Common PTP4A1-PHF3-EYS Variants Are Specific for Alcohol Dependence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplementary File 2A Revised
Supplementary file 2A. Differentially expressed genes in aldosteronomas compared to all other samples, ranked according to statistical significance. Missing values were not allowed in aldosteronomas, but to a maximum of five in the other samples. Acc UGCluster Name Symbol log Fold Change P - Value Adj. P-Value B R99527 Hs.8162 Hypothetical protein MGC39372 MGC39372 2,17 6,3E-09 5,1E-05 10,2 AA398335 Hs.10414 Kelch domain containing 8A KLHDC8A 2,26 1,2E-08 5,1E-05 9,56 AA441933 Hs.519075 Leiomodin 1 (smooth muscle) LMOD1 2,33 1,3E-08 5,1E-05 9,54 AA630120 Hs.78781 Vascular endothelial growth factor B VEGFB 1,24 1,1E-07 2,9E-04 7,59 R07846 Data not found 3,71 1,2E-07 2,9E-04 7,49 W92795 Hs.434386 Hypothetical protein LOC201229 LOC201229 1,55 2,0E-07 4,0E-04 7,03 AA454564 Hs.323396 Family with sequence similarity 54, member B FAM54B 1,25 3,0E-07 5,2E-04 6,65 AA775249 Hs.513633 G protein-coupled receptor 56 GPR56 -1,63 4,3E-07 6,4E-04 6,33 AA012822 Hs.713814 Oxysterol bining protein OSBP 1,35 5,3E-07 7,1E-04 6,14 R45592 Hs.655271 Regulating synaptic membrane exocytosis 2 RIMS2 2,51 5,9E-07 7,1E-04 6,04 AA282936 Hs.240 M-phase phosphoprotein 1 MPHOSPH -1,40 8,1E-07 8,9E-04 5,74 N34945 Hs.234898 Acetyl-Coenzyme A carboxylase beta ACACB 0,87 9,7E-07 9,8E-04 5,58 R07322 Hs.464137 Acyl-Coenzyme A oxidase 1, palmitoyl ACOX1 0,82 1,3E-06 1,2E-03 5,35 R77144 Hs.488835 Transmembrane protein 120A TMEM120A 1,55 1,7E-06 1,4E-03 5,07 H68542 Hs.420009 Transcribed locus 1,07 1,7E-06 1,4E-03 5,06 AA410184 Hs.696454 PBX/knotted 1 homeobox 2 PKNOX2 1,78 2,0E-06 -
Lysine Methylation Regulators Moonlighting Outside the Epigenome Evan Cornett, Laure Ferry, Pierre-Antoine Defossez, Scott Rothbart
Lysine Methylation Regulators Moonlighting outside the Epigenome Evan Cornett, Laure Ferry, Pierre-Antoine Defossez, Scott Rothbart To cite this version: Evan Cornett, Laure Ferry, Pierre-Antoine Defossez, Scott Rothbart. Lysine Methylation Regulators Moonlighting outside the Epigenome. Molecular Cell, Elsevier, 2019, 10.1016/j.molcel.2019.08.026. hal-02359890 HAL Id: hal-02359890 https://hal.archives-ouvertes.fr/hal-02359890 Submitted on 14 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lysine methylation regulators moonlighting outside the epigenome Evan M. Cornett1, Laure Ferry2, Pierre-Antoine Defossez2, and Scott B. RothBart1* 1Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA. 2Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France. *Correspondence: [email protected], 616-234-5367 ABSTRACT Landmark discoveries made nearly two decades ago identified known transcriptional regulators as histone lysine methyltransferases; since then the field of lysine methylation signaling has Been dominated By studies of how this small chemical posttranslational modification regulates gene expression and other chromatin-Based processes. However, recent advances in mass spectrometry-Based proteomics have revealed that histones are just a suBset of the thousands of eukaryotic proteins marked By lysine methylation. -
Gene Expression Signatures of Sporadic ALS Motor Neuron Populations
bioRxiv preprint doi: https://doi.org/10.1101/038448; this version posted February 1, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Gene Expression Signatures of Sporadic ALS Motor Neuron Populations Ranjan Batra1,2, §, Kasey Hutt1, § , Anthony Vu1, §, Stuart J. Rabin3, Michael W. Baughn2, Ryan T. Libby3 , Shawn Hoon4, John Ravits2,*, Gene W. Yeo1,2,4,5,* Affiliations: 1Department of Cellular and Molecular Medicine, Stem cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA 2Department of Neurosciences, University of California at San Diego, La Jolla 3 Neurogenomics Lab, Benaroya Research Institute, Seattle, WA, USA 4Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 5Molecular Engineering Laboratory, A*STAR, Singapore §These authors contributed equally to this work *Corresponding authors: [email protected], [email protected] bioRxiv preprint doi: https://doi.org/10.1101/038448; this version posted February 1, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily affecting motor neurons (MNs) to cause progressive paralysis. Ninety percent of cases are sporadic (sALS) and ten percent are familial (fALS). The molecular mechanisms underlying neurodegeneration remain elusive and there is a lack of promising biomarkers that define ALS phenotypes and progression. To date, most expression studies have focused on either complex whole tissues that contain cells other than MNs or induced pluripotent derived MNs (iMNs). -
Supplementary Figure 1: Specificity of Anti-TIGIT Antibody 1G9. TIGIT-Specific Antibodies Were Generated in TIGIT-/- Mice (Clone 1G9)
Supplementary Figure 1: Specificity of anti-TIGIT antibody 1G9. TIGIT-specific antibodies were generated in TIGIT-/- mice (clone 1G9). (A) 1G9 was titrated in an ELISA against recombinant mouse TIGIT or a control protein. (B) Anti-TIGIT antibody 1G9 was used to stain P815 cells transfected with mouse TIGIT (solid line) or the parental untransfected cell line as control (shaded histogram) and samples were analyzed by flow cytometry. (C) Primary T cells from B6 or TIGIT-/- mice were activated for 48h and stained using anti-TIGIT antibody 1G9 (solid line) or an isotype control (shaded histogram) and analyzed by flow cytometry. Samples are gated on the CD4+ population. Representative examples of 5 (A) or over 10 (B and C) independent experiments are shown. Supplementary Figure 2: TIGIT acts on APCs and on T cells. (A) CD4+ T cells were isolated and labeled with CFSE. Wild type B6 or TIGIT-/- CD4+ T cells were stimulated with anti-CD3 in the presence of irradiated APCs from wild type B6 or TIGIT-/- mice. Proliferation was analyzed after 60h using flow cytometry. (B) CD45.1 B6 recipients received 105 CD62L+CD4+ 2D2 or 2D2 x TIGIT-/- cells i.v. one day before s.c. immunization with 100μg MOG35-55 peptide in CFA. On day 7 spleens and lymph nodes (LN) were harvested and frequencies and absolute numbers of transferred CD45.2+ T cells were determined by flow cytometry (B; n=4). (C-E) TIGIT-specific antibodies were generated in Armenian hamsters (clone 4D4). (C) 4D4 was titrated in an ELISA against recombinant mouse TIGIT or a control protein. -
The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-To-ER Retrograde Transport
Supplementary Materials The proteasomal deubiquitinating enzyme PSMD14 regulates macroautophagy by controlling Golgi-to-ER retrograde transport Bustamante HA., et al. Figure S1. siRNA sequences directed against human PSMD14 used for Validation Stage. Figure S2. Primer pairs sequences used for RT-qPCR. Figure S3. The PSMD14 DUB inhibitor CZM increases the Golgi apparatus area. Immunofluorescence microscopy analysis of the Golgi area in parental H4 cells treated for 4 h either with the vehicle (DMSO; Control) or CZM. The Golgi marker GM130 was used to determine the region of interest in each condition. Statistical significance was determined by Student's t-test. Bars represent the mean ± SEM (n =43 cells). ***P <0.001. Figure S4. CZM causes the accumulation of KDELR1-GFP at the Golgi apparatus. HeLa cells expressing KDELR1-GFP were either left untreated or treated with CZM for 30, 60 or 90 min. Cells were fixed and representative confocal images were acquired. Figure S5. Effect of CZM on proteasome activity. Parental H4 cells were treated either with the vehicle (DMSO; Control), CZM or MG132, for 90 min. Protein extracts were used to measure in vitro the Chymotrypsin-like peptidase activity of the proteasome. The enzymatic activity was quantified according to the cleavage of the fluorogenic substrate Suc-LLVY-AMC to AMC, and normalized to that of control cells. The statistical significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent the mean ± SD of biological replicates (n=3). **P <0.01; n.s., not significant. Figure S6. Effect of CZM and MG132 on basal macroautophagy. (A) Immunofluorescence microscopy analysis of the subcellular localization of LC3 in parental H4 cells treated with either with the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h. -
Molecular Signatures Differentiate Immune States in Type 1 Diabetes Families
Page 1 of 65 Diabetes Molecular signatures differentiate immune states in Type 1 diabetes families Yi-Guang Chen1, Susanne M. Cabrera1, Shuang Jia1, Mary L. Kaldunski1, Joanna Kramer1, Sami Cheong2, Rhonda Geoffrey1, Mark F. Roethle1, Jeffrey E. Woodliff3, Carla J. Greenbaum4, Xujing Wang5, and Martin J. Hessner1 1The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin Milwaukee, WI 53226, USA. 2The Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. 3Flow Cytometry & Cell Separation Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA. 4Diabetes Research Program, Benaroya Research Institute, Seattle, WA, 98101, USA. 5Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA. Corresponding author: Martin J. Hessner, Ph.D., The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA Tel: 011-1-414-955-4496; Fax: 011-1-414-955-6663; E-mail: [email protected]. Running title: Innate Inflammation in T1D Families Word count: 3999 Number of Tables: 1 Number of Figures: 7 1 For Peer Review Only Diabetes Publish Ahead of Print, published online April 23, 2014 Diabetes Page 2 of 65 ABSTRACT Mechanisms associated with Type 1 diabetes (T1D) development remain incompletely defined. Employing a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially IL-1 dependent, signatures associated with pre and recent onset (RO) T1D relative to unrelated healthy controls (uHC). -
Target Gene Gene Description Validation Diana Miranda
Supplemental Table S1. Mmu-miR-183-5p in silico predicted targets. TARGET GENE GENE DESCRIPTION VALIDATION DIANA MIRANDA MIRBRIDGE PICTAR PITA RNA22 TARGETSCAN TOTAL_HIT AP3M1 adaptor-related protein complex 3, mu 1 subunit V V V V V V V 7 BTG1 B-cell translocation gene 1, anti-proliferative V V V V V V V 7 CLCN3 chloride channel, voltage-sensitive 3 V V V V V V V 7 CTDSPL CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like V V V V V V V 7 DUSP10 dual specificity phosphatase 10 V V V V V V V 7 MAP3K4 mitogen-activated protein kinase kinase kinase 4 V V V V V V V 7 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) V V V V V V V 7 PPP2R5C protein phosphatase 2, regulatory subunit B', gamma V V V V V V V 7 PTPN4 protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) V V V V V V V 7 EZR ezrin V V V V V V 6 FOXO1 forkhead box O1 V V V V V V 6 ANKRD13C ankyrin repeat domain 13C V V V V V V 6 ARHGAP6 Rho GTPase activating protein 6 V V V V V V 6 BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 V V V V V V 6 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like V V V V V V 6 BRMS1L breast cancer metastasis-suppressor 1-like V V V V V V 6 CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35) V V V V V V 6 CTDSP1 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1 V V V V V V 6 DCX doublecortin V V V V V V 6 ENAH enabled homolog (Drosophila) V V V V V V 6 EPHA4 EPH receptor A4 V V V V V V 6 FOXP1 forkhead box P1 V -
Mapping the Human Phosphatome on Growth Pathways
Molecular Systems Biology 8; Article number 603; doi:10.1038/msb.2012.36 Citation: Molecular Systems Biology 8:603 & 2012 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/12 www.molecularsystemsbiology.com Mapping the human phosphatome on growth pathways Francesca Sacco1,*, Pier Federico Gherardini1, Serena Paoluzi1, Julio Saez-Rodriguez2, Manuela Helmer-Citterich1, Antonella Ragnini-Wilson1,3, Luisa Castagnoli1 and Gianni Cesareni1,4,* 1 Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy, 2 EMBL-EBI, Hinxton, UK, 3 High-throughput Microscopy Facility, Department of Translational and Cellular Pharmacology, Consorzio Mario Negri Sud, SM Imbaro, Italy and 4 IRCCS Fondazione Santa Lucia, Rome, Italy * Corresponding authors. F Sacco or G Cesareni, Department of Biology, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica, Rome 00133, Italy. Tel.: þ 39 0672594315; Fax: þ 39 06202350; E-mail: [email protected] or [email protected] Received 5.3.12; accepted 10.7.12 Large-scale siRNA screenings allow linking the function of poorly characterized genes to phenotypic readouts. According to this strategy, genes are associated with a function of interest if the alteration of their expression perturbs the phenotypic readouts. However, given the intricacy of the cell regulatory network, the mapping procedure is low resolution and the resulting models provide little mechanistic insights. We have developed a new strategy that combines multi- parametric analysis of cell perturbation with logic modeling to achieve a more detailed functional mapping of human genes onto complex pathways. A literature-derived optimized model is used to infer the cell activation state following upregulation or downregulation of the model entities. -
Live-Cell Imaging Rnai Screen Identifies PP2A–B55α and Importin-Β1 As Key Mitotic Exit Regulators in Human Cells
LETTERS Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells Michael H. A. Schmitz1,2,3, Michael Held1,2, Veerle Janssens4, James R. A. Hutchins5, Otto Hudecz6, Elitsa Ivanova4, Jozef Goris4, Laura Trinkle-Mulcahy7, Angus I. Lamond8, Ina Poser9, Anthony A. Hyman9, Karl Mechtler5,6, Jan-Michael Peters5 and Daniel W. Gerlich1,2,10 When vertebrate cells exit mitosis various cellular structures can contribute to Cdk1 substrate dephosphorylation during vertebrate are re-organized to build functional interphase cells1. This mitotic exit, whereas Ca2+-triggered mitotic exit in cytostatic-factor- depends on Cdk1 (cyclin dependent kinase 1) inactivation arrested egg extracts depends on calcineurin12,13. Early genetic studies in and subsequent dephosphorylation of its substrates2–4. Drosophila melanogaster 14,15 and Aspergillus nidulans16 reported defects Members of the protein phosphatase 1 and 2A (PP1 and in late mitosis of PP1 and PP2A mutants. However, the assays used in PP2A) families can dephosphorylate Cdk1 substrates in these studies were not specific for mitotic exit because they scored pro- biochemical extracts during mitotic exit5,6, but how this relates metaphase arrest or anaphase chromosome bridges, which can result to postmitotic reassembly of interphase structures in intact from defects in early mitosis. cells is not known. Here, we use a live-cell imaging assay and Intracellular targeting of Ser/Thr phosphatase complexes to specific RNAi knockdown to screen a genome-wide library of protein substrates is mediated by a diverse range of regulatory and targeting phosphatases for mitotic exit functions in human cells. We subunits that associate with a small group of catalytic subunits3,4,17. -
Control of Lineage Commitment in Acute Leukaemia
NEWCASTLE UNIVERSITY Control of Lineage Commitment in Acute Leukaemia Ricky Fong Tirtakusuma Northern Institute for Cancer Research Faculty of Medical Sciences Doctor of Philosophy September 2018 Abstract Acute leukaemia with the t(4;11) translocation is strongly associated with pro B-acute lymphoblastic phenotype. Here is described a lineage switch from acute lymphoblastic leukaemia (ALL) to acute myeloid leukaemia (AML) which carries identical t(4;11) breakpoints that provides insight into regulation of lineage commitment and the haematopoietic origin of leukaemia. Stable DNA microsatellite sequences argue against a therapy-related AML. Genome sequencing and RNAseq identified 12 novel and deleterious mutations unique to the AML. Immunoglobulin rearrangement analysis suggested the common cell of origin lied within a population prior to B cell differentiation. Sorting of haematopoietic stem/progenitor cell populations followed by multiplex PCR and next generation sequencing for the fusion and secondary mutations demonstrated the occurrence of the leukaemogenic MLL-AF4 fusion gene in cell populations as early as the multipotent progenitor, MPP, population in both ALL and AML. In this most primitive population, the AML carries mutations in chromatin modulating genes CHD4 and PHF3, suggesting their importance in lineage commitment. Knockdown CHD4 and PHF3 individually and in combination in the pro-B ALL t(4;11) SEM cell line resulted in ~3 fold higher expression of the myeloid cell surface marker CD33. Further analysis was performed using a recently described model of MLL-AF4 leukaemogenesis consisting of CD34+ cord blood cells transduced with a chimeric MLL-Af4 fusion gene. Knockdown of CHD4 and PHF3 resulted in loss of lymphoid differentiation potential in vitro. -
Expression Profile of Tyrosine Phosphatases in HER2 Breast
Cellular Oncology 32 (2010) 361–372 361 DOI 10.3233/CLO-2010-0520 IOS Press Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors Maria Antonietta Lucci a, Rosaria Orlandi b, Tiziana Triulzi b, Elda Tagliabue b, Andrea Balsari c and Emma Villa-Moruzzi a,∗ a Department of Experimental Pathology, University of Pisa, Pisa, Italy b Molecular Biology Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy c Department of Human Morphology and Biomedical Sciences, University of Milan, Milan, Italy Abstract. Background: HER2-overexpression promotes malignancy by modulating signalling molecules, which include PTPs/DSPs (protein tyrosine and dual-specificity phosphatases). Our aim was to identify PTPs/DSPs displaying HER2-associated expression alterations. Methods: HER2 activity was modulated in MDA-MB-453 cells and PTPs/DSPs expression was analysed with a DNA oligoar- ray, by RT-PCR and immunoblotting. Two public breast tumor datasets were analysed to identify PTPs/DSPs differentially ex- pressed in HER2-positive tumors. Results: In cells (1) HER2-inhibition up-regulated 4 PTPs (PTPRA, PTPRK, PTPN11, PTPN18) and 11 DSPs (7 MKPs [MAP Kinase Phosphatases], 2 PTP4, 2 MTMRs [Myotubularin related phosphatases]) and down-regulated 7 DSPs (2 MKPs, 2 MTMRs, CDKN3, PTEN, CDC25C); (2) HER2-activation with EGF affected 10 DSPs (5 MKPs, 2 MTMRs, PTP4A1, CDKN3, CDC25B) and PTPN13; 8 DSPs were found in both groups. Furthermore, 7 PTPs/DSPs displayed also altered protein level. Analysis of 2 breast cancer datasets identified 6 differentially expressed DSPs: DUSP6, strongly up-regulated in both datasets; DUSP10 and CDC25B, up-regulated; PTP4A2, CDC14A and MTMR11 down-regulated in one dataset.