Renewed Inventory 2 Postcards on Global Efforts 5 Joe Ditomaso Retires 6 Phytophthora Threat 8 Runners Support Cal-IPC 10 2017 Cal-IPC Symposium 11 Rubus Praecox 12

Total Page:16

File Type:pdf, Size:1020Kb

Renewed Inventory 2 Postcards on Global Efforts 5 Joe Ditomaso Retires 6 Phytophthora Threat 8 Runners Support Cal-IPC 10 2017 Cal-IPC Symposium 11 Rubus Praecox 12 NEWSLETTER OF THE CALIFORNIA INVASIVE PLANT COUNCIL Renewed Inventory 2 Postcards on Global Efforts 5 Joe DiTomaso Retires 6 Phytophthora Threat 8 Runners Support Cal-IPC 10 2017 Cal-IPC Symposium 11 Rubus praecox 12 VOLUME 25 NUMBER 2 SUMMER/FALL 2017 FROM THE DIRECTOR’S DESK Renewing the Cal-IPC Inventory By Executive Director Doug Johnson ver the last two years, Cal-IPC has twenty comments, some technical and worked to update its list of inva- some philosophical, expressing concern 1442-A Walnut Street, #462 sive plants in California. Science about invasive plant management. We Berkeley, CA 94709 O ph (510) 843-3902 fax (510) 217-3500 Program Manager Ramona Robison and prepared a response document addressing cal-ipc.org [email protected] former Science Program Manager Elizabeth all comments and posted that online. Protecting California’s environment and Brusati (now with the California Dept. of We made minor adjustments to our economy from invasive plants Fish & Wildlife) led a process that leveraged evaluations based on comments, but none STAFF hundreds of hours of expert review. In the of the plant species changed categories. Doug Johnson, Executive Director Agustín Luna, Director of Finance, end, we added ten species to the existing The public comment period was Operations & Administration list, bringing the total number of species one component of a “best practices” Bertha McKinley, Program Assistant listed as invasive to 225. process that Cal-IPC has Dana Morawitz, Conservation Program Manager Mona Robison, Science Program Manager We also added an im- developed with other portant new category to state councils across the BOARD OF DIRECTORS President: Jutta Burger, Irvine Ranch Conservancy the Inventory—“watch” country. These are now Vice President: Gina Darin, Cal. Dept. of Water Resources plants. “Watch” plants posted on the website of Treasurer: Steve Schoenig, Schoenig Consulting Secretary: Tim Buonaccorsi, RECON Environmental, Inc. are those that were de- the National Association Past Pres.: Jason Casanova, Council for Watershed Health termined to pose a high of Invasive Plant Councils. Juan de Dios Villarino, California State Parks risk for becoming invasive A weed risk assessment Doug Gibson, San Elijo Lagoon Conservancy Ramona Robison Jason Giessow, Dendra, Inc. in the future. Eighty-six group at USDA is building Dittrichia viscosa, false yellowheads, was William Hoyer, US Navy species were added in on these guidelines to first found in California in 2014 along Drew Kerr, Invasive Spartina Project this category, out of 196 develop a more formally Marla Knight, Klamath National Forest (retired) a roadside in Solano County. Similar in Julia Parish, Catalina Island Conservancy species evaluated. ecology to Dittrichia graveolens, the sanctioned version in the Ed King, Placer Co. Ag. Commissioner’s Office The “watch” category fast-moving stinkwort many of us are future. Laura Pavliscak, Tejon Ranch Conservancy represents a big step for- now familiar with, this species is highly These efforts at stan- Heather Schneider, Santa Barbara Botanic Garden invasive in Australia and scored high on ward. These plant species dardization have multiple Baldeo Singh, Sacramento Conservation Corps the PRE assessment so was added to Lynn Sweet, UC Riverside Palm Desert Center are, for the most part, the Inventory as a “watch” species. benefits. They strengthen STUDENT LIAISONS already escaped into the resources land man- Marina LaForgia, UC Davis California’s wildlands, and were suggested agers depend on. They will make it easier Amanda Swanson, UC Riverside by land managers as potential concerns. By to knit together the ratings from each state Affiliations for identification purposes only. using a systematic and transparent evalua- for a regional view. And they will support Cal-IPC Dispatch tion system, we categorized plants as low new guidelines for weed-free landscaping. Summer/Fall 2017 - Vol. 25, No. 2 Editor: Doug Johnson risk, high risk or needing further evalua- In California, for instance, the state’s model Associate Editor: Anne Strasser tion. (Primary support for this work came building code is being updated to include Designed by Melanie Haage from the US Forest Service, State & Private water-efficient landscaping requirements. Published by the California Invasive Plant Council. Articles may be reprinted with permission. Previous issues are Forestry.) Anticipating which plants are Not using invasive plants is one of the archived at cal-ipc.org. Mention of commercial products does most likely to pose a problem in the future requirements, but defining which plants in not imply endorsement by Cal-IPC. Submissions are welcome. We reserve the right to edit content. is additional information for land manag- horticulture are or may be invasive can be ers, helping them consider these plants a sensitive issue. Rigorous and transparent Follow us: when they set management priorities. procedures are an important piece of mov- Earlier this spring, we posted the ing forward with sensible policies. draft assessments for a 60-day public We plan to continue updating the On the cover: comment period. The assessments had Inventory every year, though not at this Catalina Island Conservancy Intern Brian Allen gone through internal review by our scale. Our new website will facilitate more treats a milk thistle population in the China Wall watershed. Invasive plant surveys bring technical advisory team comprising 18 robust sorting and filtering of the list. the Conservancy’s team to Santa Catalina experts from public agencies, private None of this would be possible without Island’s highest peaks and lowest drainages. conservancies, botanic gardens, nurseries your membership support and contribu- Photo by Margie Pfeffer. and universities. We received about tions of expertise. Thank you! 2 Summer/Fall 2017 | DISPATCH cal-ipc.org CAL -IPC UPDATES Symposium in the desert. Our first Wildland Weed News Symposium in the desert will be at the Riviera Palm Springs Oct. 24-27. Our pro- OTHER NEWS gram is packed, with a special address by BLM plan. the program lead for the Hawaii Invasive Restoring grasslands. The UC Dept. The Bureau of Species Council. More details page 11. of Agriculture and Natural Resources Land Management in has published a Restoration Manual for northwest California is prepar- State funding. Cal-IPC engaged Annual Grassland Systems in California, ing a new Integrated Resource Jones by Ryan Illustration an environmental lobbying firm in which discusses ways to meet a range of Management Plan for an eight- Sacramento to assist in developing new goals, including forage, pollinator habi- county area. A scoping report is avail- mechanisms for funding invasive plant tat, erosion control, and carbon storage. able, and preliminary alternatives will be management at the state level, after available for review this fall. working with north coast Assembly Glyphosate listing. In July, California Member Jim Wood this spring on added glyphosate, the active ingredient Congressional resolution. Represen- an unsuccessful budget request to in RoundUp herbicides, to its Prop. 65 tative Mike Thompson from California’s renew funding to the state’s Weed list. This is based on the controversial north coast introduced a Resolution Management Areas (WMAs) this spring. finding by the International Agency on expressing the House’s commitment to Cancer Research that the substance is “create a comprehensive solution to the Tri-national forum. Cal-IPC helped a “probable carcinogen.” The World threat of invasive species throughout the organize a mapping and data-sharing Health Organization, evaluating the same United States.” Thompson co-chairs the workshop as part of the North American studies, concluded that glyphosate is Invasive Species Caucus. Other members Invasive Species Forum held in Savan- unlikely to cause cancer given real-world on the caucus include Reps. Brownley, nah, Georgia in May, and will continue exposures. The Prop. 65 listing requires Garamendi, Lofgren, McNerny, and Na- to work with Mexican, Canadian and US warning labels on products containing politano from California. partners to develop stronger landscape- glyphosate. The state’s Dept. of Pesticide level invasive species mapping capacity. Letter to Zinke. The Western Gover- Regulation is currently working to deter- nors’ Association sent a letter to the Sec- mine levels at which the substance can Volunteer trainings. Cal-IPC’s train- retary of the Interior to express concern be used safely. A talk by Joel Trumbo of ings around the San Francisco Bay Area about invasive species and requesting the California Dept. of Fish & Wildlife will reached nearly 200 enthusiastic local strong partnership from the Dept. of the update land managers on this topic at volunteer stewards. More details page 4. Interior, especially in stopping the spread the Symposium in October. See page 11. of quagga and zebra mussels. Volutaria control. We ramped up treatment in Borrego Springs to keep up Salamander ban. Canada has imple- Field guides. CABI (Centre for Agricul- with the super bloom this spring. While mented an emergency one-year import ture and Bioscience International) has an mapping to more thoroughly delineate restriction on salamanders to prevent extensive collection of e-books, includ- the infestation, we discovered a huge the introduction of Batrachochytrium ing new field guides to invasive plants of population at an abandoned agricultural salamandrivorans (Bsal) into Canadian Southeast Asia
Recommended publications
  • Evaluation of Essential Oil Composition Genus Dittrichia L
    Türk Tarım ve Doğa Bilimleri Dergisi 4(4): 456–460, 2017 TÜRK TURKISH TARIM ve DOĞA BİLİMLERİ JOURNAL of AGRICULTURAL DERGİSİ and NATURAL SCIENCES www.dergipark.gov.tr/turkjans Evaluation of Essential Oil Composition Genus Dittrichia L. (Asteraceae) Plants in Aydın/Turkey 1Emre SEVİNDİK*, 2Mehmet Yavuz PAKSOY 1Faculty of Agriculture, Department of Agricultural Biotechnology, Adnan Menderes University, South Campus, Cakmar, Aydin, Turkey 2Munzur University, Faculty of Engineering, Department of Enviromental Engineering, Tunceli 62100, Turkey *Corresponding author: [email protected] Received: 20.06.2017 Received in Revised: 21.08.2017 Accepted: 08.09.2017 Abstract The genus Dittrichia (Asteraceae), described by Greuter as a small genus, was previously known as a part of Inula and has a widespread Mediterranean distribution, marginally penetrating in the Atlantic European territories and in Middle East. The essential oil chemical compositions were derived from the genus Dittrichia L. plants were examined in the present study. The study material, Dittrichia viscosa (L). Greuter and Dittrichia graveolens (L.) Greuter were collected West Anatolian (Aydın/Turkey) ecological conditions in September- October 2015. Essential oils of the leaves were extracted by Clevenger apparatus. Essential oil compositions were determined with Gas Chromatography-Mass Spectrometry (GC-MS) device. The results from the gas chromatography-mass spectrometry analysis showed that the obtained levo-bornyl acetate from D. graveolens was with the highest percentage (25.23%). The 2,4-dioxo-3-methyl-6-isopropyl pyrido[2,3-b]-[1,4]pyrazine in D. viscosa was with the highest percentage (29.02%). Keywords: Essential oil, GC-MS, Dittrichia, Aydın/Turkey Aydın/Türkiye’de Yayılış Gösteren Dittrichia L.
    [Show full text]
  • As I Mentioned in the Spring Edition, the Aim Is to Produce Our News
    Some thoughts on the HFSG News Sheet President & Recorder: Ted Blackwell As I mentioned in the Spring issue News Sheet, the tel. 01568 780480; aim is now to try to produce an issue twice per e-mail: [email protected] year. This would seem to work out as publications in: Chair & Secretary: Sheila Spence . late April/early May, covering the September – tel. 01531 631736; February forays; e-mail: [email protected] . late September/early October, covering the March – August forays. Treasurer: Ray Bray tel. 01531 670301 Both the last issue and this current one rely very e-mail: [email protected] heavily on contributions from Ted and Ray, to whom I am most grateful for their willing(?) submission to blackmail! It would be pleasing, CHAIRMAN’S MESSAGE though, if our News Sheet reflected more widely the talents, as well as the wishes, of the whole Group The Spring foraying season started with great and I hope that future issues will increasingly do enthusiasm: it was great to be out in the woods this. again! My first season as Chairman has gone smoothly, due to the great support of members - in It is, I think, desirable to keep both the size and particular Shelly and Mike, for leading the foray to content of these News Sheets as flexible as Netherwood and, of course, Ted for his continuing, possible. However, each issue will, hopefully, unstinting help and guidance. We have had some contain, as a common denominator: really good forays so far: thank you, Ted, for giving us all the info. on the exciting finds we have made.
    [Show full text]
  • Anthocyanins in Berries of Maqui [Aristotelia Chilensis (Mol.) Stuntz]
    Anthocyanins in Berries of Maqui [Aristotelia chilensis (Mol.) Stuntz] MARÍA TERESA ESCRIBANO-BAILÓN,1 CRISTINA ALCALDE-EON,1 ORLANDO MUÑOZ,2 JULIÁN C. RIVAS-GONZALO1* and CELESTINO SANTOS-BUELGA1 1 Laboratorio de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, E-37007 Salamanca, Spain 2 Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago de Chile, Chile The anthocyanin composition of berries of Maqui [Aristotelia chilensis (Mol.) Stuntz] was determined by HPLC with photodiode array and MS detection. Eight pigments corresponding to the 3-glucosides, 3,5-diglucosides, 3-sambubiosides and 3- sambubioside-5-glucosides of delphinidin and cyanidin were identified, the principal anthocyanin being delphinidin 3- sambubioside-5-glucoside (34% of total anthocyanins). The average total anthocyanin content was 137.6 ± 0.4 mg/100 g of fresh fruit (211.9 ± 0.6 mg/100 g of dry fruit). The relative high anthocyanin content and the important presence of polar polyglycosylated derivatives makes the fruits of A. chilensis an interesting source of anthocyanin extracts for food and phar- maceutical uses. Keywords: Quantitative HPLC; anthocyanins, sambubiosides, delphinidin, cyanidin; berries; Aristotelia chilensis; Maqui. INTRODUCTION attention has been paid to polyphenols and especially the anthocyanins present in the berries, not only for Maqui [Aristotelia chilensis (Mol.) Stuntz] is a native their use as natural colorants, but also for their poten- South America evergreen shrub that grows in dense tial beneficial effects on human health, including thickets and can reach 3–5 m in height. It is a suggestions that they be used as dietary supplements dioecious plant that belongs to the family Elaeo- in functional food products (Du et al., 2004).
    [Show full text]
  • Angiosperm Ovules: Diversity, Development, Evolution
    Annals of Botany 107: 1465–1489, 2011 doi:10.1093/aob/mcr120, available online at www.aob.oxfordjournals.org INVITED REVIEW: PART OF A SPECIAL ISSUE ON EVOLUTION AND DEVELOPMENT Angiosperm ovules: diversity, development, evolution Peter K. Endress* Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland * E-mail [email protected] Received: 2 March 2011 Returned for revision: 29 March 2011 Accepted: 11 April 2011 Published electronically: 23 May 2011 † Background Ovules as developmental precursors of seeds are organs of central importance in angiosperm Downloaded from flowers and can be traced back in evolution to the earliest seed plants. Angiosperm ovules are diverse in their position in the ovary, nucellus thickness, number and thickness of integuments, degree and direction of curvature, and histological differentiations. There is a large body of literature on this diversity, and various views on its evolution have been proposed over the course of time. Most recently evo–devo studies have been concentrated on molecular developmental genetics in ovules of model plants. † Scope The present review provides a synthetic treatment of several aspects of the sporophytic part of ovule http://aob.oxfordjournals.org/ diversity, development and evolution, based on extensive research on the vast original literature and on experi- ence from my own comparative studies in a broad range of angiosperm clades. † Conclusions In angiosperms the presence of an outer integument appears to be instrumental for ovule curvature, as indicated from studies on ovule diversity through the major clades of angiosperms, molecular developmental genetics in model species, abnormal ovules in a broad range of angiosperms, and comparison with gymnosperms with curved ovules.
    [Show full text]
  • Predictability of Pathogen Host Range in Biological Control of Weeds
    Predictability of pathogen host range in biological control of weeds Jane Barton* *Contractor to Landcare Research New Zealand Why aren’t pathogens used more widely for weed control? . Worldwide, pathogens have only been introduced to 11 countries (Arg, Aus, Chile, China, Fiji, India, NZ, PNG, SAf, Tahiti, USA) . No evidence of pathogen damage in the field that was not predicted by HR testing. Barton, J. (2004) Biological Control 31: 99-122. Methods . List all pathogens ever used for biocontrol of weeds . Find info. on pre-release host range testing . Find info. on their behaviour in the field after release (‘pers. comm.’) . Compare the two to determine how accurate pre-release predictions have been to-date Results (2010) . 37 projects worldwide (each project = intro. of 1 pathogen to 1 country for 1 weed complex) . 28 spp. of pathogens (all fungi) released . > 28 spp. of weeds targeted . Pathogens from 16 countries . Most pathogens have established, spread, and had at least some impact on their target Results (2010): Non-target damage in the field . Out of those 37 projects: . 2 projects with non-target damage in out-door field plots . 2 projects with predicted non- target damage in the field . 33 projects with no non-target damage in the field at all! Target weed: Musk thistle . Carduus nutans ssp. leiophyllus (= C. thoermeri) . Major weed of pastures & rangelands in the USA (competes with pasture) . From Europe & Asia . Control with herbicide not economically feasible Image from http://www.issg.org/database/species/ Puccinia carduorum . Rust fungus (Uredinales: Pucciniaceae) . Attacks C. thoermeri (and many other Carduus spp.) .
    [Show full text]
  • Comparison with Other Elaeocarpaceae Diagnostic Descriptions Here
    On the delimitationbetween Aristotelia l’Hér. and Sericolea Schltr. (Elaeocarpaceae) M.M.J. van Balgooy Rijksherbarium, Leyden INTRODUCTION between Dr Steenis and Mr C. T. The present investigation arose from a discussion van White from North collected in July 1950 concerning a plant Queensland, by Mr L. J. Aristotelia but also showed Brass. The specimen was pre-identified as an similarity with the the Papuan genus Sericolea. The need was felt to investigate the distinction between two genera. Mr White was very keen to investigate the problem himself but this was this unfortunately prevented by his untimely death, only two weeks after discussion. The has problem rested ever since, until in 1963 I had to verify the distinction between for work the Pacific work executed under from the two genera my on flora, a a grant the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.). became it examine Aceratium I soon aware that was inevitable to the closely allied genera has also made and Vallea as well: A comparison with other Elaeocarpaceae been where it seemed appropriate. A review is given of the value and constancy of the characters. Diagnostic descriptions of Aristotelia and Sericolea are here presented and a key for the distinction of the opposite-leaved Elaeocarpaceae. Finally the plant-geographical impor- tance of the family is briefly discussed. Thanks are due to the directors of the following herbaria for the loan of material: Brisbane (BRI), Kew (K), Melbourne (MEL), and Utrecht (U); to Dr van Steenis for criticism in and help preparing this paper, and to Dr Leenhouts for advice.
    [Show full text]
  • Elicitation of Phenylpropanoids in Maqui (Aristotelia Chilensis [Mol.] Stuntz) Plants Micropropagated in Photomixotrophic Temporary Immersion Bioreactors (Tibs)
    Elicitation of Phenylpropanoids in Maqui (Aristotelia chilensis [Mol.] Stuntz) Plants Micropropagated in Photomixotrophic Temporary Immersion Bioreactors (TIBs). Giulia E Trentini University of Modena and Reggio Emilia: Universita degli Studi di Modena e Reggio Emilia Makarena Rojas Catholic University of the Maule: Universidad Catolica del Maule Daniela Gajardo Catholic University of the Maule: Universidad Catolica del Maule Débora Alburquenque Catholic University of the Maule: Universidad Catolica del Maule Evelyn Villagra Catholic University of the Maule: Universidad Catolica del Maule Aleydis Gómez Catholic University of the Maule: Universidad Catolica del Maule Laura Arru University of Modena and Reggio Emilia: Universita degli Studi di Modena e Reggio Emilia Ariel D Arencibia ( [email protected] ) Universidad Catolica del Maule https://orcid.org/0000-0002-7631-1329 Research Article Keywords: Temporary immersion bioreactors, photomixotrophic cultures, phenylpropanoids, ABA, Aristotelia chilensis Posted Date: March 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-255813/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract A biotechnological system for the production of plants biomass and phenylpropanoids of maqui was developed in photomixotrophic TIBs. The in vitro maqui multiplication was evaluated using combinations of TDZ and BAP in TIBs 1L capacity. Treatment of MS basal supplemented with TDZ 1 mg/l shows the best results for the variables fresh weight and multiplication rate. Photomixotrophic conditions were standardized in media with 3%, 2%, 1%, 0% sucrose at a light intensity of 100 µM m− 2s− 1. The treatments reduced in sucrose (1% and 2%) and air supplemented with 0.4 MPa CO2 do not differ signicantly in biomass production (fresh weight per cluster of plants) compared to the control treatment with sucrose 3% and standard air.
    [Show full text]
  • Maqui [Aristotelia Chilensis (Mol.) Stuntz]-The Amazing Chilean Tree: a Review
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/236935127 Maqui [Aristotelia chilensis (Mol.) Stuntz]-the Amazing Chilean Tree: A Review Article in Journal of Agricultural Science and Technology · August 2011 CITATIONS READS 11 1,837 4 authors, including: E. Misle Estrella Garrido Universidad Católica delMaule 33 PUBLICATIONS 162 CITATIONS 17 PUBLICATIONS 128 CITATIONS SEE PROFILE SEE PROFILE All content following this page was uploaded by E. Misle on 01 June 2014. The user has requested enhancement of the downloaded file. Journal of Agricultural Science and Technology B 1 (2011) 473-482 Earlier title: Journal of Agricultural Science and Technology, ISSN 1939-1250 Maqui [Aristotelia chilensis (Mol.) Stuntz]-the Amazing Chilean Tree: A Review E. Misle, E. Garrido, H. Contardo and W. González Department of Agrarian Sciences and Forestry, Catholic University of Maule, Los Niches km 6. 3341695, Curicó, Chile Received: December 7, 2010 / Published: August 20, 2011. Abstract: A. chilensis (Elaeocarpaceae) is commonly known as maqui, a species widely distributed in Chile. The plant participates in the structure of the Chilean temperate rainforest, currently being found mainly as fragmented forest. Maqui has been listed as the plant with the highest content of phenols when compared with other berries. Multiplication by both, seeds and vegetative has been obtained, opening the possibility to cultivate the plant. Leaves of maqui have been traditionally used in the native herbal medicine to treat diverse ailments. Studies indicate the presence of indolic alkaloids, flavonoids, cyaniding glucosides, delfidine, malvidine, petunidine, cumarines and triterpenes. Recent studies support therapeutic properties of maqui leaves, concluding that extracts obtained with polar solvents showed stabilizing capacity of free radicals and antioxidant capacity of plasma in humans.
    [Show full text]
  • POLYPHENOL CONTENT and ANTIOXIDANT ACTIVITY of MAQUI (Aristotelia Chilensis [MOLINA] STUNTZ) DURING FRUIT DEVELOPMENT and MATURATION in CENTRAL CHILE
    SCIENTIFIC NOTE POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF MAQUI (Aristotelia chilensis [MOLINA] STUNTZ) DURING FRUIT DEVELOPMENT AND MATURATION IN CENTRAL CHILE Carolina Fredes1*, Gloria Montenegro1, Juan Pablo Zoffoli1, Miguel Gómez1, and Paz Robert2 Maqui (Aristotelia chilensis [Molina] Stuntz, Elaeocarpaceae) is a Chilean native species which produces small berries that are mainly collected from the wild. The health benefits of maqui fruit are attributed to their high polyphenol content as well as their wide variety of anthocyanins and flavonols. One of the main factors that affect the polyphenol content in fruit is the maturity stage at harvest. The objective of this study was to determine total phenol and total anthocyanin content and antioxidant activity (by ferric reducing ability of plasma [FRAP] assay) of maqui fruits harvested at different fruit maturity stages from two wild populations located in Central Chile. Each maturity stage was determined by days from fruit set, berry size, and soluble solids. Total phenol content declined while total anthocyanin content increased from the green to light red stage. Nevertheless, both total phenol and anthocyanin content increased from the light red to dark purple stage. The highest anthocyanin content and antioxidant activity was found in the late maturity stage (dark purple). The results show that ripening in maqui fruit can be expected with 1100 growing degree-days (91 d after fruit set) in Central Chile. At this moment of harvest, fruits with 18-19 °Brix have the highest anthocyanin content and antioxidant activity (FRAP). This study constitutes the first advances in the understanding of maqui fruit ripening and corresponding antioxidant activity.
    [Show full text]
  • Biocontrol Science and Technology Evaluation of Puccinia Carduorum
    This article was downloaded by: [USDA National Agricultural Library] On: 13 May 2010 Access details: Access Details: [subscription number 917340536] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 Evaluation of Puccinia carduorum for biological control of Carduus pycnocephalus in Tunisia Dorsaf Mejri a; Dana Berner b;Thouraya Souissi a a Institut National Agronomique de Tunisie, Tunisia b Foreign Disease-Weed Science Research Unit, USDA, Ft. Detrick, MD, USA Online publication date: 12 May 2010 To cite this Article Mejri, Dorsaf , Berner, Dana andSouissi, Thouraya(2010) 'Evaluation of Puccinia carduorum for biological control of Carduus pycnocephalus in Tunisia', Biocontrol Science and Technology, 20: 8, 787 — 790 To link to this Article: DOI: 10.1080/09583151003783302 URL: http://dx.doi.org/10.1080/09583151003783302 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources.
    [Show full text]
  • Population Genetics of Phragmidium Violaceum
    Population genetics of Phrugmidium violaceum Don R. Gomez B. Ag. Sc. (Hons), The University of Adelaide Thesis submitted for the degree of Doctor of Philosophy tn The University of Adelaide Discipline of Plant and Pest Science School of Agriculture and \Mine Faculty of Sciences July 2005 I dedicøte this thesis to my pørents, Rosølio and Rosølie for their untiring love ønd support Table of contents Abstract t Declaration tv Acknowledgements v Publications and conference proceedings vl Abbreviations vii Glossary of terms vul I Introduction I 2.1 Introduction 4 2.2 The weed: Rubus fruticosus tggregate 5 2.2.I History of introduction and spread 5 2.2.2 Impact on Australian environment and economy 5 2.2.3 Morphology and growth habit 6 2.2.4 Taxonomy 6 2.2.5 Distribution and ecology 8 2.2.6 Integrated weed management 10 2.3 The biocontrol agent: Phragmídium violaceum 11 2.3.7 Host specificity and mode of action 11 2.3.2 History of P. violaceum in Australia 72 2.3.3 Life history of P. violaceum 13 2.3.3.I Uredinales rust fungi and their spore states 13 2.3.3.2 Life history of P. violaceum inrelation to host phenology I6 2.3.4 Disease signs and symptoms I7 2.3.5 Disease epidemiology 18 2.3.51 Weather and climate 18 2.3.5.2 Disease impact in Australia I9 2.4 Host-pathogen interactions 2t 2.5 Population genetics of rust fungi in relation to biological control 23 2.5.1 Evolution in natural versus agricultural ecosystems 24 2.5.2 Metapopulation theory: populations within a population 25 2.5.3 Gene flow 28 2.5.4 Reproductive mode 29 2.5.5 Selection of molecular markers for population genetic studies 31 2.5.5.1 The issue of dominance 31 2.5.5.2 Isozymes and RFLPs 32 2.5.5.3 PCR-based markers JJ Arbitrarily-primed PCR 34 Sequence-tagged sites 36 2.5.6 Application of molecular markers in population studies of P.
    [Show full text]
  • Dittrichia Graveolens (Asteraceae) Naturalized and Invasive in New York State
    Atha, D., Z. Wang, C. Barron, and H. Liljengren. 2018. Dittrichia graveolens (Asteraceae) naturalized and invasive in New York state. Phytoneuron 2019-5: 1–4. Published 10 January 2019. ISSN 2153 733X DITTRICHIA GRAVEOLENS (ASTERACEAE) IS NATURALIZED AND INVASIVE IN NEW YORK STATE DANIEL ATHA Center for Conservation Strategy New York Botanical Garden Bronx, New York 10458 [email protected] ZIHAO WANG 30 Van Sicklen Street Brooklyn, New York 11223 [email protected] CATHERINE BARRON P.O. Box 100134 Staten Island, New York 10310 [email protected] HEATHER LILJENGREN Greenbelt Native Plant Center NYC Parks Staten Island, New York 10314 [email protected] ABSTRACT Dittrichia graveolens (Asteraceae) is known from five populations widely scattered on Staten Island, Richmond Co, New York, indicating that the species is naturalized and well-established in New York City and New York state. Dittrichia graveolens (L.) Greuter (stinkwort) was first collected in New York State in 1949 by Harold Moldenke and Joe Monachino in Bronx County ( Moldenke 20555 and Monachino 529 ). Monachino collected the species again in Brooklyn, Kings Co., in October 1959 ( Monachino 632 ). The species was not collected or documented again in New York state until the present work and was thought to be historical (Weldy et al. 2019; Atha & Boom 2018; USDA NRCS 2018; Werier 2017). Stinkwort is currently known from five populations on Staten Island, Richmond Co, New York (Figure 1): the one documented here with an herbarium specimen and four others documented by iNaturalist observations made in 2017 and 2018 (Lemon Creek Park, Heather Liljengren, iNaturalist observ.
    [Show full text]