Invasive Species and Disturbances: Current and Future Roles of Forest Service Research and Development

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Species and Disturbances: Current and Future Roles of Forest Service Research and Development Invasive Species and Disturbances: Current and Future Roles of Forest Service Research and Development Mary Ellen Dix1, Marilyn Buford2, Jim Slavicek3, Forest Service Research and Development (R&D) priorities Allen M. Solomon4, and Susan G. Conard5 should focus on developing strategies, guidelines, and tools for mitigating invasive species and managing affected systems, as follows: Abstract • Modeling the introduction and spread of invasive species to help proactively predict and prevent the introduction and The success of an invasive species is in large part due to favor- establishment of an invasive species (also see prevention able conditions resulting from the complex interactions among paper). natural and anthropogenic factors such as native and nonnative • Decision support, detection and monitoring tools and pests, fires, droughts, hurricanes, wind storms, ice storms, strategies for predicting, preventing, detecting, and climate warming, management practices, human travel, and responding to newly arrived invasive threats (also see trade. Reducing the negative effects of invasive species and prevention paper). other disturbances on our natural resources is a major priority. Risk-cost-benefit analysis methodology to help determine Meeting this goal will require an understanding of the complex • the most effective management options. interactions among disturbances, development of tools to minimize new invasions, and effective management of systems • Strategies, systems, and practices for managing changed that have already been changed by invasive species. ecosystems to continue to deliver needed goods, services, and values. In this paper, we suggest desired resource outcomes; we offer • Tools that enable functional restoration of economically and/ considerations for developing management strategies, policies, or ecologically critical systems. and practices needed to achieve these outcomes; and we note Strategies and guidelines to prevent, detect, monitor, and potential interactions of invasive species with other distur- • manage invasive species after major disturbances. bances. We then identify invasive species-related research and development actions needed to achieve the desired outcomes. • Guidelines for economic, environmental, and social analysis. Interacting factors that influence desired outcomes include Resources needed to accomplish the foregoing outcomes weather conditions, fire, pests, land use decisions, transporta- include the following: tion, human health, human travel, and potential deployment of genetically engineered plants and animals. Disturbance and its 1. Modelers skilled in multiobjective stand dynamics and forest interactions with invasive species can have ecological, social, management modeling. and/or economic effects. 2. Integrative specialists whose expertise incorporates ecological, social, and economic effects. 1 National Program Leader for Forest Entomology Research, Forest Service, Research and Development, Washington Office, RPC-4, 1601 N. Kent St., Arlington, VA 22209. 2 National Program Leader for Silviculture Research, Forest Service, Research and Development, Washington Office, RPC-4, 1601 N. Kent St., Arlington, VA 22209. 3 Project Leader/Research Biologist, Forest Service, Northern Research Station, 359 Main Rd., Delaware, OH 43015. 4 Retired; formerly National Program Leader for Global Change Research, Forest Service, Research and Development, Washington Office, RPC-4, 1601 N. Kent St., Arlington, VA 22209. 5 Retired; formerly National Program Leader for Fire Ecology Research, Forest Service, Research and Development, Washington Office, 1601 N. Kent St., Arlington, VA 22209. A Dynamic Invasive Species Research Vision: Opportunities and Priorities 2009–29 91 3. Functional specialists who provide data relating to basic quality of life for present and future generations. processes and responses for use by integrative specialists and modelers. To meet this goal, we must consider the range and quantity of goods, services, and values that we will require our forests and 4. Communication specialists skilled in print, Web, and rangelands to produce in the coming decades. Figures 1 and 2 novel technology transfer processes to provide support to show estimates of world and U.S. populations from 1950 functional and integrative specialists. through 2050. As populations and world economies continue to increase, so will the societal demands on our natural resources. We will rely on these lands to produce water, wood and non- Introduction wood products, recreational opportunities, biological diversity, and energy, all while playing a crucial role in climate change The Forest Service and numerous other Federal, State, local, mitigation. and private organizations recognize invasive species as a significant environmental and economic threat to the Nation’s Although invasive species can have direct effects on many forests and rangelands. Interactions among invasive species and of these goods and services, it is important to recognize that other environmental and anthropogenic disturbance regimes these effects can also be greatly influenced by interactions can exacerbate this threat (USDA Forest Service 2003). Actions with fire, weather and climate patterns, land use changes, and taken to prevent, manage, and mitigate the adverse effects of other disturbances. The influence of invasive species on critical invasive species and other threats depend on understanding the natural resources may be increased or decreased in the context synergism among these disturbances and the potential effects of of other disturbances. both disturbances and proposed mitigations on resources and on people’s lives. Future management, policy, and societal needs for research related to managing forests and rangelands under the influence In this paper we suggest desired resource outcomes; consider- of invasive species can largely be met through quantifying ations in developing management strategies, systems, policies, and projecting system behavior and value under different and practices needed to achieve these outcomes; and potential scenarios. At varying time and space scales, these needs interactions of invasive species with other disturbances. We include probabilistic projections of the magnitude and direction then identify invasive species-related research and development of change; likely outcomes without intervention; options for actions needed to achieve these outcomes. In the broad sense, management actions, including their costs; and systems and our desired resource outcome is that forest and range ecosys- practices for accomplishing these actions. Critical research tems are healthy and productive and provide a sustainable deliverables include methods and tools for cost-benefit-risk supply of services, products, and experiences that enhance the Figure 1.—World population and estimates, 1950–2050 Figure 2.—U.S. population and estimates, 1950–2050 (U.S. (United Nations 2007). Census Bureau 2004). 92 A Dynamic Invasive Species Research Vision: Opportunities and Priorities 2009–29 analysis for invasive species management options; collection ecosystems and with other disturbances. Such understanding of the basic data needed to populate, parameterize, and develop is critical to sustainable management of the Nation’s natural these models; strategies, systems, and practices for managing resources. Our challenge over the next 50 years is to enhance changed systems to continue to deliver needed goods, services, our ability to predict and monitor these phenomena sufficiently and values; and the ability to articulate what changed systems to develop effective strategies to productively manage systems can and cannot deliver in probabilistic terms. increasingly affected by invasive species and to recognize and capitalize on any benefits. The situation is urgent because population increases, human movement, global trade, and Forest and Rangeland Disturbances climate change will continue to drive changes in the world’s biota—increasing the number and complexity of invasive spe- A diverse group of natural environmental disturbances has the cies and disturbance interactions. potential to alter our Nation’s forests and rangelands, including native pests, drought, fire, hurricanes, tornadoes, and ice storms. Key Disturbances Also a number of anthropogenic disturbances can potentially Our future success in both preventing introduction and estab- affect natural resources; these disturbances include nonnative lishment and managing spread of invasive species depends on invasive species, international and regional trade, transporta- our understanding of the interactions of diverse environments tion, development, and fragmentation. These disturbances can and disturbances as they impact invasive species ecology, occur individually but often come in combination, and interac- and on our ability to manage ecosystems to minimize adverse tions among these inherent and anthropogenic disturbances outcomes. Key disturbances that can impact invasive species are not well understood. Despite our lack of understanding, we success include: severe or changing weather and climate know these disturbances (and their interactions) can disrupt conditions; fire regimes and their management; insect pests ecosystem functions, social benefits, and economies. The and diseases; land use and land cover changes; trade and trans- resulting effects can be severe and may cause significant lasting portation within and across regions; human health and travel; ecological
Recommended publications
  • What Characteristics Do All Invasive Species Share That Make Them So
    Invasive Plants Facts and Figures Definition Invasive Plant: Plants that have, or are likely to spread into native or minimally managed plant systems and cause economic or environmental harm by developing self-sustaining populations and becoming dominant or disruptive to those systems. Where do most invasive species come from? How do they get here and get started? Most originate long distances from the point of introduction Horticulture is responsible for the introduction of approximately 60% of invasive species. Conservation uses are responsible for the introduction of approximately 30% of invasive species. Accidental introductions account for about 10%. Of all non-native species introduced only about 15% ever escape cultivation, and of this 15% only about 1% ever become a problem in the wild. The process that leads to a plant becoming an invasive species, Cultivation – Escape – Naturalization – Invasion, may take over 100 years to complete. What characteristics make invasive species so successful in our environment? Lack predators, pathogens, and diseases to keep population numbers in check Produce copious amounts of seed with a high viability of that seed Use successful dispersal mechanisms – attractive to wildlife Thrive on disturbance, very opportunistic Fast-growing Habitat generalists. They do not have specific or narrow growth requirements. Some demonstrate alleleopathy – produce chemicals that inhibit the growth of other plants nearby. Have longer photosynthetic periods – first to leaf out in the spring and last to drop leaves in autumn Alter soil and habitat conditions where they grow to better suit their own survival and expansion. Why do we care? What is the big deal? Ecological Impacts Impacting/altering natural communities at a startling rate.
    [Show full text]
  • Latitudinal Shifts of Introduced Species: Possible Causes and Implications
    Biol Invasions (2012) 14:547–556 DOI 10.1007/s10530-011-0094-8 ORIGINAL PAPER Latitudinal shifts of introduced species: possible causes and implications Qinfeng Guo • Dov F. Sax • Hong Qian • Regan Early Received: 26 January 2011 / Accepted: 22 August 2011 / Published online: 4 September 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract This study aims to document shifts in the those in their native ranges. Only a small fraction of latitudinal distributions of non-native species relative species examined (i.e.\20% of animals and\10% of to their own native distributions and to discuss plants) have expanded their distributions in their possible causes and implications of these shifts. We exotic range beyond both high- and low-limits of used published and newly compiled data on inter- their native latitudes. Birds, mammals and plants continentally introduced birds, mammals and plants. tended to shift their exotic ranges in similar ways. In We found strong correlations between the latitudinal addition, most non-native species (65–85% in differ- distributions occupied by species in their native and ent groups) have not reached the distributional extent exotic ranges. However, relatively more non-native observed in their native ranges. The possible drivers species occur at latitudes higher than those in their of latitudinal shifts in the exotic range may include native ranges, and fewer occur at latitudes lower than climate change, greater biotic resistance at lower latitudes, historical limitations on ranges in native regions, and the impacts of humans on species Electronic supplementary material The online version of this article (doi:10.1007/s10530-011-0094-8) contains distributions.
    [Show full text]
  • A Survey of the Nation's Lakes
    A Survey of the Nation’s Lakes – EPA’s National Lake Assessment and Survey of Vermont Lakes Vermont Agency of Natural Resources Department of Environmental Conservation - Water Quality Division 103 South Main 10N Waterbury VT 05671-0408 www.vtwaterquality.org Prepared by Julia Larouche, Environmental Technician II January 2009 Table of Contents List of Tables and Figures........................................................................................................................................................................... ii Introduction................................................................................................................................................................................................. 1 What We Measured..................................................................................................................................................................................... 4 Water Quality and Trophic Status Indicators.......................................................................................................................................... 4 Acidification Indicator............................................................................................................................................................................ 4 Ecological Integrity Indicators................................................................................................................................................................ 4 Nearshore Habitat Indicators
    [Show full text]
  • Invasive Species and the Cultural Keystone Species Concept
    Copyright © 2005 by the author(s). Published here under license by the Resilience Alliance. Nuñez, M. A., and D. Simberloff. 2005. Invasive species and the cultural keystone species concept. Ecology and Society 10(1): r4. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/resp4/ Response to Garibaldi and Turner. 2004. “Cultural Keystone Species: Implications for Ecological Conservation and Restoration” Invasive Species and the Cultural Keystone Species Concept Martin A. Nuñez1 and Daniel Simberloff1 Key Words: biological invasions ; cultural keystone species; conservation; exotic species; invasive species; keystone species The concept of the keystone species (Paine 1966, (Mooney and Hobbs 2000, Simberloff 2000), 1969, Power et al. 1996) has been a transformative serving as cultural icons in different areas of the notion in ecology. Keystone species were originally world. Examples of this include Eucalyptus in narrowly defined to be those whose importance to California, tomatoes (Lycopersicon esculentum) in community and ecosystem structure, composition, Italy, bluegrass (Poa pratensis) in Kentucky, and function is disproportionate to their abundance. Cannabis sativa in Jamaica, bananas (Musa Even this narrow definition fostered great insight paradisiaca) in Ecuador, horses (Equus caballus) into the nature of particular ecosystems and of in the western United States, coffee (Coffea spp) in threats to them (Power et al. 1996). However, in Colombia, and kudzu (Pueraria montana) in the ecological circles the term came to be more casually southeastern United States. used to mean any species that has a very large impact on the ecosystem, no matter how abundant it is More than 100 species of Australian Eucalyptus (Simberloff 2003), and this casual usage has led to trees have been brought to California since the late attacks on the concept on the grounds that it is so 19th century.
    [Show full text]
  • Food Web Invaders
    TEACHER LESSON PLAN Food Web Invaders Grade Length Subjects/strands Topics 4th–8th grade 20–30 minutes Discover how a food Observation, applica- web works by making tion, comparing similari- a live model of biotic ties and differences, gen- components, using the eralization, kinesthetic people in your class. concept development, Then explore how an psycho-motor develop- invasive species disrupts ment that balance. BACKGROUND INTRODUCTION Students will have been introduced to the idea of an ecosystem, and the basic relationships in an ecosys- In this fun, active-learning, game about food webs, tem such as producers and consumers, herbivores and each student is assigned to be a plant or animal that carnivores, predator/prey pairs, and some of the inter- can be found in aquatic ecosystems. Then, they learn relationships of their behavior and adaptations. Middle about the relationships between organisms as they pass school students will have been introduced to the idea of a ball of yarn between students (organisms) that have a limiting factors, and later the idea of carrying capac- predator/prey relationship. As the ball of yarn unravels ity. Students will also be familiar with the concept of a and the string is stretched between the many predator/ food chain with a variety of trophic levels. At the inter- prey relationships in the room, the large and complex mediate level, this could include videos, field activities food web network is reveals visually and symbolically and artwork, as well as reading and writing activities in the room. In the final step, an invasive species is from student magazines and textbooks.
    [Show full text]
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • The Effects of Introduced Tilapias on Native Biodiversity
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 15: 463–483 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.699 The effects of introduced tilapias on native biodiversity GABRIELLE C. CANONICOa,*, ANGELA ARTHINGTONb, JEFFREY K. MCCRARYc,d and MICHELE L. THIEMEe a Sustainable Development and Conservation Biology Program, University of Maryland, College Park, Maryland, USA b Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Australia c University of Central America, Managua, Nicaragua d Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg, Virginia, USA e Conservation Science Program, World Wildlife Fund, Washington, DC, USA ABSTRACT 1. The common name ‘tilapia’ refers to a group of tropical freshwater fish in the family Cichlidae (Oreochromis, Tilapia, and Sarotherodon spp.) that are indigenous to Africa and the southwestern Middle East. Since the 1930s, tilapias have been intentionally dispersed worldwide for the biological control of aquatic weeds and insects, as baitfish for certain capture fisheries, for aquaria, and as a food fish. They have most recently been promoted as an important source of protein that could provide food security for developing countries without the environmental problems associated with terrestrial agriculture. In addition, market demand for tilapia in developed countries such as the United States is growing rapidly. 2. Tilapias are well-suited to aquaculture because they are highly prolific and tolerant to a range of environmental conditions. They have come to be known as the ‘aquatic chicken’ because of their potential as an affordable, high-yield source of protein that can be easily raised in a range of environments } from subsistence or ‘backyard’ units to intensive fish hatcheries.
    [Show full text]
  • Ecological Cascades Emanating from Earthworm Invasions
    502 REVIEWS Side- swiped: ecological cascades emanating from earthworm invasions Lee E Frelich1*, Bernd Blossey2, Erin K Cameron3,4, Andrea Dávalos2,5, Nico Eisenhauer6,7, Timothy Fahey2, Olga Ferlian6,7, Peter M Groffman8,9, Evan Larson10, Scott R Loss11, John C Maerz12, Victoria Nuzzo13, Kyungsoo Yoo14, and Peter B Reich1,15 Non- native, invasive earthworms are altering soils throughout the world. Ecological cascades emanating from these invasions stem from rapid consumption of leaf litter by earthworms. This occurs at a midpoint in the trophic pyramid, unlike the more familiar bottom- up or top- down cascades. These cascades cause fundamental changes (“microcascade effects”) in soil morphol- ogy, bulk density, and nutrient leaching, and a shift to warmer, drier soil surfaces with a loss of leaf litter. In North American temperate and boreal forests, microcascade effects can affect carbon sequestration, disturbance regimes, soil and water quality, forest productivity, plant communities, and wildlife habitat, and can facilitate other invasive species. These broader- scale changes (“macrocascade effects”) are of greater concern to society. Interactions among these fundamental changes and broader-scale effects create “cascade complexes” that interact with climate change and other environmental processes. The diversity of cascade effects, combined with the vast area invaded by earthworms, leads to regionally important changes in ecological functioning. Front Ecol Environ 2019; 17(9): 502–510, doi:10.1002/fee.2099 lthough society usually
    [Show full text]
  • Seafood Watch Aquaculture Criteria
    1 ASC Shrimp Aquaculture Stewardship Council SHRIMP (final draft standards) Benchmarking equivalency results assessed against the Seafood Watch Aquaculture Criteria May 2013 2 ASC Shrimp Final Seafood Recommendation ASC Shrimp Criterion Score (0-10) Rank Critical? C1 Data 9.44 GREEN C2 Effluent 6.00 YELLOW NO C3 Habitat 4.04 YELLOW NO C4 Chemicals 10.00 GREEN NO C5 Feed 5.96 YELLOW NO C6 Escapes 4.00 YELLOW NO C7 Disease 4.00 YELLOW NO C8 Source 10.00 GREEN 3.3X Wildlife mortalities -4.00 YELLOW NO 6.2X Introduced species escape 0.00 GREEN Total 49.73 Final score 6.22 OVERALL RANKING Final Score 6.22 Initial rank YELLOW Red criteria 0 Final rank YELLOW Critical Criteria? NO FINAL RANK YELLOW Scoring note – scores range from zero to ten where zero indicates very poor performance and ten indicates the aquaculture operations have no significant impact, except for the two exceptional “X” criteria for which a score of -10 is very poor and zero is good. Scoring Summary ASC Shrimp has a final numerical score of 6.22 with no red criteria. The final recommendation is a yellow “Good Alternative”. 3 ASC Shrimp Executive Summary The benchmarking equivalence assessment was undertaken on the basis of a positive application of a realistic worst-case scenario • “Positive” – Seafood Watch wants to be able to defer to equivalent certification schemes • “Realistic” – we are not actively pursuing the theoretical worst case score. It has to represent reality and realistic aquaculture production. • “Worst-case scenario” – we need to know that the worst-performing farm capable of being certified to any one standard is equivalent to a minimum of a Seafood Watch “Good alternative” or “Yellow” rank.
    [Show full text]
  • Recruitment of Three Non-Native Invasive Plants Into a Fragmented Forest in Southern Illinois Emily D
    Forest Ecology and Management 190 (2004) 119–130 Recruitment of three non-native invasive plants into a fragmented forest in southern Illinois Emily D. Yatesa, Delphis F. Levia Jr.b,*, Carol L. Williamsa aDepartment of Geography, Southern Illinois University, Carbondale, IL 62901-4514, USA bDepartment of Geography, Center for Climatic Research, University of Delaware, Newark, DE 19716, USA Received 28 July 2003; received in revised form 10 September 2003; accepted 11 November 2003 Abstract Plant invasions are a current threat to biodiversity conservation, second only to habitat loss and fragmentation. Density and heights of three invasive plants, Rosa multiflora, Lonicera japonica, and Elaeagnus umbellata, were examined between edges and adjacent interiors of forest sites in southern Illinois. Density (stems mÀ2) and heights (cm) of invasive plants were obtained in plots along transects at edge and interior sampling locations within forest sites. The effect of species, sampling location, and site shape index on invasive plant density was investigated, as well as differences in heights of invasive plants in edge vs. interior sampling locations. Species, sampling location, and fragment shape index were significant factors influencing invasive plant density at study sites. Density for all three species ranged from 0 to 18 stems mÀ2. All three species invaded interiors of sites, however, R. multiflora and L. japonica had significantly greater densities in edge as opposed to interior transects. These two species also had significant differences in density among site shape indices. Density of E. umbellata was not significantly different between edge and interior sampling locations or among site shape indices. Mean heights of all three invasive plants were higher in edge transects, however, this relationship was only significant for L.
    [Show full text]
  • Introduced Species and the Issue of Animal Welfare.Pdf
    'I A.S. Chamove et al. -Deep Woodchip Litter Original Article M Hutchins et al. -Introduced Species Original Article for Dairy Purposes, Technical Bulletin Isolation and Identification of Food Those who must make decisions about the fate of introduced species need to No. 17. HMSO, London. Poisoning Organisms, Society of Appli­ seek a balance between the rights of the individual animals and preserving the viabili­ Markowitz, H. and Woodworth, G. (1978) ed Bacteriology Technical series No. ty of whole ecosystems. One important consideration is that, although the control of Experimental analysis and control of 17. Academic Press, London (in press). exotic animal populations may adversely affect individual sentient beings, inaction group behavior. In: Markowitz, H. and Murphy, D.E. (1976) Enrichment and oc­ may cause widespread suffering to many species and consequent loss of biological Stevens, V.J ., eds., Behavior of Captive cupational devices for orangutans and diversity. Wild Animals. Nelson-Hall, Chicago, chimpanzees. lnt Zoo News 23: 24-26. IL. Olesiuk, O.M., Snoyenbos, G.H. and Smy­ Zusammenfassung McGrew, W.C. (1981) Social and cognitive ser, C.F. (1971) Inhibitory effects of used capabilities of nonhuman primates: les­ litter on Salmonella typhimurium trans­ Eine heftige Debatte betraf kUrzlich das Thema der Kontrolle oder Eliminierung sons from the wild to captivity. lnt j mission in the chicken. Avian Dis 15:118- von eingefUhrten oder "exotischen" Tieren auf Land in offentlichem (US) Besitz. Die Study Anim Prob 2:138-149. 124. EinfUhrung von Tierarten, ob beabsichtigt oder unbeabsichtigt, scheint ein unverme­ Meyer-Holzapfel, M. (1968) Abnormal be­ Snoeyenbos, G.H.
    [Show full text]
  • Effects of Nonindigenous Invasive Species on Water Quality and Quantity
    Effects of Nonindigenous Invasive Species on Water Quality and Quantity Frank H. McCormick1, Glen C. Contreras2, and Agency (EPA), more than one-third of all States have waters Sherri L. Johnson3 that are listed for invasive species under section 303d of the Clean Water Act of 1977. Nonindigenous species cause ecological damage, human health risks, or economic losses. Abstract Invasive species are degrading a suite of ecosystem services that the national forests and grasslands provide, including Physical and biological disruptions of aquatic systems recreational fishing, boating, and swimming; municipal, caused by invasive species alter water quantity and water industrial, and agricultural water supply; and forest products. quality. Recent evidence suggests that water is a vector for Degradation of these services results in direct economic the spread of Sudden Oak Death disease and Port-Orford- losses, costs to replace the services, and control costs. Losses, cedar root disease. Since the 1990s, the public has become damages, and control costs are estimated to exceed $178 billion increasingly aware of the presence of invasive species in annually (Daily et al. 2000a, 2000b). Although agriculture is the Nation’s waters. Media reports about Asian carp, zebra the segment of the economy most affected ($71 billion per mussels (Dreissena polymorpha), golden algae (Prynmesium year), costs to other segments, such as tourism, fisheries, and parvum), cyanobacteria (Anabaena sp., Aphanizomenon sp., water supply, total $67 billion per year. Although more difficult and Microcystis sp.), and New Zealand mud snail have raised to quantify, losses of these ecosystem functions also reduce public awareness about the economic and ecological costs of the quality of life.
    [Show full text]