Effects of Nonindigenous Invasive Species on Water Quality and Quantity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Characteristics Do All Invasive Species Share That Make Them So
Invasive Plants Facts and Figures Definition Invasive Plant: Plants that have, or are likely to spread into native or minimally managed plant systems and cause economic or environmental harm by developing self-sustaining populations and becoming dominant or disruptive to those systems. Where do most invasive species come from? How do they get here and get started? Most originate long distances from the point of introduction Horticulture is responsible for the introduction of approximately 60% of invasive species. Conservation uses are responsible for the introduction of approximately 30% of invasive species. Accidental introductions account for about 10%. Of all non-native species introduced only about 15% ever escape cultivation, and of this 15% only about 1% ever become a problem in the wild. The process that leads to a plant becoming an invasive species, Cultivation – Escape – Naturalization – Invasion, may take over 100 years to complete. What characteristics make invasive species so successful in our environment? Lack predators, pathogens, and diseases to keep population numbers in check Produce copious amounts of seed with a high viability of that seed Use successful dispersal mechanisms – attractive to wildlife Thrive on disturbance, very opportunistic Fast-growing Habitat generalists. They do not have specific or narrow growth requirements. Some demonstrate alleleopathy – produce chemicals that inhibit the growth of other plants nearby. Have longer photosynthetic periods – first to leaf out in the spring and last to drop leaves in autumn Alter soil and habitat conditions where they grow to better suit their own survival and expansion. Why do we care? What is the big deal? Ecological Impacts Impacting/altering natural communities at a startling rate. -
Latitudinal Shifts of Introduced Species: Possible Causes and Implications
Biol Invasions (2012) 14:547–556 DOI 10.1007/s10530-011-0094-8 ORIGINAL PAPER Latitudinal shifts of introduced species: possible causes and implications Qinfeng Guo • Dov F. Sax • Hong Qian • Regan Early Received: 26 January 2011 / Accepted: 22 August 2011 / Published online: 4 September 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract This study aims to document shifts in the those in their native ranges. Only a small fraction of latitudinal distributions of non-native species relative species examined (i.e.\20% of animals and\10% of to their own native distributions and to discuss plants) have expanded their distributions in their possible causes and implications of these shifts. We exotic range beyond both high- and low-limits of used published and newly compiled data on inter- their native latitudes. Birds, mammals and plants continentally introduced birds, mammals and plants. tended to shift their exotic ranges in similar ways. In We found strong correlations between the latitudinal addition, most non-native species (65–85% in differ- distributions occupied by species in their native and ent groups) have not reached the distributional extent exotic ranges. However, relatively more non-native observed in their native ranges. The possible drivers species occur at latitudes higher than those in their of latitudinal shifts in the exotic range may include native ranges, and fewer occur at latitudes lower than climate change, greater biotic resistance at lower latitudes, historical limitations on ranges in native regions, and the impacts of humans on species Electronic supplementary material The online version of this article (doi:10.1007/s10530-011-0094-8) contains distributions. -
A Survey of the Nation's Lakes
A Survey of the Nation’s Lakes – EPA’s National Lake Assessment and Survey of Vermont Lakes Vermont Agency of Natural Resources Department of Environmental Conservation - Water Quality Division 103 South Main 10N Waterbury VT 05671-0408 www.vtwaterquality.org Prepared by Julia Larouche, Environmental Technician II January 2009 Table of Contents List of Tables and Figures........................................................................................................................................................................... ii Introduction................................................................................................................................................................................................. 1 What We Measured..................................................................................................................................................................................... 4 Water Quality and Trophic Status Indicators.......................................................................................................................................... 4 Acidification Indicator............................................................................................................................................................................ 4 Ecological Integrity Indicators................................................................................................................................................................ 4 Nearshore Habitat Indicators -
Invasive Species and the Cultural Keystone Species Concept
Copyright © 2005 by the author(s). Published here under license by the Resilience Alliance. Nuñez, M. A., and D. Simberloff. 2005. Invasive species and the cultural keystone species concept. Ecology and Society 10(1): r4. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/resp4/ Response to Garibaldi and Turner. 2004. “Cultural Keystone Species: Implications for Ecological Conservation and Restoration” Invasive Species and the Cultural Keystone Species Concept Martin A. Nuñez1 and Daniel Simberloff1 Key Words: biological invasions ; cultural keystone species; conservation; exotic species; invasive species; keystone species The concept of the keystone species (Paine 1966, (Mooney and Hobbs 2000, Simberloff 2000), 1969, Power et al. 1996) has been a transformative serving as cultural icons in different areas of the notion in ecology. Keystone species were originally world. Examples of this include Eucalyptus in narrowly defined to be those whose importance to California, tomatoes (Lycopersicon esculentum) in community and ecosystem structure, composition, Italy, bluegrass (Poa pratensis) in Kentucky, and function is disproportionate to their abundance. Cannabis sativa in Jamaica, bananas (Musa Even this narrow definition fostered great insight paradisiaca) in Ecuador, horses (Equus caballus) into the nature of particular ecosystems and of in the western United States, coffee (Coffea spp) in threats to them (Power et al. 1996). However, in Colombia, and kudzu (Pueraria montana) in the ecological circles the term came to be more casually southeastern United States. used to mean any species that has a very large impact on the ecosystem, no matter how abundant it is More than 100 species of Australian Eucalyptus (Simberloff 2003), and this casual usage has led to trees have been brought to California since the late attacks on the concept on the grounds that it is so 19th century. -
Food Web Invaders
TEACHER LESSON PLAN Food Web Invaders Grade Length Subjects/strands Topics 4th–8th grade 20–30 minutes Discover how a food Observation, applica- web works by making tion, comparing similari- a live model of biotic ties and differences, gen- components, using the eralization, kinesthetic people in your class. concept development, Then explore how an psycho-motor develop- invasive species disrupts ment that balance. BACKGROUND INTRODUCTION Students will have been introduced to the idea of an ecosystem, and the basic relationships in an ecosys- In this fun, active-learning, game about food webs, tem such as producers and consumers, herbivores and each student is assigned to be a plant or animal that carnivores, predator/prey pairs, and some of the inter- can be found in aquatic ecosystems. Then, they learn relationships of their behavior and adaptations. Middle about the relationships between organisms as they pass school students will have been introduced to the idea of a ball of yarn between students (organisms) that have a limiting factors, and later the idea of carrying capac- predator/prey relationship. As the ball of yarn unravels ity. Students will also be familiar with the concept of a and the string is stretched between the many predator/ food chain with a variety of trophic levels. At the inter- prey relationships in the room, the large and complex mediate level, this could include videos, field activities food web network is reveals visually and symbolically and artwork, as well as reading and writing activities in the room. In the final step, an invasive species is from student magazines and textbooks. -
Predation of the Introduced Cladoceran Cercopagis Pengoi on the Native Copepod Eurytemora Affinis in the Northern Baltic Sea
Vol. 362: 193–200, 2008 MARINE ECOLOGY PROGRESS SERIES Published June 30 doi: 10.3354/meps07441 Mar Ecol Prog Ser Predation of the introduced cladoceran Cercopagis pengoi on the native copepod Eurytemora affinis in the northern Baltic Sea Maiju Lehtiniemi1,*, Elena Gorokhova2 1Finnish Institute of Marine Research, PO Box 2, 00561 Helsinki, Finland 2Department of Systems Ecology, Stockholm University, 10691 Stockholm, Sweden ABSTRACT: We studied the potential of an introduced species, the predatory cladoceran Cercopagis pengoi, to influence native zooplankton populations in the Baltic Sea. Feeding rates (FRs) of different instars of C. pengoi on Eurytemora affinis, a dominant copepod species, were determined experimen- tally. The FRs of C. pengoi varied from 0.7 to 4.8 prey predator–1 d–1 and were significantly higher in older instars. Based on the experimental results and long-term zooplankton abundance data from the Gulf of Finland, we estimated the in situ predation rates. Our results imply that at maximum abun- dance, the C. pengoi population feeding in dense prey patches could consume as many as 105 E. affi- nis m–3 d–1. This could explain the observed drastic decrease in copepod abundances in the eastern Gulf of Finland, the region with the highest C. pengoi abundance after the expansion of this species. Such a decline may strengthen food competition between other zooplanktivores, i.e. planktivorous fish and mysids, feeding on the same copepod prey in regions where C. pengoi may reach high abun- dances. In the Gulf of Finland, especially in the eastern parts, a collapse of E. affinis, a key species in the pelagic system, would cause major changes in virtually all trophic levels, because the food web structure is simple with only a few species of zooplankton, planktivores, and piscivores. -
Can More K-Selected Species Be Better Invaders?
Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France. -
The Potential Link Between Lake Productivity and the Invasive Zooplankter Cercopagis Pengoi in Owasco Lake (New York, USA)
Aquatic Invasions (2008) Volume 3, Issue 1: 28-34 doi: 10.3391/ai.2008.3.1.6 (Open Access) © 2008 The Author(s). Journal compilation © 2008 REABIC Special issue “Invasive species in inland waters of Europe and North America: distribution and impacts” Sudeep Chandra and Almut Gerhardt (Guest Editors) Research Article The potential link between lake productivity and the invasive zooplankter Cercopagis pengoi in Owasco Lake (New York, USA). Meghan E. Brown* and Melissa A. Balk Department of Biology, Hobart and William Smith Colleges, 4095 Scandling Center, Geneva, NY 14456, USA E-mail: [email protected] *Corresponding author Received: 28 September 2007 / Accepted: 5 February 2008 / Published online: 23 March 2008 Abstract The fishhook water flea (Cercopagis pengoi Ostroumov, 1891) is an invasive zooplankter that can decrease the abundance and diversity of cladocerans and rotifers, which theoretically could release phytoplankton from grazing pressure and increase algal primary productivity. In the last decade, C. pengoi established and primary productivity increased concurrently in Owasco Lake (New York, USA). We studied plankton density, primary productivity, and standard limnological conditions in Owasco Lake during summer 2007 (1) to document summer densities of invertebrate predators, (2) to investigate correlations between C. pengoi and the abiotic environment, and (3) to examine the relationships among C. pengoi, native zooplankton, and productivity. Although the maximum abundance of C. pengoi observed (245 ind./m3) far exceeded that of any native invertebrate predator, at most locations and dates unimodal density peaks between 35-60 ind./m3 were typical and comparable to Leptodora kindtii (Focke, 1844), the most common native planktivore. -
Diversity of Various Planktonic Species from Rearing Fish Ponds
IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399.Volume 14, Issue 2Ser. III (February. 2020), PP 23-36 www.iosrjournals.org Diversity of Various Planktonic Species from Rearing Fish Ponds Rimsha Jamil, Dr.KhalidAbbas, Muhammad Sarfraz Ahmed Department of zoology,Wildlifeandfisheries Faculty of sciences University of Agriculture, Faisalabad Abstract: The present study entitled “Diversity of various planktonic species from rearing fish ponds” was done in the fish ponds of University of Agriculture Faisalabad. Water samples were taken with the help of planktonic net and observe under high and low powers of electron microscope. Brachionus plicatilis, Cyclops bicuspidatus, Paramecium, Calanoid, Closterium setaceum, Mesocyclops aspericornis, Keratella valga and Volvox found, belonging to zooplankton. Phytoplanktons were the Chlamydomonas reinhardtii and Pediastrem duplex. Cyanobacterial species was Microcystis. During the study, zooplankton was abundantly found rather than the phytoplankton. Plankton diversity increased or decreased with the physico-chemical parameters of pond, and its abundance also affected by the environmental conditions. In summer the plankton diversity decreases while during winter, it increases. It was also noticed that the pollution is also affecting the plankton abundance in these ponds. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 10-02-2020 -
The Effects of Introduced Tilapias on Native Biodiversity
AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 15: 463–483 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.699 The effects of introduced tilapias on native biodiversity GABRIELLE C. CANONICOa,*, ANGELA ARTHINGTONb, JEFFREY K. MCCRARYc,d and MICHELE L. THIEMEe a Sustainable Development and Conservation Biology Program, University of Maryland, College Park, Maryland, USA b Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Australia c University of Central America, Managua, Nicaragua d Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg, Virginia, USA e Conservation Science Program, World Wildlife Fund, Washington, DC, USA ABSTRACT 1. The common name ‘tilapia’ refers to a group of tropical freshwater fish in the family Cichlidae (Oreochromis, Tilapia, and Sarotherodon spp.) that are indigenous to Africa and the southwestern Middle East. Since the 1930s, tilapias have been intentionally dispersed worldwide for the biological control of aquatic weeds and insects, as baitfish for certain capture fisheries, for aquaria, and as a food fish. They have most recently been promoted as an important source of protein that could provide food security for developing countries without the environmental problems associated with terrestrial agriculture. In addition, market demand for tilapia in developed countries such as the United States is growing rapidly. 2. Tilapias are well-suited to aquaculture because they are highly prolific and tolerant to a range of environmental conditions. They have come to be known as the ‘aquatic chicken’ because of their potential as an affordable, high-yield source of protein that can be easily raised in a range of environments } from subsistence or ‘backyard’ units to intensive fish hatcheries. -
Ecological Cascades Emanating from Earthworm Invasions
502 REVIEWS Side- swiped: ecological cascades emanating from earthworm invasions Lee E Frelich1*, Bernd Blossey2, Erin K Cameron3,4, Andrea Dávalos2,5, Nico Eisenhauer6,7, Timothy Fahey2, Olga Ferlian6,7, Peter M Groffman8,9, Evan Larson10, Scott R Loss11, John C Maerz12, Victoria Nuzzo13, Kyungsoo Yoo14, and Peter B Reich1,15 Non- native, invasive earthworms are altering soils throughout the world. Ecological cascades emanating from these invasions stem from rapid consumption of leaf litter by earthworms. This occurs at a midpoint in the trophic pyramid, unlike the more familiar bottom- up or top- down cascades. These cascades cause fundamental changes (“microcascade effects”) in soil morphol- ogy, bulk density, and nutrient leaching, and a shift to warmer, drier soil surfaces with a loss of leaf litter. In North American temperate and boreal forests, microcascade effects can affect carbon sequestration, disturbance regimes, soil and water quality, forest productivity, plant communities, and wildlife habitat, and can facilitate other invasive species. These broader- scale changes (“macrocascade effects”) are of greater concern to society. Interactions among these fundamental changes and broader-scale effects create “cascade complexes” that interact with climate change and other environmental processes. The diversity of cascade effects, combined with the vast area invaded by earthworms, leads to regionally important changes in ecological functioning. Front Ecol Environ 2019; 17(9): 502–510, doi:10.1002/fee.2099 lthough society usually -
Seafood Watch Aquaculture Criteria
1 ASC Shrimp Aquaculture Stewardship Council SHRIMP (final draft standards) Benchmarking equivalency results assessed against the Seafood Watch Aquaculture Criteria May 2013 2 ASC Shrimp Final Seafood Recommendation ASC Shrimp Criterion Score (0-10) Rank Critical? C1 Data 9.44 GREEN C2 Effluent 6.00 YELLOW NO C3 Habitat 4.04 YELLOW NO C4 Chemicals 10.00 GREEN NO C5 Feed 5.96 YELLOW NO C6 Escapes 4.00 YELLOW NO C7 Disease 4.00 YELLOW NO C8 Source 10.00 GREEN 3.3X Wildlife mortalities -4.00 YELLOW NO 6.2X Introduced species escape 0.00 GREEN Total 49.73 Final score 6.22 OVERALL RANKING Final Score 6.22 Initial rank YELLOW Red criteria 0 Final rank YELLOW Critical Criteria? NO FINAL RANK YELLOW Scoring note – scores range from zero to ten where zero indicates very poor performance and ten indicates the aquaculture operations have no significant impact, except for the two exceptional “X” criteria for which a score of -10 is very poor and zero is good. Scoring Summary ASC Shrimp has a final numerical score of 6.22 with no red criteria. The final recommendation is a yellow “Good Alternative”. 3 ASC Shrimp Executive Summary The benchmarking equivalence assessment was undertaken on the basis of a positive application of a realistic worst-case scenario • “Positive” – Seafood Watch wants to be able to defer to equivalent certification schemes • “Realistic” – we are not actively pursuing the theoretical worst case score. It has to represent reality and realistic aquaculture production. • “Worst-case scenario” – we need to know that the worst-performing farm capable of being certified to any one standard is equivalent to a minimum of a Seafood Watch “Good alternative” or “Yellow” rank.