Seafood Watch Aquaculture Criteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Characteristics Do All Invasive Species Share That Make Them So
Invasive Plants Facts and Figures Definition Invasive Plant: Plants that have, or are likely to spread into native or minimally managed plant systems and cause economic or environmental harm by developing self-sustaining populations and becoming dominant or disruptive to those systems. Where do most invasive species come from? How do they get here and get started? Most originate long distances from the point of introduction Horticulture is responsible for the introduction of approximately 60% of invasive species. Conservation uses are responsible for the introduction of approximately 30% of invasive species. Accidental introductions account for about 10%. Of all non-native species introduced only about 15% ever escape cultivation, and of this 15% only about 1% ever become a problem in the wild. The process that leads to a plant becoming an invasive species, Cultivation – Escape – Naturalization – Invasion, may take over 100 years to complete. What characteristics make invasive species so successful in our environment? Lack predators, pathogens, and diseases to keep population numbers in check Produce copious amounts of seed with a high viability of that seed Use successful dispersal mechanisms – attractive to wildlife Thrive on disturbance, very opportunistic Fast-growing Habitat generalists. They do not have specific or narrow growth requirements. Some demonstrate alleleopathy – produce chemicals that inhibit the growth of other plants nearby. Have longer photosynthetic periods – first to leaf out in the spring and last to drop leaves in autumn Alter soil and habitat conditions where they grow to better suit their own survival and expansion. Why do we care? What is the big deal? Ecological Impacts Impacting/altering natural communities at a startling rate. -
Latitudinal Shifts of Introduced Species: Possible Causes and Implications
Biol Invasions (2012) 14:547–556 DOI 10.1007/s10530-011-0094-8 ORIGINAL PAPER Latitudinal shifts of introduced species: possible causes and implications Qinfeng Guo • Dov F. Sax • Hong Qian • Regan Early Received: 26 January 2011 / Accepted: 22 August 2011 / Published online: 4 September 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract This study aims to document shifts in the those in their native ranges. Only a small fraction of latitudinal distributions of non-native species relative species examined (i.e.\20% of animals and\10% of to their own native distributions and to discuss plants) have expanded their distributions in their possible causes and implications of these shifts. We exotic range beyond both high- and low-limits of used published and newly compiled data on inter- their native latitudes. Birds, mammals and plants continentally introduced birds, mammals and plants. tended to shift their exotic ranges in similar ways. In We found strong correlations between the latitudinal addition, most non-native species (65–85% in differ- distributions occupied by species in their native and ent groups) have not reached the distributional extent exotic ranges. However, relatively more non-native observed in their native ranges. The possible drivers species occur at latitudes higher than those in their of latitudinal shifts in the exotic range may include native ranges, and fewer occur at latitudes lower than climate change, greater biotic resistance at lower latitudes, historical limitations on ranges in native regions, and the impacts of humans on species Electronic supplementary material The online version of this article (doi:10.1007/s10530-011-0094-8) contains distributions. -
The Effect of Feeding Rate on Growth Performance and Body Composition of Russian Sturgeon (Acipenser Gueldenstaedtii) Juveniles Raluca C
The effect of feeding rate on growth performance and body composition of Russian sturgeon (Acipenser gueldenstaedtii) juveniles Raluca C. Andrei (Guriencu), Victor Cristea, Mirela Crețu, Lorena Dediu, Angelica I. Docan ”Dunărea de Jos” University of Galati, Faculty of Food Science and Engineering, Galati, Romania. Corresponding author: R. C. Andrei (Guriencu), [email protected] Abstract. Growth performance and body composition of Russian sturgeon (Acipenser gueldenstaedii) juveniles were determined at four different feeding rates (FR; % body weight [BW] per day). The experiment was carried out in four experimental variants, two replications each. The experimental variants were: V1 - 1.0% BW day-1, V2 - 1.5% BW day-1, V3 - 2% BW day-1 and V4-ad libitum feeding. Fish were distributed into eight tanks; each tank was populated with 18 Russian sturgeon juveniles with an average body mass of 248.19±1.6 g. The fish were fed with extruded pellets with a protein content of 42% and a fat content of 18%. Feeding rate had a significant (p < 0.05) effect on the body weight (BW) and specific growth rate (SGR). At the end of the trial SGR calculated in V1 variant was 0.61% g day-1, in V2 - 0.90% g day-1, V3 - 1.18% g day-1 and V4 - 1.66% g day-1 and the feed conversion ratio (FCR) was for V1 - 1.69, V2 - 1.29, V3 - 1.12 and V4 - 1.01. The best BW was obtained in the group V4, followed by V3 group. The body compositions of muscle were also significantly (p < 0.05) different among treatments. -
Invasive Species and the Cultural Keystone Species Concept
Copyright © 2005 by the author(s). Published here under license by the Resilience Alliance. Nuñez, M. A., and D. Simberloff. 2005. Invasive species and the cultural keystone species concept. Ecology and Society 10(1): r4. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/resp4/ Response to Garibaldi and Turner. 2004. “Cultural Keystone Species: Implications for Ecological Conservation and Restoration” Invasive Species and the Cultural Keystone Species Concept Martin A. Nuñez1 and Daniel Simberloff1 Key Words: biological invasions ; cultural keystone species; conservation; exotic species; invasive species; keystone species The concept of the keystone species (Paine 1966, (Mooney and Hobbs 2000, Simberloff 2000), 1969, Power et al. 1996) has been a transformative serving as cultural icons in different areas of the notion in ecology. Keystone species were originally world. Examples of this include Eucalyptus in narrowly defined to be those whose importance to California, tomatoes (Lycopersicon esculentum) in community and ecosystem structure, composition, Italy, bluegrass (Poa pratensis) in Kentucky, and function is disproportionate to their abundance. Cannabis sativa in Jamaica, bananas (Musa Even this narrow definition fostered great insight paradisiaca) in Ecuador, horses (Equus caballus) into the nature of particular ecosystems and of in the western United States, coffee (Coffea spp) in threats to them (Power et al. 1996). However, in Colombia, and kudzu (Pueraria montana) in the ecological circles the term came to be more casually southeastern United States. used to mean any species that has a very large impact on the ecosystem, no matter how abundant it is More than 100 species of Australian Eucalyptus (Simberloff 2003), and this casual usage has led to trees have been brought to California since the late attacks on the concept on the grounds that it is so 19th century. -
Quantifying Greenhouse Gas Emissions from Global Aquaculture Michael J
www.nature.com/scientificreports OPEN Quantifying greenhouse gas emissions from global aquaculture Michael J. MacLeod1*, Mohammad R. Hasan2, David H. F. Robb3 & Mohammad Mamun‑Ur‑Rashid4 Global aquaculture makes an important contribution to food security directly (by increasing food availability and accessibility) and indirectly (as a driver of economic development). In order to enable sustainable expansion of aquaculture, we need to understand aquaculture’s contribution to global greenhouse gas (GHG) emissions and how it can be mitigated. This study quantifes the global GHG emissions from aquaculture (excluding the farming of aquatic plants), with a focus on using modern, commercial feed formulations for the main species groups and geographic regions. Here we show that global aquaculture accounted for approximately 0.49% of anthropogenic GHG emissions in 2017, which is similar in magnitude to the emissions from sheep production. The modest emissions refect the low emissions intensity of aquaculture, compared to terrestrial livestock (in particular cattle, sheep and goats), which is due largely to the absence of enteric CH4 in aquaculture, combined with the high fertility and low feed conversion ratios of fnfsh and shellfsh. Global aquaculture makes an important contribution to food security directly (by increasing food availability and accessibility) and indirectly (as a driver of economic development). Importantly, fsh are rich in protein and contain essential micronutrients which cannot easily be substituted by other food commodities1. Animal aquaculture production has expanded since the 1980s (Fig. 1) and it has been argued that the capaci- ties for further expansion of marine aquaculture are theoretically huge2. In light of this, FAO1 concluded that as the sector further expands, intensifes and diversifes, it should recognize the relevant environmental and social concerns (e.g. -
Black Soldier Fly Larvae Meal As a Fishmeal Substitute in Juvenile Dusky Kob Diets: Effect on Feed Utilization, Growth Performance, and Blood Parameters
sustainability Article Black Soldier Fly Larvae Meal as a Fishmeal Substitute in Juvenile Dusky Kob Diets: Effect on Feed Utilization, Growth Performance, and Blood Parameters Molatelo Junior Madibana 1,* , Mulunda Mwanza 2 , Brett Roderick Lewis 1,3, Chris Henri Fouché 1, Rashieda Toefy 3 and Victor Mlambo 4 1 Department of Environment, Forestry and Fisheries, Martin Hammerschlag Way, Foreshore, Cape Town 8001, South Africa; BrettL@daff.gov.za (B.R.L.); [email protected] (C.H.F.) 2 Department of Animal Health, School of Agricultural Sciences, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho 2735, South Africa; [email protected] 3 Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa; [email protected] 4 School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag x11283, Mbombela 1200, South Africa; [email protected] * Correspondence: MolateloMA@daff.gov.za; Tel.: +27-21-430-7018 Received: 23 September 2020; Accepted: 20 October 2020; Published: 13 November 2020 Abstract: Using black soldier fly larvae meal (BSFM) in place of fishmeal is an ingenious strategy for sustainable fish aquaculture. However, BSFM has not been evaluated for dusky kob (Argyrosomus japonicus), an economically important fish in South Africa. Therefore, this five-week study investigated the effect of partially replacing fishmeal with BSFM on feed utilization, growth performance, and blood parameters of juvenile dusky kob in a recirculating aquaculture system. Four diets were formulated by replacing fishmeal in a commercial dusky kob diet with BSFM at the rate of 0 (BSFM0), 50 (BSFM50), 100 (BSFM100), and 200 g/kg (BSFM200). -
Ross Tech Notes: Optimizing Broiler Feed Conversion Ratio
Optimizing Broiler Feed Conversion Ratio This article has been written specifically for poultry producers in Latin America. However, the recommen- dations given are expected to be useful and informative for other world regions. The aim of this article is to provide information on areas for consideration/action if a flock FCR problem exists. For further guidance on specific management actions that should be put in place please refer to the Broiler Management Manual and your local Technical Manager. July 2011 Summary Introduction Feed conversion ratio (FCR) is a measure of how well a flock converts feed intake (feed usage) into live weight. Small changes in FCR at any given feed price will have a substantial impact on financial margins. Solving, or preventing, FCR problems in a flock requires both good planning and good management. The key to preventing FCR problems is ensuring that throughout the brooding and grow-out period, good management practices are in place so that bird performance is optimized. Determining the scale of the problem Before investigating the cause of an FCR problem, it is necessary to be certain that a problem does exist. For this, normal patterns and patterns of change in FCR must be identified and understood. Having established that a real problem exists, the next step is to determine the scale of the problem. Determining the cause of an FCR problem There are a number of different factors that can negatively impact flock FCR. • Hatchery management: conditions during the hatching process will affect growth rates and FCR through their effect on gut development. Inappropriate conditions during chick transport can also impair early chick development and final flock FCR. -
How to Improve Breeding Value Prediction for Feed Conversion Ratio in the Case of Incomplete Longitudinal Body Weights1
How to improve breeding value prediction for feed conversion ratio in the case of incomplete longitudinal body weights1 V. H. Huynh Tran,2 H. Gilbert, and I. David GenPhySE, INRA, Université de Toulouse, INPT, ENVT, Castanet-Tolosan, France ABSTRACT: With the development of automatic FCR). Heritability (h2) was estimated, and the EBV was self-feeders, repeated measurements of feed intake are predicted for each repeated FCR using a random regres- Downloaded from https://academic.oup.com/jas/article/95/1/39/4703065 by guest on 30 September 2021 becoming easier in an increasing number of species. sion model. In the second part of the study, the full data However, the corresponding BW are not always record- set (males with their complete BW records, castrated ed, and these missing values complicate the longitudinal males and females with missing BW) was analyzed analysis of the feed conversion ratio (FCR). Our aim using the same methods (miss_FCR, Gomp_FCR, and was to evaluate the impact of missing BW data on esti- interp_FCR). Results of the simulation study showed mations of the genetic parameters of FCR and ways that h2 were overestimated in the case of missing BW to improve the estimations. On the basis of the miss- and that predicting BW using a linear interpolation pro- ing BW profile in French Large White pigs (male pigs vided a more accurate estimation of h2 and of EBV than weighed weekly, females and castrated males weighed a Gompertz model. Over 100 simulations, the correla- monthly), we compared 2 different ways of predicting tion between obser_EBV and interp_EBV, Gomp_EBV, missing BW, 1 using a Gompertz model and 1 using a and miss_EBV was 0.93 ± 0.02, 0.91 ± 0.01, and linear interpolation. -
Can More K-Selected Species Be Better Invaders?
Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France. -
Optimization of Feed Use Efficiency in Ruminant Production Systems
16 ISSN 1810-0732 FAO ANIMAL PRODUCTION AND HEALTH proceedings OPTIMIZATION OF FEED USE EFFICIENCY IN RUMINANT PRODUCTION SYSTEMS FAO Symposium Bangkok, Thailand 27 November 2012 Cover photographs: ©FAO/Jim Holmes 16 FAO ANIMAL PRODUCTION AND HEALTH proceedings OPTIMIZATION OF FEED USE EFFICIENCY IN RUMINANT PRODUCTION SYSTEMS FAO Symposium Bangkok, Thailand 27 November 2012 Editors Harinder P.S. Makkar and David Beever Published by FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS and ASIAN-AUSTRALASIAN ASSOCIATION OF ANIMAL PRODUCTION SOCIETIES Rome, 2013 Editors Harinder P.S. Makkar Animal Production Officer Animal Production and Health Division FAO, Rome, Italy David Beever Richard Keenan & Co Clonagoose Road Borris, Co Carlow Ireland (Emeritus professor, University of Reading, UK) Recommended Citation Makkar, H.P.S. & Beever, D. 2013. Optimization of feed use efficiency in ruminant production systems. Proceedings of the FAO Symposium, 27 November 2012, Bangkok, Thailand. FAO Animal Production and Health Proceedings, No. 16. Rome, FAO and Asian-Australasian Association of Animal Production Societies. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or of the Asian-Australasian Association of Animal Production Societies (AAAP) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO or AAAP in preference to others of a similar nature that are not mentioned. -
The Effects of Introduced Tilapias on Native Biodiversity
AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 15: 463–483 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.699 The effects of introduced tilapias on native biodiversity GABRIELLE C. CANONICOa,*, ANGELA ARTHINGTONb, JEFFREY K. MCCRARYc,d and MICHELE L. THIEMEe a Sustainable Development and Conservation Biology Program, University of Maryland, College Park, Maryland, USA b Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Australia c University of Central America, Managua, Nicaragua d Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg, Virginia, USA e Conservation Science Program, World Wildlife Fund, Washington, DC, USA ABSTRACT 1. The common name ‘tilapia’ refers to a group of tropical freshwater fish in the family Cichlidae (Oreochromis, Tilapia, and Sarotherodon spp.) that are indigenous to Africa and the southwestern Middle East. Since the 1930s, tilapias have been intentionally dispersed worldwide for the biological control of aquatic weeds and insects, as baitfish for certain capture fisheries, for aquaria, and as a food fish. They have most recently been promoted as an important source of protein that could provide food security for developing countries without the environmental problems associated with terrestrial agriculture. In addition, market demand for tilapia in developed countries such as the United States is growing rapidly. 2. Tilapias are well-suited to aquaculture because they are highly prolific and tolerant to a range of environmental conditions. They have come to be known as the ‘aquatic chicken’ because of their potential as an affordable, high-yield source of protein that can be easily raised in a range of environments } from subsistence or ‘backyard’ units to intensive fish hatcheries. -
Introduced Species and the Issue of Animal Welfare.Pdf
'I A.S. Chamove et al. -Deep Woodchip Litter Original Article M Hutchins et al. -Introduced Species Original Article for Dairy Purposes, Technical Bulletin Isolation and Identification of Food Those who must make decisions about the fate of introduced species need to No. 17. HMSO, London. Poisoning Organisms, Society of Appli seek a balance between the rights of the individual animals and preserving the viabili Markowitz, H. and Woodworth, G. (1978) ed Bacteriology Technical series No. ty of whole ecosystems. One important consideration is that, although the control of Experimental analysis and control of 17. Academic Press, London (in press). exotic animal populations may adversely affect individual sentient beings, inaction group behavior. In: Markowitz, H. and Murphy, D.E. (1976) Enrichment and oc may cause widespread suffering to many species and consequent loss of biological Stevens, V.J ., eds., Behavior of Captive cupational devices for orangutans and diversity. Wild Animals. Nelson-Hall, Chicago, chimpanzees. lnt Zoo News 23: 24-26. IL. Olesiuk, O.M., Snoyenbos, G.H. and Smy Zusammenfassung McGrew, W.C. (1981) Social and cognitive ser, C.F. (1971) Inhibitory effects of used capabilities of nonhuman primates: les litter on Salmonella typhimurium trans Eine heftige Debatte betraf kUrzlich das Thema der Kontrolle oder Eliminierung sons from the wild to captivity. lnt j mission in the chicken. Avian Dis 15:118- von eingefUhrten oder "exotischen" Tieren auf Land in offentlichem (US) Besitz. Die Study Anim Prob 2:138-149. 124. EinfUhrung von Tierarten, ob beabsichtigt oder unbeabsichtigt, scheint ein unverme Meyer-Holzapfel, M. (1968) Abnormal be Snoeyenbos, G.H.