The Handbook British Astronomical Association

Total Page:16

File Type:pdf, Size:1020Kb

The Handbook British Astronomical Association THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2008 2007 OCTOBER ISSN 0068-130-X CONTENTS CALENDAR 2008 ............................................................. 2 PREFACE. ................................................................ 3 SKY DIARY FOR 2008 ..................................................... .... 4 VISIBILITYOFPLANETS...................................................... 5 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 6–7 ECLIPSES. ......... ......................................................... 8–12 TIME.................................................................. ..... 13–14 RADIOTIMESIGNALS........................................................ 15 EARTHANDSUN............................................. ................ 16–18 MOON...................................................................... 19 SUN’SSELENOGRAPHIC COLONGITUDE . ................... 20 MOONRISE AND MOONSET ................................................... 21–23 LUNAROCCULTATIONS................................. ..................... 24–32 GRAZINGLUNAROCCULTATIONS............................................. 33–34 PLANETS –EXPLANATIONOFTABLES........................... .............. 35 APPEARANCEOFPLANETS................................................... 36 MERCURY............................................. ...................... 37–38 VENUS. ..................................................................... 39 MARS........................... ............................................ 40–41 MINORPLANETS............................................................. 42–56 Website; Orbital elements and ephemerides; Astrometry; Occultations of stars by minor planets; Photometry; NEO close approaches to Earth JUPITER.................................................................. ... 57–60 SATELLITESOFJUPITER...................................................... 61-73 Configurations; Eclipses, occultations and transits SATURN......................... ............................................ 74–77 SATELLITES OF SATURN ...................................................... 78–84 URANUS........... ......................................................... 85 NEPTUNE.................................................................. 86 PLUTO...................................................................... 87–88 COMETS............................................... ..................... 89–96 Orbital elements and magnitude parameters; Ephemerides for: 6P/d’Arrest, 8P/Tuttle, 19P/Borelly, 26P/Schwassmann-Wachmann, 46P/Wirtanen, 85P/Boethin,144P/Kushida, 2006OF2 (Broughton, 2006Q1 (McNaught. METEOR DIARY.............................................................. 97–99 VARIABLESTARS.................................................... ........ 100–105 Algol; X Tauri; RZ Cassiopeiae; Mira Stars; U Orionis EPHEMERIDESOFDOUBLESTARS............................................ 106–107 BRIGHT STARS.................... .......................................... 108 GALAXIES................................................................... 109–110 SUN, MOON AND PLANETS:Physicaldata....................................... 111 SATELLITES(NATURAL):Physicalandorbitaldata................................. 112–113 ELEMENTS OF PLANETARY ORBITS ........................................... 114 PROGRAMANDDATALIBRARY............................................... 115 INTERNETRESOURCES. ... ... .. .. ............................................ 116–117 CONVERSIONFORMULAEANDERRATA....................................... 117 ASTRONOMICAL AND PHYSICAL CONSTANTS . ........................... 118–119 MISCELLANEOUSDATAANDTELESCOPEDATA................................ 119 Front Cover: British Astronomical Association HANDBOOK FOR 2008 EIGHTY-SEVENTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 2 CALENDAR 2008 January February March April May June July August September October November December Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day of of of of of of of of of of of of of of of of of of of of of of of of of Month Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year 1 Tue. 1 Fri. 32 Sat. 61 Tue. 92 Thu. 122 Sun. 153 Tue. 183 Fri. 214 Mon. 245 Wed. 275 Sat. 306 Mon. 336 2 Wed. 2 Sat. 33 Sun. 62 Wed. 93 Fri. 123 Mon. 154 Wed. 184 Sat. 215 Tue. 246 Thu. 276 Sun. 307 Tue. 337 3 Thu. 3 Sun. 34 Mon. 63 Thu. 94 Sat. 124 Tue. 155 Thu. 185 Sun. 216 Wed. 247 Fri. 277 Mon. 308 Wed. 338 4 Fri. 4 Mon. 35 Tue. 64 Fri. 95 Sun. 125 Wed. 156 Fri. 186 Mon. 217 Thu. 248 Sat. 278 Tue. 309 Thu. 339 5 Sat. 5 Tue. 36 Wed. 65 Sat. 96 Mon. 126 Thu. 157 Sat. 187 Tue. 218 Fri. 249 Sun. 279 Wed. 310 Fri. 340 6 Sun. 6 Wed. 37 Thu. 66 Sun. 97 Tue. 127 Fri. 158 Sun. 188 Wed. 219 Sat. 250 Mon. 280 Thu. 311 Sat. 341 7 Mon. 7 Thu. 38 Fri. 67 Mon. 98 Wed. 128 Sat. 159 Mon. 189 Thu. 220 Sun. 251 Tue. 281 Fri. 312 Sun. 342 8 Tue. 8 Fri. 39 Sat. 68 Tue. 99 Thu. 129 Sun. 160 Tue. 190 Fri. 221 Mon. 252 Wed. 282 Sat. 313 Mon. 343 9 Wed. 9 Sat. 40 Sun. 69 Wed. 100 Fri. 130 Mon. 161 Wed. 191 Sat. 222 Tue. 253 Thu. 283 Sun. 314 Tue. 344 10 Thu. 10 Sun. 41 Mon. 70 Thu. 101 Sat. 131 Tue. 162 Thu. 192 Sun. 223 Wed. 254 Fri. 284 Mon. 315 Wed. 345 Calendar 11 Fri. 11 Mon. 42 Tue. 71 Fri. 102 Sun. 132 Wed. 163 Fri. 193 Mon. 224 Thu. 255 Sat. 285 Tue. 316 Thu. 346 12 Sat. 12 Tue. 43 Wed. 72 Sat. 103 Mon. 133 Thu. 164 Sat. 194 Tue. 225 Fri. 256 Sun. 286 Wed. 317 Fri. 347 13 Sun. 13 Wed. 44 Thu. 73 Sun. 104 Tue. 134 Fri. 165 Sun. 195 Wed. 226 Sat. 257 Mon. 287 Thu. 318 Sat. 348 14 Mon. 14 Thu. 45 Fri. 74 Mon. 105 Wed. 135 Sat. 166 Mon. 196 Thu. 227 Sun. 258 Tue. 288 Fri. 319 Sun. 349 15 Tue. 15 Fri. 46 Sat. 75 Tue. 106 Thu. 136 Sun. 167 Tue. 197 Fri. 228 Mon. 259 Wed. 289 Sat. 320 Mon. 350 16 Wed. 16 Sat. 47 Sun. 76 Wed. 107 Fri. 137 Mon. 168 Wed. 198 Sat. 229 Tue. 260 Thu. 290 Sun. 321 Tue. 351 17 Thu. 17 Sun. 48 Mon. 77 Thu. 108 Sat. 138 Tue. 169 Thu. 199 Sun. 230 Wed. 261 Fri. 291 Mon. 322 Wed. 352 18 Fri. 18 Mon. 49 Tue. 78 Fri. 109 Sun. 139 Wed. 170 Fri. 200 Mon. 231 Thu. 262 Sat. 292 Tue. 323 Thu. 353 19 Sat. 19 Tue. 50 Wed. 79 Sat. 110 Mon. 140 Thu. 171 Sat. 201 Tue. 232 Fri. 263 Sun. 293 Wed. 324 Fri. 354 20 Sun. 20 Wed. 51 Thu. 80 Sun. 111 Tue. 141 Fri. 172 Sun. 202 Wed. 233 Sat. 264 Mon. 294 Thu. 325 Sat. 355 21 Mon. 21 Thu. 52 Fri. 81 Mon. 112 Wed. 142 Sat. 173 Mon. 203 Thu. 234 Sun. 265 Tue. 295 Fri. 326 Sun. 356 22 Tue. 22 Fri. 53 Sat. 82 Tue. 113 Thu. 143 Sun. 174 Tue. 204 Fri. 235 Mon. 266 Wed. 296 Sat. 327 Mon. 357 23 Wed. 23 Sat. 54 Sun. 83 Wed. 114 Fri. 144 Mon. 175 Wed. 205 Sat. 236 Tue. 267 Thu. 297 Sun. 328 Tue. 358 24 Thu. 24 Sun. 55 Mon. 84 Thu. 115 Sat. 145 Tue. 176 Thu. 206 Sun. 237 Wed. 268 Fri. 298 Mon. 329 Wed. 359 BAA Handbook 2008 25 Fri. 25 Mon. 56 Tue. 85 Fri. 116 Sun. 146 Wed. 177 Fri. 207 Mon. 238 Thu. 269 Sat. 299 Tue. 330 Thu. 360 26 Sat. 26 Tue. 57 Wed. 86 Sat. 117 Mon. 147 Thu. 178 Sat. 208 Tue. 239 Fri. 270 Sun. 300 Wed. 331 Fri. 361 27 Sun. 27 Wed. 58 Thu. 87 Sun. 118 Tue. 148 Fri. 179 Sun. 209 Wed. 240 Sat. 271 Mon. 301 Thu. 332 Sat. 362 28 Mon. 28 Thu. 59 Fri. 88 Mon. 119 Wed. 149 Sat. 180 Mon. 210 Thu. 241 Sun. 272 Tue. 302 Fri. 333 Sun. 363 29 Tue. 29 Fri. 60 Sat. 89 Tue. 120 Thu. 150 Sun. 181 Tue. 211 Fri. 242 Mon. 273 Wed. 303 Sat. 334 Mon. 364 30 Wed. 30 Sun. 90 Wed. 121 Fri. 151 Mon. 182 Wed. 212 Sat. 243 Tue. 274 Thu. 304 Sun. 335 Tue. 365 31 Thu. 31 Mon. 91 Sat. 152 Thu. 213 Sun. 244 Fri. 305 Wed. 366 BAA Handbook 2008 Preface 3 PREFACE The general arrangement of the Handbook remains much the same as in 2007 except that we have used A5 format. The work of the Director has been greatly eased by the help of the Editor, Valerie White, who has seen all the material through the press. Andrew Sinclair provided all the tables and diagrams for Saturn’ssatellites, the two diagrams for the rising and setting of planets, and the diagram of the appearances of the planets. He also gave assistance with the grazing lunar occultations map. Mitsuo Kawata, International Lunar Occultation Centre, Japan, provided the predictions of lunar occultations. Barry Leggett prepared the table of the satellites of Jupiter from data supplied by William Thuillot of the Institut de Mécanique Céleste et de Calcul des Ephémérides, who also supplied the diagrams of Jupiter’ssatellites. Roger Dymock, Andrew Elliott and Richard Miles provided the data on minor planets and Jonathan Shanklin contributed the comet data. Solar and lunar eclipse maps and diagrams were provided by Fred Espenak, NASA/Goddard Space Flight Center. Neil Bone contributed the Meteor Diary. Des Loughney prepared the information on eclipsing binaries. John Isles contributed the data on Mira stars and double stars. The information for U Orionis and the diagrams for Uranus, Neptune and NGC 1275 were provided by John Toone. Roger Dymock provided the Pluto diagrams and Max White the list of radio time signals. The elements of Pluto’sorbit were provided by the late Andrew Hollis. Programs to calculate data have been written as follows: lunar librations by Ken Hall, Mercury and Venus ephemerides by the late John Williams and modified by Tony Evans who also provided the Mars ephemeris and central meridian. The Director has written programs for the calendar page, the ephemerides of the Sun, Jupiter and Saturn, the central meridians of Systems I, II and III of Jupiter, and of Systems I, II and III of Saturn, the Moon’sphases,
Recommended publications
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Assa Handbook-1993
    ASTRONOMICAL HANDBOOK FOR SOUTHERN AFRICA 1 published by the Astronomical Society of Southern Africa 5 A MUSEUM QUEEN VICTORIA STREET (3 61 CAPE TOWN 8000 (021)243330 o PUBLIC SHOWS o MONTHLY SKY UPDATES 0 ASTRONOMY COURSES O MUSIC CONCERTS o ASTRONOMY WEEK 0 SCHOOL SHOWS ° CLUB BOOKINGS ° CORPORATE LAUNCH VENUE FOR MORE INFO PHONE 243330 ASTRONOMICAL HANDBOOK FOR SOUTHERN AFRICA 1993 This booklet is intended both as an introduction to observational astronomy for the interested layman - even if hie interest is only a passing one - and as a handbook for the established amateur or professional astronomer. Front cover The telescope of Ds G. de Beer (right) of the Ladismith Astronomical Society. He, Dr M. Schreuder (left) and the late Mr Ron Dale of the Natal Midlands Centre, are viewing Siriu3 in the daytime with the aid of setting circles. Photograph Mr J. Watson ® t h e Astronomical Society of Southern Africa, Cape Town. 1992 ISSN 0571-7191 CONTENTS ASTRONOMY IN SOUTHERN AFRICA...................... 1 DIARY................................................................. 6 THE SUN............................................................... 8 THE MOON............................................................. 11 THE PLANETS.......................................................... 17 THE MOONS OF JUPITER ................................................ 24 THE MOONS OF SATURN....................................... 28 COMETS AND METEORS............................ 29 THE STARS...........................................................
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]
  • Asteroid Cratering Families: Recognition and Collisional Interpretation
    Astronomy & Astrophysics manuscript no. cratering_paper_AA_rev2 c ESO 2018 December 19, 2018 Asteroid cratering families: recognition and collisional interpretation A. Milani1⋆, Z. Kneževic´2, F. Spoto3, and P. Paolicchi4 1 Dept.Mathematics, University of Pisa, Largo Pontecorvo 5, I-56127 Pisa, Italy e-mail: [email protected] 2 Serbian Academy Sci. Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia e-mail: [email protected] 3 IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille 77 av. Denfert-Rochereau, 75014, Paris, France e-mail: [email protected] 4 Dept.Physics, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy e-mail: [email protected] 19 November 2018 ABSTRACT Aims. We continue our investigation of the bulk properties of asteroid dynamical families iden- tified using only asteroid proper elements (Milani et al. 2014) to provide plausible collisional interpretations. We focus on cratering families consisting of a substantial parent body and many small fragments. Methods. We propose a quantitative definition of cratering families based on the fraction in vol- ume of the fragments with respect to the parent body; fragmentation families are above this empirical boundary. We assess the compositional homogeneity of the families and their shape in proper element space by computing the differences of the proper elements of the fragments with respect to the ones of the major body, looking for anomalous asymmetries produced either by post-formation dynamical evolution, or by multiple collisional/cratering events, or by a failure of arXiv:1812.07535v1 [astro-ph.EP] 18 Dec 2018 the Hierarchical Clustering Method (HCM) for family identification.
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • IRTF Spectra for 17 Asteroids from the C and X Complexes: a Discussion of Continuum Slopes and Their Relationships to C Chondrites and Phyllosilicates ⇑ Daniel R
    Icarus 212 (2011) 682–696 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus IRTF spectra for 17 asteroids from the C and X complexes: A discussion of continuum slopes and their relationships to C chondrites and phyllosilicates ⇑ Daniel R. Ostrowski a, Claud H.S. Lacy a,b, Katherine M. Gietzen a, Derek W.G. Sears a,c, a Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, United States b Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States c Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States article info abstract Article history: In order to gain further insight into their surface compositions and relationships with meteorites, we Received 23 April 2009 have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX Revised 20 January 2011 infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line Accepted 25 January 2011 databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV Available online 1 February 2011 slope, a 0.7 lm feature and a 3 lm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% Keywords: of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be charac- Asteroids, composition terized by the slopes of their continua.
    [Show full text]
  • The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes.
    [Show full text]
  • THE ASTEROIDS and THEIR DISCOVERERS Rock Legends
    PAUL MURDIN THE ASTEROIDS AND THEIR DISCOVERERS Rock Legends The Asteroids and Their Discoverers More information about this series at http://www.springer.com/series/4097 Paul Murdin Rock Legends The Asteroids and Their Discoverers Paul Murdin Institute of Astronomy University of Cambridge Cambridge , UK Springer Praxis Books ISBN 978-3-319-31835-6 ISBN 978-3-319-31836-3 (eBook) DOI 10.1007/978-3-319-31836-3 Library of Congress Control Number: 2016938526 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover design: Frido at studio escalamar Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland Acknowledgments I am grateful to Alan Fitzsimmons for taking and supplying the picture in Fig.
    [Show full text]
  • Updated on 1 September 2018
    20813 Aakashshah 12608 Aesop 17225 Alanschorn 266 Aline 31901 Amitscheer 30788 Angekauffmann 2341 Aoluta 23325 Arroyo 15838 Auclair 24649 Balaklava 26557 Aakritijain 446 Aeternitas 20341 Alanstack 8651 Alineraynal 39678 Ammannito 11911 Angel 19701 Aomori 33179 Arsenewenger 9117 Aude 16116 Balakrishnan 28698 Aakshi 132 Aethra 21330 Alanwhitman 214136 Alinghi 871 Amneris 28822 Angelabarker 3810 Aoraki 29995 Arshavsky 184535 Audouze 3749 Balam 28828 Aalamiharandi 1064 Aethusa 2500 Alascattalo 108140 Alir 2437 Amnestia 129151 Angelaboggs 4094 Aoshima 404 Arsinoe 4238 Audrey 27381 Balasingam 33181 Aalokpatwa 1142 Aetolia 19148 Alaska 14225 Alisahamilton 32062 Amolpunjabi 274137 Angelaglinos 3400 Aotearoa 7212 Artaxerxes 31677 Audreyglende 20821 Balasridhar 677 Aaltje 22993 Aferrari 200069 Alastor 2526 Alisary 1221 Amor 16132 Angelakim 9886 Aoyagi 113951 Artdavidsen 20004 Audrey-Lucienne 26634 Balasubramanian 2676 Aarhus 15467 Aflorsch 702 Alauda 27091 Alisonbick 58214 Amorim 30031 Angelakong 11258 Aoyama 44455 Artdula 14252 Audreymeyer 2242 Balaton 129100 Aaronammons 1187 Afra 5576 Albanese 7517 Alisondoane 8721 AMOS 22064 Angelalewis 18639 Aoyunzhiyuanzhe 1956 Artek 133007 Audreysimmons 9289 Balau 22656 Aaronburrows 1193 Africa 111468 Alba Regia 21558 Alisonliu 2948 Amosov 9428 Angelalouise 90022 Apache Point 11010 Artemieva 75564 Audubon 214081 Balavoine 25677 Aaronenten 6391 Africano 31468 Albastaki 16023 Alisonyee 198 Ampella 25402 Angelanorse 134130 Apaczai 105 Artemis 9908 Aue 114991 Balazs 11451 Aarongolden 3326 Agafonikov 10051 Albee
    [Show full text]
  • Appendix 1 897 Discoverers in Alphabetical Order
    Appendix 1 897 Discoverers in Alphabetical Order Abe, H. 22 (7) 1993-1999 Bohrmann, A. 9 1936-1938 Abraham, M. 3 (3) 1999 Bonomi, R. 1 (1) 1995 Aikman, G. C. L. 3 1994-1997 B¨orngen, F. 437 (161) 1961-1995 Akiyama, M. 14 (10) 1989-1999 Borrelly, A. 19 1866-1894 Albitskij, V. A. 10 1923-1925 Bourgeois, P. 1 1929 Aldering, G. 3 1982 Bowell, E. 563 (6) 1977-1994 Alikoski, H. 13 1938-1953 Boyer, L. 40 1930-1952 Alu, J. 20 (11) 1987-1993 Brady, J. L. 1 1952 Amburgey, L. L. 1 1997 Brady, N. 1 2000 Andrews, A. D. 1 1965 Brady, S. 1 1999 Antal, M. 17 1971-1988 Brandeker, A. 1 2000 Antonini, P. 25 (1) 1996-1999 Brcic, V. 2 (2) 1995 Aoki, M. 1 1996 Broughton, J. 179 1997-2002 Arai, M. 43 (43) 1988-1991 Brown, J. A. 1 (1) 1990 Arend, S. 51 1929-1961 Brown, M. E. 1 (1) 2002 Armstrong, C. 1 (1) 1997 Broˇzek, L. 23 1979-1982 Armstrong, M. 2 (1) 1997-1998 Bruton, J. 1 1997 Asami, A. 5 1997-1999 Bruton, W. D. 2 (2) 1999-2000 Asher, D. J. 9 1994-1995 Bruwer, J. A. 4 1953-1970 Augustesen, K. 26 (26) 1982-1987 Buchar, E. 1 1925 Buie, M. W. 13 (1) 1997-2001 Baade, W. 10 1920-1949 Buil, C. 4 1997 Babiakov´a, U. 4 (4) 1998-2000 Burleigh, M. R. 1 (1) 1998 Bailey, S. I. 1 1902 Burnasheva, B. A. 13 1969-1971 Balam, D.
    [Show full text]
  • The Minor Planet Bulletin Semi-Major Axis of 2.317 AU, Eccentricity 0.197, Inclination 7.09 (Warner Et Al., 2018)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 45, NUMBER 3, A.D. 2018 JULY-SEPTEMBER 215. LIGHTCURVE ANALYSIS FOR TWO NEAR-EARTH 320ʺ/min during the close approach. The eclipse was observed, ASTEROIDS ECLIPSED BY EARTH’S SHADOW within minutes of the original prediction. Preliminary rotational and eclipse lightcurves were made available soon after the close Peter Birtwhistle approach (Birtwhistle, 2012; Birtwhistle, 2013; Miles, 2013) but it Great Shefford Observatory should be noted that a possible low amplitude 8.7 h period (Miles, Phlox Cottage, Wantage Road 2013) has been discounted in this analysis. Great Shefford, Berkshire, RG17 7DA United Kingdom Several other near-Earth asteroids are known to have been [email protected] eclipsed by the Earth’s shadow, e.g. 2008 TC3 and 2014 AA (both before impacting Earth), 2012 KT42, and 2016 VA (this paper) (Received 2018 March18) but internet searches have not found any eclipse lightcurves. The asteroid lightcurve database (LCDB; Warner et al., 2009) lists a Photometry was obtained from Great Shefford reference to an unpublished result for 2012 XE54 by Pollock Observatory of near-Earth asteroids 2012 XE54 in 2012 (2013) without lightcurve details, but these have been provided on and 2016 VA in 2016 during close approaches. A request and give the rotation period as 0.02780 ± 0.00002 h, superfast rotation period has been determined for 2012 amplitude 0.33 mag derived from 101 points over a period of 30 XE54 and H-G magnitude system coefficients have been minutes for epoch 2012 Dec 10.2 UT at phase angle 19.5°, estimated for 2016 VA.
    [Show full text]