Nature Around the ALMA Site – Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Nature Around the ALMA Site – Part 2 Astronomical News Nature Around the ALMA Site – Part 2 Figure 1: The vegetation Michel Grenon Valeriana nivalis belts as described (Geneva Observatory, Switzerland) Festuca chrysophylla Mulinum crassifolium m by Richter (2003) on the Adesmia spinosissima Deyeuxia curvala slopes of Sairecabur Baccharis tola Pycnophyllum bryo 5 500 volcano, NW of ALMA, The natural environment around the Parastrephia quadrangularis with indication of char- oVg ALMA site, its flora, fauna and land- Fabiana denudata 5000 acteristic plants. scape morphology, are presented and Junellia seriphioides interpreted in terms of combined geo- Trichocereus atacamensis 4500 logical and climatic evolution with, in Atriplex imbricata parallel, the necessary biological adap- Opuntia camachoi 4 000 tions. This part covers vegetation and 3 500 animal life. uVg 3 000 Sairecabur The vegetation belts Figure 2: The Maihuen- The vegetation belts contain plant asso- iopsis pillows show the effect of the katabatic cations adapted to a given range of at- winds. The side exposed mospheric parameters, soil composition to the cold flow is red- and texture. A recent phytosociological der, an indication of a survey by Richter (2003) provides vege- higher content in antho- cyanine, a molecule tation transects in the ALMA area, namely acting as anti-freeze. at Sairecabur, Toco Toco and Miñiques (Figure 1). On the western slopes of Toco Toco, all belts are present, because the rocks are old enough to have been al- tered into sand and clay, and hence are able to retain water. At the lowest level, 2 900–3 350 m, the limiting factors are the scarcity of precip- itation, the high evapotranspiration and the salt and nitrate content in the soil. Atriplex communities – tall greyish bushes Figure 3: Thanks to the – develop on the shore of the Atacama reduction of the leaf size, Fabiana bryoides Salar in salt rich soils. On undisturbed resists dessicating rocky places, the cactus Maihueniopsis winds and may grow up camachoi forms colonies of spiny pillows to 4900 m. (Figure 2), among several other plants. In wind shadow places, the tall cactus Trichocereus atacamensis, an invader from Argentina, grows. At higher altitudes, evapotranspiration becomes the dominant factor. The effi- ciency of the evaporation increases with the square of the wind velocity. Low humidity and high wind velocity favour high rates of water loss by the plant epiderm. Several techniques are devel- oped by plants to reduce these losses. suppressed and photosynthesis takes In the zone 3 850–4 300 m, the vegeta- place at the upper stem surface. The tion becomes scarce and the grami- In the second vegetation zone, 3 350– whole plant is varnished with a viscous naceae herbs are dominant. The golden 3 850 m, is found Fabiana bryoides, resin. In other plants, such as some Festuca chrysophylla gives the landscape with leaves reduced to minute rosettes, Senecios, the water losses are minimised its colour and specific character (Figure 4). forming a compact cover on the stem, through the development of a white to- Behind the tufts of Festuca, in the wind mimicking coral branches (Figure 3). In mentum of dense crispy hairs, reflecting shadow, several plant species may de- the same zone, Fabiana denudata repre- the solar radiation and setting the wind velop. Parastrephia quadrangularis is an- sents an extreme case: its leaves are velocity to zero at the epiderm surface. other typical plant with leaves reduced The Messenger 128 – June 2007 57 Astronomical News Grenon M., Nature Around the ALMA Site – Part 2 to scales, covering the stem as tiles. The Figure 4: Festuca association of Festuca, Parastrephia and chrysophylla forms large populations giving a Baccharis provides the preferred pasture golden aspect to the of guanacos and vicuñas (Figure 5). landscape at altitudes where most bushes, ex- cept Parastrephia, have disappeared. The high-altitude vegetation In the zone 4 350 m to 4 850–5150 m, the wind intensity, the eolian erosion and the temperature are the limiting factors for vegetation. On flat surfaces, plants have to minimise their cross section with re- spect to the thermal and zonal winds. To expand horizontally is a frequently en- countered adaptation, e.g. by Pycno- phyllum bryoides (Figure 6) and by the Calyceras genus (Figure 7). This strategy is also adopted by some dwarf trees Figure 5: Vicuñas in as Adesmia sp., which develops an under- the altoandine steppe near Maricunga Salar, ground stem and branch systems ex- 3 800 m. tending well below the surface. Leaves are covered with hygroscopic glanduli- ferous hairs able to absorb directly the humidity from the air. In rocky places, plants may develop pro- vided the soil is evolved. Fresh lava or Figure 6 (below): lapilli cannot retain water close to the sur- Pycnophyllum bryoides face and several centuries of weathering expands as rings on are needed before the first plant colony flat gravel surfaces (left). Leaves are reduced may settle. On older substrates, such as to ovoid cones (right), at Toco Toco, plants use rock cracks, petals are translucid, at wind shadow, to expand their roots in and so the plant offers clay, searching for residual humidity. a minimum surface to dessicating winds. Nototriche holosericea and Chaetanthera revoluta (Figure 9), and Oxalis sp. (Fig- ure 10), are typical examples of this be- haviour. In small valleys oriented NS, perpendicu- lar to the afternoon and zonal winds, the soil and plant evaporation is notice- ably reduced. Snow may accumulate during winter and stay until the next blos- soming season. Plant communities re- quiring less protection against evapotran- spiration may develop up to very high altitudes, as the Werneria-Senecio asso- ciation, consisting of a dozen different species. Around ALMA, this association is characterised by the presence of Werneria poposa and Valeriana nivalis (Figure 11). In these sites, the limiting factor is the temperature, which reduces the duration of the vegetation period to nearly zero above 4850–4900 m. 58 The Messenger 128 – June 2007 Figure 8: This Adesmia sp. is an underground dwarf tree. Strong spines prevent grazing by viscachas or vicuñas (Toco Toco, 4 500 m). Figure 7 (above): In Figure 9 (below): In Nototriche holosericea (left) Calyceras genus, the leaves are undulated and cerebriform; the surface hemispherical head of available for gas exchanges exposed to the wind green flowers is the only is manyfold. A white indumentum protects the leaf part emerging above from transpiration and UV radiation. Chaetanthera ground level (Laguna revoluta flowers (right) open on top of 1 cm long Miscanti, 4000 m). cones, covered by hairy leaves (Llano de Pajonales, 4 410 m). Figure 10: This Oxalis sp. expands along narrow cracks, in sunny places, at Toco Toco, 4 400 m. The Messenger 128 – June 2007 59 Astronomical News Grenon M., Nature Around the ALMA Site – Part 2 Figure 11: Werneria poposa (left) grows in wet and wind-shadow rocky places, close to Valeriana nivalis Figure 13: Calceolaria stellariifolia is a rare plant (right), a rather common plant reaching the upper found between 4000 and 4300 m around ALMA. Its limit of the vegetation; its thick root is strongly aro- geographical distribution shows a typical area matic, reminiscent of the Celtic Nard (N of Toco disjunction consequent on the postglacial climate Toco, 4 520 m). warming. Figure 14: Senecio aff. algens grows between dark rocks exposed to the west. The altitude of Toco Toco station, at 5150 m, is the highest for flowering plants observed so far near ALMA. Figure 12: Four representative plants at the vege- ground), than on bright colours, in order tion limit. As a result, the areas occupied tation limit in humid places at Cerro Toco Toco. to attract hymenopter pollinators whose by high Andian plants are now disjunct. Top left: Calandrinia sp.; top right: Menonvillea sp. (4 820 m); lower left: Perezia atacamensis (4700 m); eyes, or ocelli, are sensitive down to An example of severe area restriction is lower right: Werneria pinnatifida (4700 m). UV-B radiation. that of Calceolaria stellariifolia (Figure 13), found in only half a dozen sites, spread The present geographical distribution of over 1500 km in the high Andes. When high Andes plants reflects the restric- isolated, plants may follow divergent ge- A notable character of the high-altitude tion of areas consequent on the climate netic evolution, they have no chance to flowers is the restriction of their colour warming after the Ice Age. Intermediate merge their genes again before the next range. They look unattractive to the altitude plant communities had to move glaciation. human eye: blue, orange, red colours are up by about 1 km, migrating towards no longer present. Most flowers are the altiplano on gentle slopes east of the Plants reaching the maximum altitude white, yellowish or at best bright yellow Atacama Desert core, or towards the around ALMA belong to the Senecio (Figure 12). With a very low ground top of isolated mountain ranges. Those genus. Senecio Puchii is frequently seen coverage, plants appear to rely more on already growing on the altiplano during up to 4750 m. Senecio aff. algens (Fig- petal UV-reflectivity, (increasing the con- the Ice Age are found presently on iso- ure 14), replaces it at higher altitude, in trast between the flowers and the lated peaks, close to the upper vegeta- sunny places between 4 850 and 5150 m. 60 The Messenger 128 – June 2007 Hot springs and high altitude vegas Figure 15: High andine vegas are formed of compact material, strong Wet biotopes are due either to hot springs enough to resist the in hydrothermal fields as at El Tatio, or weight of vicuñas or to the development of high altitude vegas, even llamas (Chungara, the southern counterpart of peat bog in 4 500 m).
Recommended publications
  • Jürgen Reinmüller
    JÜRGEN REINMÜLLER KLIMAVERHÄLTNISSE IN EXTREMEN HOCHGEBIRGEN DER ERDE Ergebnisse eines Sonderklimamessnetzes Diplomarbeit zur Erlangung des akademischen Grades „Magister der Naturwissenschaften“ an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Betreuung durch: Ao. UNIV. PROF. DR. REINHOLD LAZAR Institut für Geographie und Raumforschung 2010 Eidesstattliche Erklärung 2 Eidesstattliche Erklärung Ich, Jürgen Reinmüller, erkläre hiermit, dass die vorliegende Diplomarbeit von mir selbst und ohne unerlaubte Beihilfe verfasst wurde. Die von mir benutzten Hilfsmittel sind im Literaturverzeichnis am Ende dieser Arbeit aufgelistet und wörtlich oder inhaltlich entnommene Stellen wurden als solche kenntlich gemacht. Admont, im März 2010 Jürgen Reinmüller Vorwort 3 Vorwort Die höchstgelegenen Bereiche der Hochgebirge der Erde weisen bis dato eine außerordentlich geringe Dichte an Klimastationen und damit ein Defizit an verfügbaren Klimadaten auf. Aussagen zu den thermischen Aspekten in den Gipfellagen extremer Hochgebirge jenseits der 6000 m Grenze konnten bis dato nur unbefriedigend erörtert werden. Als staatlich geprüfter Berg- und Schiführer und begeisterter Höhenbergsteiger liegen die beeindruckenden, hochgelegenen Gipfel seit Jahren in meinem Interessensbereich. Zudem sehe ich mich in meinem bergführerischen Arbeitsbereich zunehmend mit den Zeichen des aktuellen Klimawandels konfrontiert. Schmelzende Gletscher oder auftauender Permafrost stellen für Bergsteiger ein nicht unwesentliches Gefahrenpotential dar. Die durch das von Univ. Prof. Dr. Reinhold Lazar ins Leben gerufene Projekt HAMS.net (High Altitude Meteorological Station Network) gewonnenen Daten können künftig bei der Tourenplanung diverser Expeditionen miteinbezogen werden und stellen eine wichtige Grundlage für klimatologische Hochgebirgsforschung in großen Höhen dar. Ich selbst durfte dieses interessante Projekt durch den Data-Logger-Tausch am Aconcagua im Februar 2007 ein wenig unterstützen und werde dem Projekt auch in Zukunft mit Rat und Tat zur Seite stehen.
    [Show full text]
  • Atmospheric Conditions at a Site for Submillimeter Wavelength Astronomy
    Atmospheric conditions at a site for submillimeter wavelength astronomy Simon J. E. Radford and M. A. Holdaway National Radio Astronomy Observatory, 949 North Cherry Avenue, Tucson, Arizona 85721, USA ABSTRACT At millimeter and submillimeter wavelengths, pressure broadened molecular sp ectral lines make the atmosphere a natural limitation to the sensitivity and resolution of astronomical observations. Trop ospheric water vap or is the principal culprit. The translucent atmosphere b oth decreases the signal, by attenuating incoming radiation, and increases the noise, by radiating thermally.Furthermore, inhomogeneities in the water vap or distribution cause variations in the electrical path length through the atmosphere. These variations result in phase errors that degrade the sensitivity and resolution of images made with b oth interferometers and lled ap erture telescop es. Toevaluate p ossible sites for the Millimeter Array, NRAO has carried out an extensive testing campaign. At a candidate site at 5000 m altitude near Cerro Cha jnantor in northern Chile, we deployed an autonomous suite of instruments in 1995 April. These include a 225 GHz tipping radiometer that measures atmospheric transparency and temp oral emission uctuations and a 12 GHz interferometer that measures atmospheric phase uctuations. A sub- millimeter tipping photometer to measure the atmospheric transparency at 350 mwavelength and a submillimeter Fourier transform sp ectrometer have recently b een added. Similar instruments have b een deployed at other sites, notably Mauna Kea, Hawaii, and the South Pole, by NRAO and other groups. These measurements indicate Cha jnantor is an excellent site for millimeter and submillimeter wavelength astron- omy. The 225 GHz transparency is b etter than on Mauna Kea.
    [Show full text]
  • 25 June 2002 2. Country
    DISCLAIMER : Translated from the original Spanish for the Ramsar Bureau, and provided to Wetlands International for use in the Ramsar Database. Translation not checked against original by Ramsar Bureau. Information Sheet on Ramsar Wetlands 1. Date this sheet was completed/updated: 25 June 2002 2. Country: Bolivia 3. Name of wetland: Lakes Poopó and Uru Uru 4. Geographical coordinates: Lake Poopó 18º 21’ – 19° 10’ South latitude 60º 24’ – 60° 50’ West longitude Lake Uru Uru 18° 03’ South latitude 67° 04’ West longitude 5. Altitude: 3686 metres above sea level 6. Area: 967,607 hectares 7. Overview: The salinity, shallow water, biotic characteristics and the typical climatic conditions of the Puno at this altitude make this wetland a strategic place for the conservation of many species. It is one of the main bodies of water where the Chilean flamingo (Phoenicopterus chilensis) and the Andean flamingo (Phoenicopterus andinus) reproduce. It is an important habitat for ducks, shore birds and migratory birds. Two of the oldest ethnic groups in continental South America, the Uru Muratos and the Chipayas, live in this environment. 8. Wetland type: M, N, Q, R, Ss and Zg Types of wetlands by decreasing order of importance: Q, R, Ss, M, N, Zg 9. Ramsar criteria: 1, 2, 3, 4, 5, 6, 7 and 8 Criteria that best characterize the site: 5 10. Map of site included? Please tick yes -or- no 11. Name and address of the compiler of this form: Omar Rocha Olivio Wildlife Conservation Society - Programa Bolivia Casilla 4778 La Paz, Bolivia [email protected] [email protected] 1 [email protected] 12.
    [Show full text]
  • 1 Information Sheet on Ramsar Wetlands Official Translation by Charles Akin Siteref
    Information Sheet on Ramsar Wetlands Official translation by Charles Akin Siteref: 6CL002 1. Date this sheet was completed/updated: 29 November 1996 2. Country: CHILE 3. Name of wetland: Salar de Surire 4. Geographical coordinates: 18°46 - 18°55'S; 68°58 - 69°56'W 5. Altitude: an average of 4,200 metres 6. Area: 15,858 hectares (total protected area) 7. Overview: The Surire salt marsh is part of the High Andean altiplano steppe (Gajardo, 1994). This landform extends between 4,000 and 5,000 metres in altitude forming a large flat area dominated by isolated mountains and inflowing and outflowing river basins. The basic vegetation is determined primarily by relief and the presence of bodies of water. The salt marsh is surrounded by vegetative communities dominated by bofedales de la tundra altiplánica (Quintanilla, 1988). A large number of non-metallic minerals (calcium and boric salts) are found here. At one corner of the salt marsh, there is a stream that begins in a large artesian hot spring (Salas, 1975). The fauna associated with this environment is very important, and the area is one of the four most important places for the reproduction of flamingos in Chile (Ormazábal, 1988). 8. Wetland type: dry salt marsh and saline lakes with seasonal fluctuations 9. Ramsar criteria: 1b,2a,2b,2c,3b 10. Map of site included? Please tick yes -or- no 11. Name and address of the compiler of this form: Victor Valverde Soto, Jefe Sección Fauna Silvestre U.G. Nacional Património Silvestre Corporación Nacional Forestal Av. Bulnes 259, Of. 604, Santiago de Chile 12.
    [Show full text]
  • Explora Atacama І Hikes
    ATACAMA explorations explora Atacama І Hikes T2 Reserva Tatio T4 Cornisas Nights of acclimatization Nights of acclimatization needed: 2 needed: 0 Type: Half day Type: Half day Duration: 1h Duration: 2h 30 min Distance: 2,3 km / 1,4 mi Distance: 6,7 kms / 4,2 mi Max. Altitude: 4.321 m.a.s.l / Max. Altitude: 2.710 m.a.s.l / HIKES 14.176 f.a.s.l 8.891 f.a.s.l Description: This exploration Description: Departing by van, we offers a different way of visiting head toward the Catarpe Valley Our hikes have been designed according the Tatio geysers, a geothermal by an old road. From there, we to different interests and levels of skill. field with over 80 boiling water hike along the ledges of La Sal They vary in length and difficulty so we sources. In this trip there are Mountains, with panoramic views always recommend travelers to talk to their excellent opportunities of studying of the oasis, the Atacama salt flat, guides before choosing an exploration. the highlands fauna, which includes and The, La Sal, and Domeyko Every evening, guides brief travelers vicuñas, flamingos and foxes, Mountains, three mountain ranges on the different explorations, so that among others. We walk through the that shape the region’s geography. they can choose one that best fit their reserve with views of The Mountains By the end of the exploration we interests. Exploration times do not consider and steaming hot water sources. descend through Marte Valley’s sand transportation. Return to the hotel by van.
    [Show full text]
  • A Nomenclator of Diplostephium (Asteraceae: Astereae): a List of Species with Their Synonyms and Distribution by Country
    32 LUNDELLIA DECEMBER, 2011 A NOMENCLATOR OF DIPLOSTEPHIUM (ASTERACEAE: ASTEREAE): A LIST OF SPECIES WITH THEIR SYNONYMS AND DISTRIBUTION BY COUNTRY Oscar M. Vargas Integrative Biology and Plant Resources Center, 1 University Station CO930, The University of Texas, Austin, Texas 78712 U.S.A Author for correspondence ([email protected]) Abstract: Since the description of Diplostephium by Kunth in 1820, more than 200 Diplostephium taxa have been described. In the absence of a recent revision of the genus, a nomenclator of Diplostephium is provided based on an extensive review of the taxonomic literature, herbarium material, and databases. Here, 111 species recognized in the literature are listed along with their reference citations, types, synonyms, subspecific divisions, and distributions by country. In addition, a list of doubtful names and Diplostephium names now considered to be associated with other taxa is provided. Resumen: Desde la descripcio´n del genero Diplostephium por Kunth en 1820, mas de 200 nombres han sido publicados bajo Diplostephium. En ausencia de un estudio taxono´mico actualizado, se presenta una lista de nombres de Diplostephium basada en una revisio´n extensiva de la literaura taxono´mica, material de herbario y bases de datos. En este estudio se listan las 111 especies reconocidas hasta ahora, incluyendo informacio´n acerca de la publicacio´n de la especie, tipos, sino´nimos, divisio´n subgene´rica y distribuciones por paı´s. Adicionalmente se provee una lista de nombres dudosos y nombres de Diplostephium que se consideran estar asociados con otros taxones. Keywords: Asteraceae, Astereae, Diplostephium, nomenclator. Diplostephium is a genus of small trees, (ROSMARINIFOLIA,FLORIBUNDA,DENTICU- shrubs, and sub-shrubs that range from LATA,RUPESTRIA, and LAVANDULIFOLIA 5 Costa Rica to northern Chile.
    [Show full text]
  • Parastrephia Lepidophylla Cabrera) CON FINES DE REPOBLAMIENTO EN ZONAS PRODUCTORAS DE QUINUA
    UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE AGRONOMÍA CARRERA DE INGENIERÍA AGRONÓMICA TESIS DE GRADO MULTIPLICACIÓN MASIVA Y CRECIMIENTO ACELERADO DE SUP’U T’ULA (Parastrephia lepidophylla Cabrera) CON FINES DE REPOBLAMIENTO EN ZONAS PRODUCTORAS DE QUINUA POR: MARIA LUISA HUANCA TUSCO La Paz – Bolivia 2016 UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE AGRONOMÍA CARRERA DE INGENIERÍA AGRONÓMICA MULTIPLICACIÓN MASIVA Y CRECIMIENTO ACELERADO DE SUP’U T’ULA (Parastrephia lepidophylla Cabrera) CON FINES DE REPOBLAMIENTO EN ZONAS PRODUCTORAS DE QUINUA Tesis de Grado presentado como requisito parcial para optar el Título de Ingeniero Agrónomo MARIA LUISA HUANCA TUSCO Asesor: Ing. Ph. D. Alejandro Bonifacio Flores …………………………….. Tribunal Revisor: Ing. Rafael Murillo García …………………………….. Ing. Bernardo Ticona Contreras …………………………….. Ing. Natalia Palacios Zuleta …………………………….. APROBADA Presidente Tribunal Examinador …………………………….. 2016 Dedicatoria A DIOS, por el éxito y la satisfacción de esta investigación, quien me regala los dones de la sabiduría para enfrentar los retos, las alegrías y los obstáculos que se me presentan constantemente. Con cariño y amor dedico este trabajo a mis queridos padres Lucio F. Huanca Cauna y Martina Tusco Paco, quienes con mucho esfuerzo y sacrificio supieron darme su apoyo incondicional en todo momento alentándome para conseguir las metas durante la vida estudiantil. A mis queridos hermanos Luis, Nancy y Miguel Angel por su apoyo incondicional. AGRADECIMIENTO A Dios nuestro Padre, porque gracias a su voluntad y su iluminación en mi camino se pudo concluir el presente trabajo. Agradezco a la Universidad Mayor de San Andrés por los años que estuve estudiando la carrera ingeniería agronómica, a mis docentes y compañeros por la formación critica que me han dado, por la invalorable contribución cultural, social y científica.
    [Show full text]
  • Compositae Giseke (1792)
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina VITTO, LUIS A. DEL; PETENATTI, E. M. ASTERÁCEAS DE IMPORTANCIA ECONÓMICA Y AMBIENTAL. PRIMERA PARTE. SINOPSIS MORFOLÓGICA Y TAXONÓMICA, IMPORTANCIA ECOLÓGICA Y PLANTAS DE INTERÉS INDUSTRIAL Multequina, núm. 18, 2009, pp. 87-115 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42812317008 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 ASTERÁCEAS DE IMPORTANCIA ECONÓMICA Y AMBIENTAL. PRIMERA PARTE. SINOPSIS MORFOLÓGICA Y TAXONÓMICA, IMPORTANCIA ECOLÓGICA Y PLANTAS DE INTERÉS INDUSTRIAL ASTERACEAE OF ECONOMIC AND ENVIRONMENTAL IMPORTANCE. FIRST PART. MORPHOLOGICAL AND TAXONOMIC SYNOPSIS, ENVIRONMENTAL IMPORTANCE AND PLANTS OF INDUSTRIAL VALUE LUIS A. DEL VITTO Y E. M. PETENATTI Herbario y Jardín Botánico UNSL, Cátedras Farmacobotánica y Famacognosia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ej. de los Andes 950, D5700HHW San Luis, Argentina. [email protected]. RESUMEN Las Asteráceas incluyen gran cantidad de especies útiles (medicinales, agrícolas, industriales, etc.). Algunas han sido domesticadas y cultivadas desde la Antigüedad y otras conforman vastas extensiones de vegetación natural, determinando la fisonomía de numerosos paisajes. Su uso etnobotánico ha ayudado a sustentar numerosos pueblos. Hoy, unos 40 géneros de Asteráceas son relevantes en alimentación humana y animal, fuentes de aceites fijos, aceites esenciales, forraje, miel y polen, edulcorantes, especias, colorantes, insecticidas, caucho, madera, leña o celulosa.
    [Show full text]
  • Tesis Para Optar El Título De INGENIERO FORESTAL
    UNIVERSIDAD NACIONAL AGRARIA LA MOLINA Facultad de Ciencias Forestales Propagación sexual de: Parastrephia quadrangularis, y Baccharis tricuneata, en San José de Aymará - Huancavelica Tesis para optar el Título de INGENIERO FORESTAL Solange Montero Terry Lima – Perú 2006 RESUMEN Se busca contribuir a recuperar las poblaciones naturales de Tola en las praderas alto andinas, así como ayudar a aumentar la producción de leña en la Comunidad de San José de Aymará. Durante el año 2005, en esta comunidad, se realizó un estudio de propagación sexual en el vivero con dos especies de tola, Parastrephia quadrangularis (Meyen) Cabrera y Baccharis tricuneata (Lam) Pers. Se probaron tres técnicas de propagación (bolsa 10x18cm, bolsa 13x18cm y platabanda) y tres sustratos (Materia orgánica: tierra agrícola: turba, materia orgánica: tierra agrícola y materia orgánica: tierra agrícola: arena), obteniendo un total de 9 combinaciones. Considerandose en cada combinación los siguientes parámetros: supervivencia en el vivero, altura (cm) y perímetro al cuello de raíz (cm), los dos primeros se tomaron desde el primer mes de repique hasta poner las plantas en terreno definitivo, el perímetro fue medido al final del periodo de repique. Se obtuvo que ambas especies responden favorablemente a la propagación utilizando semillas, luego de 386 días, desde que se sembró en el almácigo hasta que estuvieron lista para llevarlas a campo y las condiciones climáticas eran favorables para su supervivencia; asimismo, para Parastrephia quadrangularis (Meyen) Cabrera resulta la mejor combinación, utilizando bolsas de 13x18cm y sustrato materia orgánica: tierra agrícola, obteniendo un incremento promedio en altura mensual entre 0.71 –0.91cm utilizando esta combinación; esta especie llega a desarrollar en los tres sustratos.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • The Systematic Revision of Chaetanthera Ruiz & Pav., and The
    A systematic revision of Chaetanthera Ruiz & Pav., and the reinstatement of Oriastrum Poepp. & Endl. (Asteraceae: Mutisieae) Alison Margaret Robertson Davies München 2010 A systematic revision of Chaetanthera Ruiz & Pav., and the reinstatement of Oriastrum Poepp. & Endl. (Asteraceae: Mutisieae) Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Alison Margaret Robertson Davies München, den 03. November 2009 Erstgutachter: Prof. Dr. Jürke Grau Zweitgutachter: Prof. Dr. Günther Heubl Tag der mündlichen Prüfung: 28. April 2010 For Ric, Tim, Isabel & Nicolas Of all the floures in the meade, Thanne love I most those floures white and rede, Such as men callen daysyes. CHAUCER, ‘Legend of Good Women’, Prol. 43 (c. 1385) “…a traveller should be a botanist, for in all views plants form the chief embellishment.” DARWIN, ‘Darwin’s Journal of a Voyage round the World’, p. 599 (1896) Acknowledgements The successful completion of this work is due in great part to numerous people who have contributed both directly and indirectly. Thank you. Especial thanks goes to my husband Dr. Ric Davies who has provided unwavering support and encouragement throughout. I am deeply indebted to my supervisor, Jürke Grau, who made this research possible. Thank you for your support and guidance, and for your compassionate understanding of wider issues. The research for this study was funded by part-time employment on digital archiving projects coordinated via the Botanische Staatssammlung Munchen (INFOCOMP, 2000 – 2003; API- Projekt, 2005). Appreciative thanks go to the many friends and colleagues from both the Botanische Staatssammlung and the Botanical Institute who have provided scientific and social support over the years.
    [Show full text]
  • The Optical/Infrared Astronomical Quality of High Atacama Sites. I
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Version 4.0, Feb 2001 The Optical/Infrared Astronomical Quality of High Atacama Sites. I. Preliminary Results of Optical Seeing Riccardo Giovanelli1, Jeremy Darling1, Marc Sarazin2, Jennifer Yu4, Paul Harvey3, Charles Henderson1, William Hoffman1, Luke Keller1, Don Barry1, James Cordes1, Stephen Eikenberry1, George Gull1, Joseph Harrington1,J.D.Smith1, Gordon Stacey1,MarkSwain1 1Department of Astronomy, Cornell University, Ithaca, NY 14853 2European Southern Observatory, Garching bei M¨unchen, D–85748 Germany 3Department of Astronomy, University of Texas, Austin, TX 78712 4Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853 ABSTRACT The region surrounding the Llano de Chajnantor, a high altitude plateau in the Ata- cama Desert in northern Chile, has caught the attention of the astronomical community for its potential as an observatory site. Combining high elevation and extremely low atmospheric water content, the Llano has been chosen as the future site of the Atacama Large Millimeter Array. We have initiated a campaign to investigate the astronomical potential of the region in the optical/infrared. Here, we report on an aspect of our campaign aimed at establishing a seeing benchmark to be used as a reference for fu- ture activities in the region. After a brief description of the region and its climate, we describe the results of an astronomical seeing campaign, carried out with a Differential Image Motion Monitor that operates at 0.5 µm wavelength. The seeing at the Llano level of 5000 m, measured over 7 nights in May 1998, yielded a median FWHM of 1.1”.
    [Show full text]