint, Koso (Coso) and Shoshone of eastern California, lived in that portion of the Basin and Range Province which extends from the Sierra Nevadas on the west to the Amargosa Desert of eastern Nevada on the east, and from Owens Valley and Fish Lake Valley in the north to an ill- defined boundary in the south shared with Southern Paiute groups. These boundaries will be discussed below. Previous attempts to define the Panamint Shoshone boundary have been made by Kroeber (1925), Steward (1933, 1937, 1938, 1939 and 1941) and Driver (1937). Others, who have worked with some of the groups which border the Panamint Shoshone, have something to say about the common boundary between the group of their special interest and the Panamint Shoshone (e.g., Voegelin 1938; Zigmond 1938; and Kelly 1934). Kroeber (1925: 589-560) wrote: "The territory of the westernmost member of this group [the Shoshone], our Koso, who form as it were the head of a serpent that curves across the map for 1, 500 miles, is one of the largest of any Californian people. It was also perhaps the most thinly populated, and one of the least defined. If there were boundaries, they are not known. To the west the crest of the Sierra has been assumed as the limit of the Koso toward the Tubatulabal. On the north were the eastern Mono of Owens River. -
SOUTHEASTERN INYO Tt;OUNTAINS, CALIFORNIA
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE SUPERPOSED MESOZOIC DEFOR~~TIONS~ }) SOUTHEASTERN INYO tt;OUNTAINS, CALIFORNIA A thesis submitted in partial satisfaction of the requirements for the degree of 14aster of Science in Geology by Michael Robert Werner Janu(l.ry 3 i 979 The Thesis of Michael Robert Werner is approved: Or. L. Ehltg}rCSULA) Ca 1i forn i a State Un i vers ·j ty, Northridge ii ACKNOWLEDGEMENTS ~1y respectful thanks to George Dunn£ for suggesting this study and for his helpful comments throughoutthe investigation. I am grateful also to Rick Miller and Perry Eh1ig VJho reviewed the manuscript in various stages of preparation. !'r1y special thanks to my parents for theit~ emotiona1 and 1ogistica·i support, and to Diane Evans who typed the first draft. Calvin Stevens and Duane Cavit, California State University~ San Jose, provided valuable information on stratigraphy; and Jean Ju11iand, geologist of the Desert Plan Staff, BLM, Riverside, made available aerial photographs of the study area.· The Department of Geosciences, California State University. Northridge pi·ovided computer time and financial support. Terry Dunn, CSUN, typed the fina1 manuscript. iii TAaLE OF CONTENTS p~~ ACKNOl~LEDGEHENTS. .. 111 LIST OF ILLUSTRATIONS . vi ABSTRACT ... vii. INTRODUCTION 1 METHOD • 3 ROCK UNITS •. 5 PALEOZOIC STRATIGRAPHY . 5 Perdido Formation 7 Rest Spring Shale . .. 3 Keeler Canyon Formation 10 Owens Vulley Formation 14 MESOZOIC INTRUSIVE ROCKS . 16 • Hunter Mountain batholith 16 Andes 'ite porphyry di kas 17 CENOZOIC UNITS . 18 STRUCTURJl.L GEOLOGY 19 FOLDS • ~ . 19 Introduction 19 Folds in the Nelson Range . 21 F., - The San Lucas Canyon syncline 2"1 j r2 - Northwest-trending folds 31 Folds aajacent to the Hunter Mountain batholith 37 Folds in the Southeastern Inyo r'Jounta·ins 43 Southwest-trending folds 43 Northwest-trending folds . -
Hydrologic Basin Death Valley California
Hydrologic Basin Death Valley California GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B Hydrologic Basin Death Valley California By CHARLES B. HUNT, T. W. ROBINSON, WALTER A. BOWLES, and A. L. WASHBURN GENERAL GEOLOGY OF DEATH VALLEY, CALIFORNIA GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B A! description of the hydrology, geochemistry, and patternedground of the saltpan UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract BI Hydrology-Continued Hydrology, by Charles B. Hunt and T. W. Robinson_ - 3 Descriptions and discharges of springs and of Introduction- 3 marshes-Continued Fieldwork- 3 Discharge of springs in the Furnace Creek fault Climate- 5 zone B35 Rainfall 5 Evapotranspiration discharge from the valley floor Evaporation 7 above the saltpan 37 Temperature- 8 Divisions of the valley according to sources of Humidity- 10 ground water 37 Wind- 11 Possible sources of water at Cottonball Marsh- 37 Rock types in the Death Valley hydrologic basin --- 11 Possible source of water at springs along Fur- Hard-rock formations 12 nace Creek fault zone 38 Unconsolidated Quaternary deposits 13 Geochemistry of the saltpan by Charles B. Hunt 40 Gravel deposits 13 General features 40 Fine-grained alluvial and playa deposits - 15 Fieldwork and acknowledgments 41 Salt deposits and saliferous playa deposits- 15 Geologic -
Open-File/Color For
Questions about Lake Manly’s age, extent, and source Michael N. Machette, Ralph E. Klinger, and Jeffrey R. Knott ABSTRACT extent to form more than a shallow n this paper, we grapple with the timing of Lake Manly, an inconstant lake. A search for traces of any ancient lake that inundated Death Valley in the Pleistocene upper lines [shorelines] around the slopes Iepoch. The pluvial lake(s) of Death Valley are known col- leading into Death Valley has failed to lectively as Lake Manly (Hooke, 1999), just as the term Lake reveal evidence that any considerable lake Bonneville is used for the recurring deep-water Pleistocene lake has ever existed there.” (Gale, 1914, p. in northern Utah. As with other closed basins in the western 401, as cited in Hunt and Mabey, 1966, U.S., Death Valley may have been occupied by a shallow to p. A69.) deep lake during marine oxygen-isotope stages II (Tioga glacia- So, almost 20 years after Russell’s inference of tion), IV (Tenaya glaciation), and/or VI (Tahoe glaciation), as a lake in Death Valley, the pot was just start- well as other times earlier in the Quaternary. Geomorphic ing to simmer. C arguments and uranium-series disequilibrium dating of lacus- trine tufas suggest that most prominent high-level features of RECOGNITION AND NAMING OF Lake Manly, such as shorelines, strandlines, spits, bars, and tufa LAKE MANLY H deposits, are related to marine oxygen-isotope stage VI (OIS6, In 1924, Levi Noble—who would go on to 128-180 ka), whereas other geomorphic arguments and limited have a long and distinguished career in Death radiocarbon and luminescence age determinations suggest a Valley—discovered the first evidence for a younger lake phase (OIS 2 or 4). -
Ridgecrest BUREAU of LAND MANAGEMENT
BLM SPECIAL EDITION 1998 EXAMPLES OF AGENCY SIGNS SURFACE MANAGEMENT STATUS DESERT ACCESS GUIDE Ridgecrest BUREAU OF LAND MANAGEMENT USDA FOREST SERVICE l:100,0()0-Scale topographic map showing: Highways, roads and other manmade structures Water features • Contours and elevations in meters Recreation sites • Coverage of former desert access guide #4 Ridgecrest NATIONAL PARK SERVICE UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT CALIFORNIA STATE PARKS Edited and published by the Bureau of Land Management National Applied Resource Sciences Center, Denver, Colorado in cooperation with the Bureau of Land Management California State Office. Planimetry partially revised by BLM from various source material. Revised information not field . he. i-rd Base map prepared by the U.S. Geological Survey. Compiled from USGS 1:24,000 and l:62,5O0-scale topographic maps dated 1949-1973, and from advance materials. Partially revised from aerial photographs taken 1973-1989 and other source data. Revised information not CALIFORNIA STATE field checked. Map edited 1993. VEHICULAR RECREATION AREA Help protect your public lands by observing posted Projection and 10,000-meter grid, zone 11: Universal OHV designations. Watch for OHV signs and read hari'.verse Mercator. 25,000-foot grid licks based on them carefully. California coordinate system, zone 4 and 5. 1927 North American Datum. For more information contact the HIM, USDA Forest Service, National Park Service, California State Park, or California State Motorized Vechicle Recreation Area Land lines are omitted in areas of extensive tract surveys. Office (see back panel for address and phone There may be private inholdings within the boundaries of numbers). -
California Rare & Endagered Birds
California brown pelican Pelecanus occidentalis californicus State Endangered 1971 Fully Protected Federal Endangered 1970 General Habitat: The California brown pelican uses a variety of natural and human-created sites, including offshore islands and rocks, sand spits, sand bars, jetties, and piers, for daytime loafing and nocturnal roosting. Preferred nesting sites provide protection from mammalian predators and sufficient elevation to prevent flooding of nests. The pelican builds a nest of sticks on the ground, typically on islands or offshore rocks. Their nesting range extends from West Anacapa Island and Santa Barbara Island in Channel Islands National Park to Islas Los Coronados, immediately south of and offshore from San Diego, and Isla San Martín in Baja California Norte, Mexico. Description: The brown pelican is one of two species of pelican in North America; the other is the white pelican. The California brown pelican is a large, grayish-brown bird with a long, pouched bill. The adult has a white head and dark body, but immature birds are dark with a white belly. The brown pelican weighs up to eight pounds and may have a wingspan of seven feet. Brown pelicans dive from flight to capture surface-schooling marine fishes. Status: The California brown pelican currently nests on West Anacapa Island and Santa Barbara Island in Channel Islands National Park. West Anacapa Island is the largest breeding population of California. In Mexico, the pelicans nest on Islas Los Coronados and Isla San Martín. Historically, the brown pelican colony on Islas Los Coronados was as large as, or larger than, that of recent years on Anacapa Island. -
Naomi S. Fraga Rancho Santa Ana Botanic Garden
The California Deserts: Plant Life at the Extremes Naomi S. Fraga Rancho Santa Ana Botanic Garden Red Pass, Death Valley NP Eastern Kern County, California Western Mojave Desert 29 million acres (45,000 sq mi), or 28% of California's landmass. GIS layer source: Omernick ecoregions level 3 Great Basin Mojave Sonoran A Conspiracy of Extremes Bruce Pavlick- 2008 The California Deserts - Topography: 14,246 to -279 ft. - Geology: Limestone, granite, sand dunes - Temperature: below freezing to 134°F (1913) - Changing history over the past 12,000 years - Transition to modern desert complete by 8,500 to 5,000 years ago Krascheninnikovia lanata (winterfat) “Water, water, water....There is no shortage of water in the desert but exactly the right amount, a perfect ratio of water to rock, water to sand, insuring that wide free open, generous spacing among plants and animals, homes and towns and cities, which makes the arid West so different from any other part of the nation. There is no lack of water here unless you try to establish a city where no city should be.” ― Edward Abbey, Desert Solitaire: A Season in the Wilderness Dutch Cleanser Mine, Red Rock Canyon SP Desert Flora - 2377 taxa native to desert (37% of the CA flora) - 785 taxa that do not occur elsewhere in CA (33%) - 232 naturalized taxa (9%) when compared CA (17%) Sources Desert Jepson Manual (2002) Jepson e-flora (2017) Pavlick (2008) Hesperocallis undulata (desert lily) Topographic diversity= species diversity Great Basin 1363 Taxa Mojave 1409 Taxa Sonoran 709 Taxa Remarkable Flora Dr. Frank Vasek’s students circling King Clone on April 1, 1979. -
The California Desert CONSERVATION AREA PLAN 1980 As Amended
the California Desert CONSERVATION AREA PLAN 1980 as amended U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT U.S. Department of the Interior Bureau of Land Management Desert District Riverside, California the California Desert CONSERVATION AREA PLAN 1980 as Amended IN REPLY REFER TO United States Department of the Interior BUREAU OF LAND MANAGEMENT STATE OFFICE Federal Office Building 2800 Cottage Way Sacramento, California 95825 Dear Reader: Thank you.You and many other interested citizens like you have made this California Desert Conservation Area Plan. It was conceived of your interests and concerns, born into law through your elected representatives, molded by your direct personal involvement, matured and refined through public conflict, interaction, and compromise, and completed as a result of your review, comment and advice. It is a good plan. You have reason to be proud. Perhaps, as individuals, we may say, “This is not exactly the plan I would like,” but together we can say, “This is a plan we can agree on, it is fair, and it is possible.” This is the most important part of all, because this Plan is only a beginning. A plan is a piece of paper-what counts is what happens on the ground. The California Desert Plan encompasses a tremendous area and many different resources and uses. The decisions in the Plan are major and important, but they are only general guides to site—specific actions. The job ahead of us now involves three tasks: —Site-specific plans, such as grazing allotment management plans or vehicle route designation; —On-the-ground actions, such as granting mineral leases, developing water sources for wildlife, building fences for livestock pastures or for protecting petroglyphs; and —Keeping people informed of and involved in putting the Plan to work on the ground, and in changing the Plan to meet future needs. -
Geology of the Panamint Butte Quadrangle, Inyo County, California
Geology of the Panamint Butte Quadrangle, Inyo County, California By WAYNE E; HALL GEOLOGICAL SURVEY BULLETIN 1299 Prepared in cooperation with the California Department of Conservation, Division of Mines and Geology KhCEIVED JUL161971 u.8.1 teuisfiUt, it UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 75-610447 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract_________________________________-_.-______-__--_-_--_--- 1 Introduction. ___________-______--_____--_----.--___--__-__--------- 2 Climate.and vegetation._________.__....__.._____-___________-__ 3 Water supply-________________________________________________ 3 Previous work__________________________.___._____._1________ 4 Acknowledgments- _______________._______..____-__-_---------_- 4 General geology.__________________________-__..____--_----_-_--__-- 5 Precambrian(?) rocks._____________.__________.._----___-___-_-_-__- 7 Paleozoic rocks._____.__.___--________-___-____-_-----_---_--.-.-_- 8 Cambrian System_____________________________________________ 8 Carrara Formation.__________________..-_____--____---__-_- 8 Bonanza King Formation___._.______..__._._.....____.____ 10 Nopah Formation._____...____-_-_.....____________-_-_-__- 11 Ordovician System___________________________________________ 13 Pogonip Group_____-__-______-____-_-..----------_--._-_-_- 13 Eureka Quartzite.______________-_____..___-_-_---_-----_--_ 16 Ely Springs Dolomite__---__-______________________________ 18 Silurian and Devonian Systems___________..__-_-__----_-__-___- 21 Hidden Valley Dolomite......._____________________________ 21 Devonian System_____________________________________________ 22 Lost Burro Formation.....__________________________________ 22 Mississippian System.___._____..____._.._..__.___..._._._..__. -
4.5 Cultural Resources
4.5 – Cultural Resources 4.5 Cultural Resources This section identifies cultural and paleontological resources along the IC Project Alignment, identifies applicable significance thresholds, assesses the IC Project’s impacts to these resources and their significance, and recommends measures to avoid or substantially reduce any effects found to be potentially significant. Cultural resources are defined as any object or specific location of past human activity, occupation, or use that is identifiable through historical documentation, inventory, or oral evidence. Cultural resources can be separated into three categories: archaeological, building/structural, and traditional resources. Archaeological resources include prehistoric and historic remains of human activity. Prehistoric resources can be composed of lithic scatters, ceramic scatters, quarries, habitation sites, temporary camps/rock rings, ceremonial sites, and trails. Historic-era resources are typically those that are 50 years or older. Historic archaeological resources can consist of structural remains (e.g., concrete foundations), historic objects (e.g., bottles and cans), features (e.g., refuse deposits or scatters), and sites (e.g., resources that contain one or more of the aforementioned categories). Built environment resources range from historic buildings to canals, historic roads and trails, bridges, ditches, cemeteries, and electrical infrastructure, such as transmission lines, substations, and generating facilities. A traditional cultural resource is a resource associated with the cultural practices, traditions, beliefs, lifeways, arts, crafts, or social institutions of a living community. They are rooted in a traditional community’s history and are important in maintaining the continuing cultural identity of the community. See Section 4.18, Tribal Cultural Resources, for a discussion on cultural resources of potential importance to California Native American tribes.