A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots

Total Page:16

File Type:pdf, Size:1020Kb

A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots Giulio Romualdi1, Stefano Dafarra1, Yue Hu2, Daniele Pucci1 Abstract— This work contributes towards the development p_B, the angular !B base velocity and the joint velocities s_. of a three-layer controller architecture for bipedal locomotion. M(q) is the mass matrix and h(q; ν) indicates the Coriolis, From the top to the bottom, the layers consist on a trajectory centrifugal and gravitational terms. B is a selection matrix. optimization, a simplified model control and a whole-body QP control. In contrast to the first two layers, the third one Jc(q) is the contact wrenches Jacobian and f are the contact relies on the full robot dynamic model to produce either wrenches. τ are the control inputs. position, velocity or torque commands, and it is the main For cases in which, the humanoid robot walks maintaining responsible for the compliant behaviour of the robot. All these a constant height between the CoM and the stance foot, then approaches have been successfully implemented and tested on the motion of the robot can be approximated with the Linear the iCub humanoid robot. Noticeably, one of the proposed implementations allows the robot to reach a forward walking inverted pendulum model: velocity of 0.41 meters per second, which is the highest walking 1 x¨ = (x − rzmp); (2) velocity ever achieved for the iCub humanoid robot. b2 I. INTRODUCTION where x is the projection of the CoM on the walking surface zmp In the last decades, a common approach for facing the and b > 0 and r the zero moment point (ZMP). humanoid robot locomotion problem was developing a hier- The Divergent Component of Motion (DCM) is archical architecture composed of several layers. Each layer 1 ξ = x + bx_ ξ_ = (ξ − rzmp): (3) generates references for the layer below by processing inputs b from the robot, the environment, and the outputs of the layer It is interesting to notice that the DCM can be seen as the before. From top to bottom, these layers are called in this unstable dynamics of the linear inverted pendulum model. work: trajectory optimization, simplified model control, and whole-body quadratic programming (QP) control. III. ARCHITECTURE In this summary, the trajectory optimization layer is kept A. Trajectory optimization layer fixed with a unicycle based planner that generates desired The main purpose of the trajectory optimization layer is to DCM and feet trajectories. The simplified model control evaluated the desired footsteps, DCM and feet trajectories. layer, instead, implements two controllers for the tracking of The footsteps positions are planned by representing the the DCM: an instantaneous and an MPC controller. Finally, humanoid robot motion as an unicycle, where the feet are the whole-body QP control implements two controllers for represented by the unicycle wheels. Once the footsteps are the tracking of the Cartesian trajectory: a kinematics-based planned, the feet trajectory is evaluated by cubic spline and dynamics-based whole body controllers. The former interpolation. The footsteps positions are also used to plan uses the kinematics of the robot for generating desired the desired DCM trajectory. For the single support phase, the joint positions/velocities; while the latter is based on the DCM is chosen so as to satisfy (3). In order to guarantee a entire robot dynamics and its output is the desired joint continuous ZMP trajectory, during the double support phase, torques. The presented architecture was validated on the iCub the DCM is planned by mean of third order polynomial. humanoid robot (Fig. 2) and it was successfully exploited on a teleoperation framework 1. B. Simplified model control layer II. HUMANOID ROBOTS MODELS The simplified model control layer is in charge to im- A humanoid robot is a floating base multi-body system plement a control law based on the simplified model of the described by the following differential equation: humanoid robot to stabilize the unstable DCM dynamics (3). > M(q)_ν + h(q; ν) = Bτ + Jc (q)f; (1) Feet Pose and Torso Orientation where q contains the pose of the base link with respect the inertial frame and the joint angles s. ν contains the linear Desired Desired CoM Joint Positions, Trajectory DCM Simplified Model Velocity or ZMP Whole-Body QP Velocities or Torques Robot Optimization Control Control 1 Fondazione Istituto Italiano di Tecnologia, Genova, Italy (e-mail: [email protected]). 2 JSPS Postdoctoral Fellowship for Research in Japan (Standard), Contact Wrenches CNRS-AIST JRL, UMI3218/RL, Intelligent Systems Research Institute, Na- Joint and CoM Position/Velocity tional Institute of AIST, Tsukuba, Japan (e-mail: [email protected]). Fig. 1: The control architecture is composed of three layers: the trajectory 1https://www.youtube.com/watch?v=jemGKRxdAM8 optimization, the simplified model control, and the whole-body QP control. The stabilization problem is faced by developing two con- the dynamics of the system. The control objective is achieved trollers, an instantaneous and a predictive control laws. by designing a constrained quadratic optimization problem h i The instantaneous control law is given by: whose conditional variable is u> = ν_ > τ > f > : The Z zmp ξ control problem can be summarized in the following opti- r = ξ −bξ_ + Kξ(ξ−ξ ) + K (ξ−ξ ) dt: ref ref ref p ref i ref mization problem: (4) ∗ ∗ 2 ∗ 2 2 Even if the proposed control law is very simple to imple- u = arg min k!_ T − !_ T kΛ +ks¨ − s¨ kΛ +kτkΛ (6a) u T s t ment it may generate an infeasible desired ZMP. This draw- ref d p d back is handled by developing a model predictive control s.t. s¨ = −Ks s_ − Ks (s − s ) (6b) (MPC). The DCM dynamics (3) is used as the prediction A◦sf = 0 ◦ = fs; dg (6c) model and it is discretized supposing piecewise constant Cf ≤ 0 (6d) ZMP trajectory. On the other hand, the tracking of the desired ref JC ν_ =v _ − J_C ν (6e) DCM trajectory as well as a smooth control signal is handled z Cz z _ ∗ by the cost function. Finally the feasibility of the ZMP is J◦F ν_ = v◦F − J◦F ν ◦ = fL; Rg (6f) h > i guaranteed by an inequality constraint. −M(q) BJc (q) u = h(q; ν) (6g) Independently from the chosen DCM controller, one ob- τ − ≤ τ ≤ τ +: (6h) tains a desired ZMP position. In case of kinematics-based whole-body QP control layer, another control loop is needed The high priority tasks are the tracking of the desired feet for ensuring the tracking of the desired ZMP trajectory. This pose (6f), of the ZMP desired trajectory (6c), and of the task is achieved by implementing a ZMP-CoM controller. CoM height (6e). The torso orientation and the postural task C. Whole-body QP controller are still considered as a low priority (6a). The term (6d) guarantees feasible contact wrenches. By rearranging (1), the The main objective of the whole-body QP control layer is robot dynamics can be treated as an equality constraint (6g). to ensure the tracking of the desired trajectories by using the entire robot model. The control problem can be tackled by IV. COMPARISON using either the kinematics model of the robot, or taking into Tab. I summarizes the maximum velocities achieved using account the entire robot dynamics. Independently from the the different implementations of the control architecture. In chosen architecture, the control objective can be achieved by particular, the labels instantaneous and predictive mean that design the controller as a constrained optimization problem the associated layer generates its outputs considering inputs where the low priority tasks are embedded in the cost func- and references either at the single time t or for a time win- tion and the high priority tasks are considered as constraints. dow, respectively. The labels, velocity, position and torque The kinematics-based whole-body controller can be sum- control, instead, mean that the layer outputs are either desired marized in the following optimization problem: joint velocities, position or torque, respectively. Finally, the ν∗ = arg min k!∗ − ! k2 +ks_ − s_∗k2 (5a) labels iCub and simulation are used to indicate platform used T T ΛT Λs ν for the experiments, namely the iCub humanoid robot, or a ∗ d s.t. s_ = −Ks(s − s ) (5b) Gazebo simulation. Noticeably, the instantaneous controller ∗ JCν = vC (5c) combined with a position controlled robot, allow the robot to ∗ ∗ achieve forward walking velocity of 0:41 m s−1, which is the JLF ν = vLF JRF ν = vRF (5d) highest velocity ever achieved for the iCub humanoid robot. s_− ≤ s_ ≤ s_+: (5e) When the robot is torque controlled, we noticed that the Here the tracking of the desired torso orientation and of noise affecting the measured DCM does not allow us to use the joint regularization term are embedded in the cost func- the simplified model controllers. So we decide to stabilize a tion (5a). On the other hand, the tracking of the desired feet desired CoM instead of DCM. In order to maintain consis- trajectory (5d) and the CoM (5c) are hard constraints. tency with the previous architecture, we decide to generate The decision variable ν contains the desired joint veloci- the desired CoM trajectory from the LIPM dynamics (2) ties. This desired quantity can be used directly as a reference starting from a desired DCM trajectory. to a joint velocity controller, if available. Otherwise, they can be integrated and fed to a low-level joints position controller. In case a low-level torque controller is available, the TABLE I: Maximum forward straight walking velocities achieved using presented architecture can be extended by considering also different implementations of the control architecture.
Recommended publications
  • Lower Body Design of the `Icub' a Human-Baby Like Crawling Robot
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Salford Institutional Repository Lower Body Design of the ‘iCub’ a Human-baby like Crawling Robot N.G.Tsagarakis M. Sinclair F. Becchi Center of Robotics and Automation Center of Robotics and Automation TELEROBOT University of Salford University of Salford Advanced Robotics Salford , M5 4WT, UK Salford , M5 4WT, UK 16128 Genova, Italy [email protected] [email protected] [email protected] G. Metta G. Sandini D.G.Caldwell LIRA-Lab, DIST LIRA-Lab, DIST Center of Robotics and Automation University of Genova University of Genova University of Salford 16145 Genova, Italy 16145 Genova, Italy Salford , M5 4WT, UK [email protected] [email protected] [email protected] Abstract – The development of robotic cognition and a human like robots has led to the development of H6 and H7 greater understanding of human cognition form two of the [2]. Within the commercial arena there were also robots of current greatest challenges of science. Within the considerable distinction including those developed by RobotCub project the goal is the development of an HONDA. Their second prototype, P2, was introduced in 1996 embodied robotic child (iCub) with the physical and and provided an important step forward in the development of ultimately cognitive abilities of a 2 ½ year old human full body humanoid systems [3]. P3 introduced in 1997 was a baby. The ultimate goal of this project is to provide the scaled down version of P2 [4]. ASIMO (Advanced Step in cognition research community with an open human like Innovative Mobility) a child sized robot appeared in 2000.
    [Show full text]
  • Robot Mediated Communication
    UNIVERSITY OF THE WEST OF ENGLAND ROBOT MEDIATED COMMUNICATION: ENHANCING TELE-PRESENCE USING AN AVATAR HAMZAH ZIYAAD HOSSEN MAMODE 10/08/2015 A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy Faculty of Environment and Technology University of the West of England, Bristol August 2015 Robot Mediated Communication: Enhancing Tele-presence using an Avatar “If words of command are not clear and distinct, if orders are not thoroughly understood, then the general is to blame.” – Sun Tzu (c. 6th century BCE) P-2 Robot Mediated Communication: Enhancing Tele-presence using an Avatar Declaration I declare that the work in this dissertation was carried out in accordance with the requirements of the University's Regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate's own work. Work done in collaboration with, or with the assistance of, others, is indicated as such. Any views expressed in the dissertation are those of the author. Signed: Date: P-3 Robot Mediated Communication: Enhancing Tele-presence using an Avatar Abstract In the past few years there has been a lot of development in the field of tele-presence. These developments have caused tele-presence technologies to become easily accessible and also for the experience to be enhanced. Since tele-presence is not only used for tele-presence assisted group meetings but also in some forms of Computer Supported Cooperative Work (CSCW), these activities have also been facilitated.
    [Show full text]
  • Lower Body Design of the 'Icub' a Human-Baby Like Crawling Robot
    Lower Body Design of the ‘iCub’ a Human-baby like Crawling Robot N.G.Tsagarakis M. Sinclair F. Becchi Center of Robotics and Automation Center of Robotics and Automation TELEROBOT University of Salford University of Salford Advanced Robotics Salford , M5 4WT, UK Salford , M5 4WT, UK 16128 Genova, Italy [email protected] G Metta G. Sandini D.G.Caldwell LIRA-Lab, DIST LIRA-Lab, DIST Center of Robotics and Automation University of Genova University of Genova University of Salford 16145 Genova, Italy 16145 Genova, Italy Salford , M5 4WT, UK [email protected] [email protected] [email protected] Abstract – The development of robotic cognition and a which weights 131.4kg forms a complete human like figure greater understanding of human cognition form two of the [1]. At the University of Tokyo which also has a long history current greatest challenges of science. Within the RobotCub of humanoid development, research efforts on human like project the goal is the development of an embodied robotic child robots has led in recent times to the development of H6 and (iCub)with the physical and ultimately cognitive abilities of a 2 H7. H6 has a total of 35 degrees of freedom (D.O.F) and ½ year old human baby. The ultimate goal of this project is weighs 55Kg [2]. Within the commercial arena there were to provide the cognition research community with an open also robots of considerable distinction including those human like platform for understanding of cognitive developed by HONDA. Their second prototype, P2, was systems through the study of cognitive development.
    [Show full text]
  • Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used.
    [Show full text]
  • DAC-H3: a Proactive Robot Cognitive Architecture to Acquire and Express
    Preprint version; final version available at http://ieeexplore.ieee.org/ IEEE Transactions on Cognitive and Developmental Systems (Accepted) DOI: 10.1109/TCDS.2017.2754143 1 DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self Clément Moulin-Frier*, Tobias Fischer*, Maxime Petit, Grégoire Pointeau, Jordi-Ysard Puigbo, Ugo Pattacini, Sock Ching Low, Daniel Camilleri, Phuong Nguyen, Matej Hoffmann, Hyung Jin Chang, Martina Zambelli, Anne-Laure Mealier, Andreas Damianou, Giorgio Metta, Tony J. Prescott, Yiannis Demiris, Peter Ford Dominey, and Paul F. M. J. Verschure Abstract—This paper introduces a cognitive architecture for I. INTRODUCTION a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the HE so-called Symbol Grounding Problem (SGP, [1], [2], initiative can originate from both the human and the robot. The T [3]) refers to the way in which a cognitive agent forms an framework, based on a biologically-grounded theory of the brain internal and unified representation of an external word referent and mind, integrates a reactive interaction engine, a number of from the continuous flow of low-level sensorimotor data state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The generated by its interaction with the environment. In this paper, architecture as a whole drives the robot behavior to solve the we focus on solving the SGP in the context of human-robot symbol grounding problem, acquire language capabilities, execute interaction (HRI), where a humanoid iCub robot [4] acquires goal-oriented behavior, and express a verbal narrative of its own and expresses knowledge about the world by interacting with experience in the world.
    [Show full text]
  • Magic Icub: a Humanoid Robot Autonomously Catching Your Lies in a Card Game
    Magic iCub: a humanoid robot autonomously catching your lies in a card game Dario Pasquali Jonas Gonzalez- Francesco Rea Giulio Sandini Alessandra Sciui RBCS & ICT Billandon RBCS RBCS CONTACT Istituto Italiano di RBCS Istituto Italiano di Istituto Italiano di Istituto Italiano di Tecnologia & DIBRIS, Istituto Italiano di Tecnologia Tecnologia Tecnologia Università di Genova Tecnologia & DIBRIS, Genova, Italy Genova, Italy Genova, Italy Genova, Italy Università di Genova [email protected] [email protected] [email protected] [email protected] Genova, Italy [email protected] ABSTRACT Games are often used to foster human partners’ engagement and 1 Introduction natural behavior, even when they are played with or against Historically, robots always fascinated the public, entertaining the robots. Therefore, beyond their entertainment value, games audience. Indeed, the first recorded example of humanoid robot represent ideal interaction paradigms where to investigate natural was a robotic musical band meant to entertain the guests of an human-robot interaction and to foster robots’ diffusion in the Arabian king [1]. Nowadays, robots can have a role not only in society. However, most of the state-of-the-art games involving task-oriented research or industrial applications, but also in the robots, are driven with a Wizard of Oz approach. To address this field of entertainment. e concept of Entertainment Robotics limitation, we present an end-to-end (E2E) architecture to enable refers to any robotic platform and application not directly useful the iCub robotic platform to autonomously lead an entertaining for a specific task, but rather meant to entertain and amuse magic card trick with human partners.
    [Show full text]
  • The Icub Humanoids Platform
    The iCub humanoids platform Giorgio Metta Sestri Levante, July 21st, 2008 Italian Institute of Technology The iCub: qqyuick summary The iCub is the humanoid baby-robot designed as part of the RobotCub project – The iCub is a full humanoid robot sized as a three and halffy year-old child. – The total height is 104cm. –It has 53 degrees of freedom, including articulated hands to be used for manipulation and gesturing. – The robot will be able to crawl and sit and autonomously transit ion from crawling to sitting and vice-versa. –The robot is GPL/FDL: software, hardware, drawingg,s, documentation, etc. Degrees of freedom • Head: vergence, common tilt + 3 dof neck •Arms: 7 dofeach – Shou lder (3), elbow (1), wrist (3) • Hands: 9 dof each ► 19 joints –5 fingers ► underactuated • Legs: 6 dof each – Hip (3), knee (1), ankle (2) • Waist: 3 dof Σ = 53 dof (not counting the facial expressions) Sensorization • For each joint: – Position (some absolute, some incremental): • Magnetic absolute position sensors • Enco der s • Hall-effect sensors – Torque/tension • Limb level, but work in progress to add joint level torque sensing • Current consumption – Temperature (monitor, safety) • Safe operation (but we have a disclaimer now!) In addition… • Cameras • Force/torque sensors – Developed: not used yet • Microphones, speaker – Pinnae • Gyroscopes, linear accelerometers • Design of the shell, wiring, power supply, additional sensors… – Ongoing • Tactile sensors, skin… – Low-resolution version, fingertips (more later) • Impact, contact, sensors (e.g. for
    [Show full text]
  • Whole-Body Strategies for Mobility and Manipulation
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-2010 Whole-Body Strategies for Mobility and Manipulation Patrick Deegan University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Computer Sciences Commons Recommended Citation Deegan, Patrick, "Whole-Body Strategies for Mobility and Manipulation" (2010). Open Access Dissertations. 211. https://scholarworks.umass.edu/open_access_dissertations/211 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. WHOLE-BODY STRATEGIES FOR MOBILITY AND MANIPULATION A Dissertation Presented by PATRICK DEEGAN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2010 Computer Science c Copyright by Patrick Deegan 2010 All Rights Reserved WHOLE-BODY STRATEGIES FOR MOBILITY AND MANIPULATION A Dissertation Presented by PATRICK DEEGAN Approved as to style and content by: Roderic Grupen, Chair Oliver Brock, Member Andrew Barto, Member Richard Van Emmerik, Member Andrew Barto, Department Chair Computer Science To my family. ACKNOWLEDGMENTS I would like to thank my thesis advisor, Rod Grupen, for all his help, leadership, and support throughout my graduate school career. Rod’s vast knowledge, genius, and insight into robotics has been a constant inspiration. I feel very fortunate to have been a part of the Laboratory for Perceptual Robotics. The environment Rod created not only allowed me to develop my passion for robotics, but his understanding and patience allowed me to grow personally, overcome many obstacles, and develop the confidence I needed to bring this work to fruition.
    [Show full text]
  • Mixed Reality Technologies for Novel Forms of Human-Robot Interaction
    Dissertation Mixed Reality Technologies for Novel Forms of Human-Robot Interaction Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Dipl.-Inf. Dennis Krupke Human-Computer Interaction and Technical Aspects of Multimodal Systems Department of Informatics Universität Hamburg November 2019 Review Erstgutachter: Prof. Dr. Frank Steinicke Zweitgutachter: Prof. Dr. Jianwei Zhang Drittgutachter: Prof. Dr. Eva Bittner Vorsitzende der Prüfungskomission: Prof. Dr. Simone Frintrop Datum der Disputation: 17.08.2020 “ My dear Miss Glory, Robots are not people. They are mechanically more perfect than we are, they have an astounding intellectual capacity, but they have no soul.” Karel Capek Abstract Nowadays, robot technology surrounds us and future developments will further increase the frequency of our everyday contacts with robots in our daily life. To enable this, the current forms of human-robot interaction need to evolve. The concept of digital twins seems promising for establishing novel forms of cooperation and communication with robots and for modeling system states. Machine learning is now ready to be applied to a multitude of domains. It has the potential to enhance artificial systems with capabilities, which so far are found in natural intelligent creatures, only. Mixed reality experienced a substantial technological evolution in recent years and future developments of mixed reality devices seem to be promising, as well. Wireless networks will improve significantly in the next years and thus, latency and bandwidth limitations will be no crucial issue anymore. Based on the ongoing technological progress, novel interaction and communication forms with robots become available and their application to real-world scenarios becomes feasible.
    [Show full text]
  • Social Robotics Agenda.Pdf
    Thank you! The following agenda for social robotics was developed in a project led by KTH and funded by Vinnova. It is a result of cooperation between the following 35 partners: Industry: ABB, Artificial Solutions, Ericsson, Furhat robotics, Intelligent Machines, Liquid Media, TeliaSonera Academia: Göteborgs universitet, Högskolan i Skövde, Karolinska Institutet, KTH, Linköpings universitet, Lunds tekniska högskola, Lunds Universitet, Röda korsets högskola, Stockholms Universtitet, Uppsala Universitet, Örebro universitet Public sector: Institutet för Framtidsstudier, Myndigheten för Delaktighet, Myndigheten för Tillgängliga Medier, Statens medicinsk- etiska råd, Robotdalen, SLL Innovation, Språkrådet End-user organistions: Brostaden, Epicenter, EF Education First, Fryshuset Gymnasium, Hamnskolan, Investor, Kunskapsskolan, Silver Life, Svenskt demenscentrum, Tekniska Museet We would like to thank all partners for their great commitment at the workshops where they shared good ideas and insightful experiences, as well as valuable and important observations of what the future might hold. Agenda key persons: Joakim Gustafson (KTH), Peje Emilsson (Silver Life), Jan Gulliksen (KTH), Mikael Hedelind (ABB), Danica Kragic (KTH), Per Ljunggren (Intelligent Machines), Amy Loutfi (Örebro university), Erik Lundqvist (Robotdalen), Stefan Stern (Investor), Karl-Erik Westman (Myndigheten för Delaktighet), Britt Östlund (KTH) Writing group: editor Joakim Gustafson, co-editor Jens Edlund, Jonas Beskow, Mikael Hedelind, Danica Kragic, Per Ljunggren, Amy
    [Show full text]
  • Master Thesis Robot's Appearance
    VILNIUS ACADEMY OF ARTS FACULTY OF POSTGRADUATE STUDIES PRODUCT DESIGN DEPARTMENT II YEAR MASTER DEGREE Inna Popa MASTER THESIS ROBOT’S APPEARANCE Theoretical part of work supervisor: Mantas Lesauskas Practical part of work supervisor: Šarūnas Šlektavičius Vilnius, 2016 CONTENTS Preface .................................................................................................................................................... 3 Problematics and actuality ...................................................................................................................... 3 Motives of research and innovation of the work .................................................................................... 3 The hypothesis ........................................................................................................................................ 4 Goal of the research ................................................................................................................................ 4 Object of research ................................................................................................................................... 4 Aims of Research ..................................................................................................................................... 5 Sources of research (books, images, robots, companies) ....................................................................... 5 Robots design .........................................................................................................................................
    [Show full text]
  • Genoa Giorgio Metta & the Icub Team
    iCub a shared platform for research in robotics & AI Genoa June 25, 2015 Giorgio Metta & the iCub team Istituto Italiano di Tecnologia Via Morego, 30 - Genoa, Italy we have a dream 6/25/2015 3 the iCub price: 250K€ 30 iCub distributed since 2008 about 3-4 iCub’s/year 6/25/2015 4 why is the iCub special? • hands: we started the design from the hands – 5 fingers, 9 degrees of freedom, 19 joints • sensors: human-like, e.g. no lasers – cameras, microphones, gyros, encoders, force, tactile… • electronics: flexibility for research – custom electronics, small, programmable (DSPs) • reproducible platform: community designed − reproducible & maintainable yet evolvable platform − large software repository (~2M lines of code) 6/25/2015 5 why humanoids? • scientific reasons – e.g. elephants don’t play chess • natural human-robot interaction • challenging mechatronics • fun! 6/25/2015 6 why open source? • repeatable experiments • benchmarking • quality this resonates with industry-grade R&D in robotics 6/25/2015 7 open source 6/25/2015 8 6/25/2015 9 series-elastic actuators • C spring design • 320Nm/rad stiffness • features: – stiffness by design – no preloading necessary (easy assembly) – requires only 4 custom mechanical parts – high resolution encoder for torque sensing 6/25/2015 10 Yet Another Robot Platform • YARP is an open-source (LGPL) middleware for humanoid robotics •history 2001-2002 – an MIT / Univ. of Genoa collaboration 2000-2001 – born on Kismet, grew on COG, under QNX – with a major overhaul, now used by the iCub project 2003 • C++ source code (some 400K lines) • IPC & hardware interface 2004-Today • portable across OSs and development platforms 6/25/2015 11 exploit diversity: portability • operating system portability: – Adaptive Communication Environment, C++ OS wrapper: e.g.
    [Show full text]