Rosetta Launch Window

Total Page:16

File Type:pdf, Size:1020Kb

Rosetta Launch Window e a directorate of technical and operational support ground systems engineering department mission support office mission analysis section RO-ESC-RP-5500 ROSETTA: CONSOLIDATED REPORT ON MISSION ANALYSIS CHURYUMOV-GERASIMENKO 2004 (Issue 5, Rev. 0) by J. Rodríguez Canabal J. M. Sánchez Pérez Arturo Yáñez Otero August, 2003 European Space Operations Centre Robert-Bosch-Str. 5 D - 64293 Darmstadt Doc. Title: ROSETTA: CReMA Churyumov-Gerasimenko 2004 Issue: 5 Doc Ref.: RO-ESC-RP-5500 Rev.: 0 Date: August, 2003 Page: ii ROSETTA: CONSOLIDATED REPORT ON MISSION ANALYSIS First Edition (Issue 5, Rev. 0), 2003 ESA/ESOC, 64293 Darmstadt, Germany, August, 2003 European Space Agency RO-ESC-RP-5500 Agence spatiale européenne ESOC Mission Analysis Section Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany ESA-TOS-GMA Tel. +49-6151-90-2059; Fax +49-6151-90-2625 Doc. Title: ROSETTA: CReMA Churyumov-Gerasimenko 2004 Issue: 5 Doc Ref.: RO-ESC-RP-5500 Rev.: 0 Date: August, 2003 Page: iii Document Approval Prepared by Address Code Signature Date J.M. Sánchez Pérez ESA/TOS/GMA Approved by Address Code Signature Date J.RodríguezCanabal ESA/TOS/GMA European Space Agency RO-ESC-RP-5500 Agence spatiale européenne ESOC Mission Analysis Section Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany ESA-TOS-GMA Tel. +49-6151-90-2059; Fax +49-6151-90-2625 Doc. Title: ROSETTA: CReMA Churyumov-Gerasimenko 2004 Issue: 5 Doc Ref.: RO-ESC-RP-5500 Rev.: 0 Date: August, 2003 Page: iv Change Record Date Issue Rev. Page/Para. Description Approval affected authority European Space Agency RO-ESC-RP-5500 Agence spatiale européenne ESOC Mission Analysis Section Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany ESA-TOS-GMA Tel. +49-6151-90-2059; Fax +49-6151-90-2625 Doc. Title: ROSETTA: CReMA Churyumov-Gerasimenko 2004 Issue: 5 Doc Ref.: RO-ESC-RP-5500 Rev.: 0 Date: August, 2003 Page: v Distribution List Project : C. Berner J. van Casteren G. Coupe J. Ellwood Ph. Kletzkine D. Koschny J. Salvignol R. Schulz G. Schwehm ESOC : MAS V. Companys P. Ferri J. Fertig W. Frank J.F. Kaufeler M. Lauer E. Montagnon T. Morley R. Münch J. Schoenmaekers A. Smith J. Wardill M. Warhaut European Space Agency RO-ESC-RP-5500 Agence spatiale européenne ESOC Mission Analysis Section Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany ESA-TOS-GMA Tel. +49-6151-90-2059; Fax +49-6151-90-2625 Doc. Title: ROSETTA: CReMA Churyumov-Gerasimenko 2004 Issue: 5 Doc Ref.: RO-ESC-RP-5500 Rev.: 0 Date: August, 2003 Page: vi Table of Content 1. PURPOSE....................................................................................................................1 2. REFERENCES..............................................................................................................2 2.1 Applicable Documents................................................................................................ 2 2.2 Reference Documents ................................................................................................. 2 3. MISSION REQUIREMENTS AND CONSTRAINTS ............................................................4 3.1 General Description .................................................................................................... 4 3.2 Scientific Requirements .............................................................................................. 4 3.2.1 Comet Characterisation....................................................................................... 5 3.2.2 Asteroids Characterisation .................................................................................. 6 3.3 Launcher Requirements .............................................................................................. 6 3.4 Spacecraft Requirements............................................................................................. 7 3.5 Ground Station and Radio Tracking System............................................................... 8 4. MISSION OVERVIEW ..................................................................................................9 4.1 Mission Baseline Description ..................................................................................... 9 4.1.1 Rosetta Baseline Mission.................................................................................... 9 4.2 Launcher Description................................................................................................ 15 4.2.1 Launch Procedure.............................................................................................. 16 4.2.2 Launcher Performances and Launch Dates....................................................... 16 4.3 Spacecraft Description .............................................................................................. 17 4.4 Mission Operation Phases......................................................................................... 18 5. LAUNCH WITH ARIANE 5 .........................................................................................21 5.1 Injection with Coast Arc ........................................................................................... 21 5.1.1 Sequence of Events ........................................................................................... 22 5.1.2 Eclipses ............................................................................................................. 22 5.1.3 Ground Station Coverage.................................................................................. 24 5.1.4 Injection Errors.................................................................................................. 26 5.2 General Launch Window .......................................................................................... 27 5.3 Daily Launch Window .............................................................................................. 33 5.4 Non-Optimal Ariane 5 Flight Program Launch ........................................................ 33 5.5 Maximum Spacecraft Mass and Launch Window .................................................... 33 5.6 Cost of Delayed Launch............................................................................................ 34 6. INTERPLANETARY TRAJECTORY ..............................................................................37 6.1 Detailed Mission Description ................................................................................... 38 6.1.1 Numerical Trajectory Data................................................................................ 38 6.1.2 Geometrical Data .............................................................................................. 39 6.1.3 Ground Station Coverage.................................................................................. 69 6.1.4 Early Orbit Determination and First Correction Manoeuvre............................ 85 6.1.5 Interplanetary Navigation.................................................................................. 92 7. ASTEROID FLY-BY POSSIBILITIES ..........................................................................102 7.1 Extra Delta-V Assessment ...................................................................................... 102 7.2 Effect to Interplanetary Trajectory.......................................................................... 105 7.2.1 Asteroid fly-by in phase from 2nd Earth to 3rd Earth swing-by........................ 105 7.2.2 Asteroid fly-by in phase from 3rd Earth swing-by to comet........................... 110 8. NEAR COMET OPERATIONS ...................................................................................114 8.1 Comet Model........................................................................................................... 114 8.2 Range of Comet Models.......................................................................................... 116 8.3 Near Comet Drift Phase .......................................................................................... 118 8.4 Far Approach Trajectory......................................................................................... 124 European Space Agency RO-ESC-RP-5500 Agence spatiale européenne ESOC Mission Analysis Section Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany ESA-TOS-GMA Tel. +49-6151-90-2059; Fax +49-6151-90-2625 Doc. Title: ROSETTA: CReMA Churyumov-Gerasimenko 2004 Issue: 5 Doc Ref.: RO-ESC-RP-5500 Rev.: 0 Date: August, 2003 Page: vii 8.5 Close Approach Trajectory ..................................................................................... 130 8.6 Transition to Global Mapping................................................................................. 133 8.7 Global Mapping Phase ............................................................................................ 140 8.8 Close Observation Phase......................................................................................... 149 8.9 SSP Delivery ........................................................................................................... 160 8.10 Relay Phase ............................................................................................................. 172 8.11 Extended Monitoring Phase .................................................................................... 178 9. PROPELLANT BUDGET ...........................................................................................179 10. ABBREVIATIONS ................................................................................................180 11. APPENDIX A. DETAILED TRAJECTORY...............................................................182
Recommended publications
  • The Minor Planet Bulletin 44 (2017) 142
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin.
    [Show full text]
  • Clasificación Taxonómica De Asteroides
    Clasificación Taxonómica de Asteroides Cercanos a la Tierra por Ana Victoria Ojeda Vera Tesis sometida como requisito parcial para obtener el grado de MAESTRO EN CIENCIAS EN CIENCIA Y TECNOLOGÍA DEL ESPACIO en el Instituto Nacional de Astrofísica, Óptica y Electrónica Agosto 2019 Tonantzintla, Puebla Bajo la supervisión de: Dr. José Ramón Valdés Parra Investigador Titular INAOE Dr. José Silviano Guichard Romero Investigador Titular INAOE c INAOE 2019 El autor otorga al INAOE el permiso de reproducir y distribuir copias parcial o totalmente de esta tesis. II Dedicatoria A mi familia, con gran cariño. A mis sobrinos Ian y Nahil, y a mi pequeña Lia. III Agradecimientos Gracias a mi familia por su apoyo incondicional. A mi mamá Tere, por enseñarme a ser perseverante y dedicada, y por sus miles de muestras de afecto. A mi hermana Fernanda, por darme el tiempo, consejos y cariño que necesitaba. A mi pareja Odi, por su amor y cariño estos tres años, por su apoyo, paciencia y muchas horas de ayuda en la maestría, pero sobre todo por darme el mejor regalo del mundo, nuestra pequeña Lia. Gracias a mis asesores Dr. José R. Valdés y Dr. José S. Guichard, promotores de esta tesis, por su paciencia, consejos y supervisión, y por enseñarme con sus clases divertidas y motivadoras todo lo que se refiere a este trabajo. A los miembros del comité, Dra. Raquel Díaz, Dr. Raúl Mújica y Dr. Sergio Camacho, por tomarse el tiempo de revisar y evaluar mi trabajo. Estoy muy agradecida con todos por sus críticas constructivas y sugerencias.
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]
  • The Handbook of the British Astronomical Association
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2012 Saturn’s great white spot of 2011 2011 October ISSN 0068-130-X CONTENTS CALENDAR 2012 . 2 PREFACE. 3 HIGHLIGHTS FOR 2012. 4 SKY DIARY . .. 5 VISIBILITY OF PLANETS. 6 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S. 7-8 ECLIPSES . 9-15 TIME. 16-17 EARTH AND SUN. 18-20 MOON . 21 SUN’S SELENOGRAPHIC COLONGITUDE. 22 MOONRISE AND MOONSET . 23-27 LUNAR OCCULTATIONS . 28-34 GRAZING LUNAR OCCULTATIONS. 35-36 PLANETS – EXPLANATION OF TABLES. 37 APPEARANCE OF PLANETS. 38 MERCURY. 39-40 VENUS. 41 MARS. 42-43 ASTEROIDS AND DWARF PLANETS. 44-60 JUPITER . 61-64 SATELLITES OF JUPITER . 65-79 SATURN. 80-83 SATELLITES OF SATURN . 84-87 URANUS. 88 NEPTUNE. 89 COMETS. 90-96 METEOR DIARY . 97-99 VARIABLE STARS . 100-105 Algol; λ Tauri; RZ Cassiopeiae; Mira Stars; eta Geminorum EPHEMERIDES OF DOUBLE STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 INTERNET RESOURCES. 110-111 GREEK ALPHABET. 111 ERRATA . 112 Front Cover: Saturn’s great white spot of 2011: Image taken on 2011 March 21 00:10 UT by Damian Peach using a 356mm reflector and PGR Flea3 camera from Selsey, UK. Processed with Registax and Photoshop. British Astronomical Association HANDBOOK FOR 2012 NINETY-FIRST YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 2 CALENDAR 2012 January February March April May June July August September October November December Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day of of of of of of of of of of of of of of of of of of of of of of of of of Month Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year 1 Sun.
    [Show full text]
  • Compositional Characterisation of the Themis Family M
    Astronomy & Astrophysics manuscript no. 26962_ja c ESO 2021 August 5, 2021 Compositional characterisation of the Themis family M. Marsset1;2, P. Vernazza2, M. Birlan3;4, F. DeMeo5, R. P. Binzel5, C. Dumas1, J. Milli1, and M. Popescu4;3 1 European Southern Observatory (ESO), Alonso de C´ordova 3107, 1900 Casilla Vitacura, Santiago, Chile e-mail: [email protected] 2 Aix Marseille University, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, 13388, Marseille, France 3 IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris Cedex, France 4 Astronomical Institute of the Romanian Academy, 5 Cut¸itul de Argint, 040557 Bucharest, Romania 5 Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA Received; accepted ABSTRACT Context. It has recently been proposed that the surface composition of icy main-belt asteroids (B-, C-, Cb-, Cg-, P-, and D-types) may be consistent with that of Chondritic porous interplanetary dust particles (CP IDPs). Aims. In the light of this new association, we re-examine the surface composition of a sample of asteroids belonging to the Themis family in order to place new constraints on the formation and evolution of its parent body. Methods. We acquired near-infrared spectral data for 15 members of the Themis family and complemented this dataset with existing spectra in the visible and mid-infrared ranges to perform a thorough analysis of the composition of the family. Assuming end-member minerals and particle sizes (< 2 µm) similar to those found in CP IDPs, we used a radiative transfer code adapted for light scattering by small particles to model the spectral properties of these asteroids.
    [Show full text]
  • The Minor Planet Bulletin Semi-Major Axis of 2.317 AU, Eccentricity 0.197, Inclination 7.09 (Warner Et Al., 2018)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 45, NUMBER 3, A.D. 2018 JULY-SEPTEMBER 215. LIGHTCURVE ANALYSIS FOR TWO NEAR-EARTH 320ʺ/min during the close approach. The eclipse was observed, ASTEROIDS ECLIPSED BY EARTH’S SHADOW within minutes of the original prediction. Preliminary rotational and eclipse lightcurves were made available soon after the close Peter Birtwhistle approach (Birtwhistle, 2012; Birtwhistle, 2013; Miles, 2013) but it Great Shefford Observatory should be noted that a possible low amplitude 8.7 h period (Miles, Phlox Cottage, Wantage Road 2013) has been discounted in this analysis. Great Shefford, Berkshire, RG17 7DA United Kingdom Several other near-Earth asteroids are known to have been [email protected] eclipsed by the Earth’s shadow, e.g. 2008 TC3 and 2014 AA (both before impacting Earth), 2012 KT42, and 2016 VA (this paper) (Received 2018 March18) but internet searches have not found any eclipse lightcurves. The asteroid lightcurve database (LCDB; Warner et al., 2009) lists a Photometry was obtained from Great Shefford reference to an unpublished result for 2012 XE54 by Pollock Observatory of near-Earth asteroids 2012 XE54 in 2012 (2013) without lightcurve details, but these have been provided on and 2016 VA in 2016 during close approaches. A request and give the rotation period as 0.02780 ± 0.00002 h, superfast rotation period has been determined for 2012 amplitude 0.33 mag derived from 101 points over a period of 30 XE54 and H-G magnitude system coefficients have been minutes for epoch 2012 Dec 10.2 UT at phase angle 19.5°, estimated for 2016 VA.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 34, NUMBER 3, A.D. 2007 JULY-SEPTEMBER 53. CCD PHOTOMETRY OF ASTEROID 22 KALLIOPE Kwee, K.K. and von Woerden, H. (1956). Bull. Astron. Inst. Neth. 12, 327 Can Gungor Department of Astronomy, Ege University Trigo-Rodriguez, J.M. and Caso, A.S. (2003). “CCD Photometry 35100 Bornova Izmir TURKEY of asteroid 22 Kalliope and 125 Liberatrix” Minor Planet Bulletin [email protected] 30, 26-27. (Received: 13 March) CCD photometry of asteroid 22 Kalliope taken at Tubitak National Observatory during November 2006 is reported. A rotational period of 4.149 ± 0.0003 hours and amplitude of 0.386 mag at Johnson B filter, 0.342 mag at Johnson V are determined. The observation of 22 Kalliope was made at Tubitak National Observatory located at an elevation of 2500m. For this study, the 410mm f/10 Schmidt-Cassegrain telescope was used with a SBIG ST-8E CCD electronic imager. Data were collected on 2006 November 27. 305 images were obtained for each Johnson B and V filters. Exposure times were chosen as 30s for filter B and 15s for filter V. All images were calibrated using dark and bias frames Figure 1. Lightcurve of 22 Kalliope for Johnson B filter. X axis is and sky flats. JD-2454067.00. Ordinate is relative magnitude. During this observation, Kalliope was 99.26% illuminated and the phase angle was 9º.87 (Guide 8.0). Times of observation were light-time corrected.
    [Show full text]
  • Visible and Near Infrared Spectroscopic Investigation of E-Type Asteroids, Including 2867 Steins, a Target of the Rosetta Mission S
    Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission S. Fornasier, A. Migliorini, E. Dotto, M.A. Barucci To cite this version: S. Fornasier, A. Migliorini, E. Dotto, M.A. Barucci. Visible and near infrared spectroscopic investiga- tion of E-type asteroids, including 2867 Steins, a target of the Rosetta mission. Icarus, Elsevier, 2009, 196 (1), pp.119. 10.1016/j.icarus.2008.02.015. hal-00567271 HAL Id: hal-00567271 https://hal.archives-ouvertes.fr/hal-00567271 Submitted on 20 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission S. Fornasier, A. Migliorini, E. Dotto, M.A. Barucci PII: S0019-1035(08)00104-8 DOI: 10.1016/j.icarus.2008.02.015 Reference: YICAR 8619 To appear in: Icarus Received date: 10 October 2007 Revised date: 26 February 2008 Accepted date: 28 February 2008 Please cite this article as: S. Fornasier, A. Migliorini, E. Dotto, M.A. Barucci, Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission, Icarus (2008), doi: 10.1016/j.icarus.2008.02.015 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Compositional Characterisation of the Themis Family
    Compositional characterisation of the Themis family The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Marsset, M. et al. “Compositional Characterisation of the Themis Family.” Astronomy & Astrophysics 586 (2016): A15. © 2016 ESO As Published http://dx.doi.org/10.1051/0004-6361/201526962 Publisher EDP Sciences Version Final published version Citable link http://hdl.handle.net/1721.1/106187 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. A&A 586, A15 (2016) Astronomy DOI: 10.1051/0004-6361/201526962 & c ESO 2016 Astrophysics Compositional characterisation of the Themis family M. Marsset1,2, P. Vernazza2, M. Birlan3,4,F.DeMeo5,R.P.Binzel5,C.Dumas1, J. Milli1, and M. Popescu4,3 1 European Southern Observatory (ESO), Alonso de Córdova 3107, 1900 Casilla Vitacura, Santiago, Chile e-mail: [email protected] 2 Aix Marseille University, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France 3 IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris Cedex, France 4 Astronomical Institute of the Romanian Academy, 5 Cu¸titul de Argint, 040557 Bucharest, Romania 5 Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA Received 14 July 2015 / Accepted 11 November 2015 ABSTRACT Context. It has recently been proposed that the surface composition of icy main-belt asteroids (B-, C-, Cb-, Cg-, P-, and D-types) may be consistent with that of chondritic porous interplanetary dust particles (CP IDPs).
    [Show full text]
  • 000001 – 004000
    ELEMENTS AND OPPOSITION DATES IN 2019 ecliptic and equinox 2000.0, epoch 2019 nov. 13.0 tt Planet H G M ω Ω i e µ a TE Oppos. V m ◦ ◦ ◦ ◦ ◦ 1 Ceres 3.34 0.12 119.82381 73.83775 80.30381 10.59227 0.0766486 0.21382049 2.7697241 19 5 29.5 7.0 2 Pallas 4.13 0.11 102.34880 310.11514 173.06521 34.83144 0.2302254 0.21343666 2.7730436 19 4 19.7 8.0 3 Juno 5.33 0.32 80.16992 248.10327 169.85020 12.99008 0.2569240 0.22607900 2.6686763 19 — — 4 Vesta 3.20 0.32 150.08773 150.81931 103.80943 7.14181 0.0886118 0.27154209 2.3618081 19 11 14.4 6.5 5 Astraea 6.85 X 330.11215 358.66021 141.57172 5.36711 0.1910347 0.23861125 2.5743965 19 — — 6 Hebe 5.71 0.24 138.43724 239.76676 138.64111 14.73917 0.2031156 0.26103397 2.4247746 19 — — 7 Iris 5.51 X 193.93164 145.25948 259.56318 5.52359 0.2308299 0.26741555 2.3860431 19 4 2.7 9.5 8 Flora 6.49 0.28 255.13638 285.32867 110.87666 5.88846 0.1560358 0.30157711 2.2022695 19 5 13.8 9.8 9 Metis 6.28 0.17 330.40220 6.37267 68.90957 5.57674 0.1232185 0.26742705 2.3859747 19 10 27.6 8.6 10 Hygiea 5.43 X 187.50982 312.37901 283.19878 3.83172 0.1122683 0.17695679 3.1421330 19 11 25.9 10.3 11 Parthenope 6.55 X 330.37882 195.37875 125.52860 4.63112 0.1002229 0.25647388 2.4534316 19 5 16.0 9.7 12 Victoria 7.24 0.22 188.58207 69.66124 235.40635 8.37272 0.2202999 0.27638851 2.3341175 19 — — 13 Egeria 6.74 X 235.23502 80.49624 43.21994 16.53617 0.0852529 0.23841640 2.5757990 19 9 8.1 10.8 14 Irene 6.30 X 212.36883 97.83775 86.12300 9.12162 0.1663937 0.23700714 2.5859994 19 10 21.0 10.6 15 Eunomia 5.28 0.23 329.17049 98.58234
    [Show full text]
  • British Astronomical Association Handbook 2009
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2009 2008 October ISSN 0068-130-X CONTENTS CALENDAR 2009 . 2 PREFACE. 3 EDITOR’S NOTES REGARDING THE HANDBOOK SURVEY . 4 HIGHLIGHTS FOR 2009. 5-6 SKY DIARY FOR 2009 . 7 VISIBILITY OF PLANETS. 8 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S. 9-10 ECLIPSES . 11-14 TIME. 15-16 EARTH AND SUN. 17-19 MOON . 20 SUN’S SELENOGRAPHIC COLONGITUDE. 21 MOONRISE AND MOONSET . 22-25 & 140 LUNAR OCCULTATIONS . 26-34 GRAZING LUNAR OCCULTATIONS. 35-36 PLANETS – EXPLANATION OF TABLES. 37 APPEARANCE OF PLANETS. 38 MERCURY. 39-40 VENUS. 41 MARS. 42-43 ASTEROIDS AND DWARF PLANETS. 44-63 JUPITER . 64-67 SATELLITES OF JUPITER . 68-88 SATURN. 89-92 SATELLITES OF SATURN . 93-100 URANUS. 101 NEPTUNE. 102 COMETS. 103-114 METEOR DIARY . 115-117 VARIABLE STARS . 118-123 Algol; λ Tauri; RZ Cassiopeiae; Mira Stars; IP Pegasi EPHEMERIDES OF DOUBLE STARS . 124-125 BRIGHT STARS . 126 GALAXIES . 127-128 SUN, MOON AND PLANETS: Physical data. 129 SATELLITES (NATURAL): Physical and orbital data . 130-131 ELEMENTS OF PLANETARY ORBITS . 132 INTERNET RESOURCES. 133-134 CONVERSION FORMULAE AND ERRATA . 134 RADIO TIME SIGNALS. 135 PROGRAM AND DATA LIBRARY . 136 ASTRONOMICAL AND PHYSICAL CONSTANTS . 137-138 MISCELLANEOUS DATA AND TELESCOPE DATA . 139 GREEK ALPHABET . .. 139 Front Cover: The Crab Nebula, M1 (NGC 1952) in Taurus. Imaged in January 2008 by Andrea Tasseli from Lincoln, UK. Intes-Micro M809 8 inch (203mm) f/10 Maksutov-Cassegrain with Starlight Xpress SXV-H9 CCD and Astronomik filter set. Image = L (56x120s) and RHaGB (45x60s).
    [Show full text]