From Biophysics to Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3. Lipid Rafts
UNIVERSITÀ DEGLI STUDI DI TRIESTE XXX CICLO DEL DOTTORATO DI RICERCA IN NANOTECNOLOGIE Lipid raft formation and protein-lipid interactions in model membranes Settore scientifico-disciplinare: FIS/03 DOTTORANDO Fabio Perissinotto COORDINATORE PROF. Lucia Pasquato SUPERVISORE DI TESI Dr. Loredana Casalis CO-SUPERVISORE DI TESI Dr. Denis Scaini ANNO ACCADEMICO 2016/2017 TABLE OF CONTENTS ABSTRACT ......................................................................................................................................... 4 INTRODUCTION ............................................................................................................................... 6 1. Biological membranes ............................................................................................................... 6 1.1 Lipid composition of cellular membranes ............................................................................ 7 1.2 Membrane proteins ........................................................................................................... 11 2. Physical and structural properties of cell membranes ........................................................... 12 2.1 Lipid-lipid interactions and phase separation .................................................................... 12 2.2 Membrane asymmetry ....................................................................................................... 14 2.3 Lipid diffusion .................................................................................................................... -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Endoplasmic Reticulum-Plasma Membrane Contact Sites Integrate Sterol and Phospholipid Regulation
RESEARCH ARTICLE Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation Evan Quon1☯, Yves Y. Sere2☯, Neha Chauhan2, Jesper Johansen1, David P. Sullivan2, Jeremy S. Dittman2, William J. Rice3, Robin B. Chan4, Gilbert Di Paolo4,5, Christopher T. Beh1,6*, Anant K. Menon2* 1 Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada, 2 Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of a1111111111 America, 3 Simons Electron Microscopy Center at the New York Structural Biology Center, New York, New a1111111111 York, United States of America, 4 Department of Pathology and Cell Biology, Columbia University College of a1111111111 Physicians and Surgeons, New York, New York, United States of America, 5 Denali Therapeutics, South San a1111111111 Francisco, California, United States of America, 6 Centre for Cell Biology, Development, and Disease, Simon a1111111111 Fraser University, Burnaby, British Columbia, Canada ☯ These authors contributed equally to this work. * [email protected] (AKM); [email protected] (CTB) OPEN ACCESS Abstract Citation: Quon E, Sere YY, Chauhan N, Johansen J, Sullivan DP, Dittman JS, et al. (2018) Endoplasmic Tether proteins attach the endoplasmic reticulum (ER) to other cellular membranes, thereby reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. PLoS creating contact sites that are proposed to form platforms for regulating lipid homeostasis Biol 16(5): e2003864. https://doi.org/10.1371/ and facilitating non-vesicular lipid exchange. Sterols are synthesized in the ER and trans- journal.pbio.2003864 ported by non-vesicular mechanisms to the plasma membrane (PM), where they represent Academic Editor: Sandra Schmid, UT almost half of all PM lipids and contribute critically to the barrier function of the PM. -
Application of Nucleic Acid–Lipid Conjugates for the Programmable Organisation of Liposomal Modules
Advances in Colloid and Interface Science 207 (2014) 290–305 Contents lists available at ScienceDirect Advances in Colloid and Interface Science journal homepage: www.elsevier.com/locate/cis Application of nucleic acid–lipid conjugates for the programmable organisation of liposomal modules Paul A. Beales a,⁎, T. Kyle Vanderlick b,⁎⁎ a School of Chemistry, University of Leeds, Leeds LS2 9JT, UK b Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06510, USA article info abstract Available online 27 December 2013 We present a critical review of recent work related to the assembly of multicompartment liposome clusters using nucleic acids as a specific recognition unit to link liposomal modules. The asymmetry in nucleic acid binding to its Keywords: non-self complementary strand allows the controlled association of different compartmental modules into com- Lipid vesicles posite systems. These biomimetic multicompartment architectures could have future applications in chemical DNA amphiphiles process control, drug delivery and synthetic biology. We assess the different methods of anchoring DNA to Directed assembly lipid membrane surfaces and discuss how lipid and DNA properties can be tuned to control the morphology Compartmentalization and properties of liposome superstructures. We consider different methods for chemical communication be- Bionanotechnology tween the contents of liposomal compartments within these clusters and assess the progress towards making this chemical mixing efficient, switchable and chemically specific. Finally, given the current state of the art, we assess the outlook for future developments towards functional modular networks of liposomes. © 2014 Elsevier B.V. All rights reserved. Contents 1. Introduction.............................................................. 290 2. FunctionalisationofliposomeswithDNA................................................. 292 2.1. Singlehydrocarbonchains................................................... -
Doxorubicin and Paclitaxel Cause Different Changes In
CHANGES IN PLASMA MEMBRANE FLUIDITY OF MCF-7 CELLS 135 POSTÊPY BIOLOGII KOMÓRKI TOM 36, 2009 SUPLEMENT NR 25 (135152) Rola komórek dendrytycznych w odpowiedzi transplantacyjnej* The role of dendritic cells in transplantation Maja Budziszewska1, Anna Korecka-Polak1, Gra¿yna Korczak-Kowalska1,2 1Zak³ad Immunologii, Wydzia³ Biologii, Uniwersytet Warszawski 2 Instytut Transplantologii, Warszawski Uniwersytet Medyczny *Dofinansowanie z grantu MNiSzW nr N N402 268036 Streszczenie: Komórki dendrytyczne (DC) s¹ najwa¿niejszymi komórkami prezentuj¹cymi antygenDOXORUBICIN (APC) limfocytom AND T. StopieñPACLITAXEL dojrza³oci komórki DC ma kluczowe znaczenie dla rodzaju odpowiedzi limfocytów T. Niedojrza³a komórka DC indukujeCAUSE stan DIFFERENT tolerancji, podczas CHANGES gdy dojrza³a IN komórkaPLASMA DC MEMBRANE- pe³n¹ odpowied immunologiczn¹.FLUIDITY Ma toOF ogromne MCF-7 znaczenie BREAST w transplantologii,CANCER CELLS a zw³aszcza w reakcjach odrzucania przeszczepu po transplantacjach narz¹du. Komórka DC dawcy prezentujeDOKSORUBICYNA antygen w sposób I PAKLITAKSEL bezporedni, natomiast POWODUJ¥ komórka RÓ¯NE DC ZMIANYbiorcy drog¹ poredni¹.W P£YNNOCI Komórki B£ONY DC niedojrza³ePLAZMATYCZNEJ lub o w³aciwociach KOMÓREK RAKA tolerogennych PIERSI MCF-7 mog¹ wyd³u¿yæ prze¿ycie przeszczepu allogenicznego. Takie oddzia³ywanie na funkcjê komórekKarolina MATCZAKDC, aby by³y1, Aneta one niewra¿liweKOCEVA-CHYLA na sygna³y1, Krzysztof dojrzewania GWOZDZINSKI in vivo lub2, aktywowanie komórek DC charakteryzuj¹cychZofia JÓWIAK1 siê trwa³ymi w³aciwociami tolerogennymi -
Steric Blockage of Lysenin Toxin by Crowding
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.02.073940; this version posted May 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Steric blockage of lysenin toxin by crowding Ignacio L.B. Munguira1 & Alfonso Barbas2 1 U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France 2Instituto de Fusión Nuclear, José Gutiérrez Abascal 2, 28006 Madrid, Spain Abstract Increasing evidence signals the importance of macromolecular crowding on the regulation of the membrane protein activity. Lysenin is a pore forming toxin that forms crowded assemblies in membrane containing sphingomyelin microdomains. We studied the role of crowding on the activity of Lysenin thanks to High Speed Atomic Force Microscopy. In this study we show that pore formation requires available space around to take place, being sterically block in crowded environments, and verified it with non- Supported Lipid Bilayers mimicking the mechanical conditions of cell membranes. A continuous pH decrease and a single molecule compression experimentsdetails show that pore formation liberates membrane space leading to prepore-forto -pore transitions. The study of the effects of prepore insertion comparing pore formation induced by sudden pH decrease in lysenin assemblies with thousand DOIsimulations show that liberation of space unblocks pore formation and could contribute to elude the cellular non-immune defences. Based on our findings we propose a refinement of current prepore structure and insertion models. -
ATG9 Regulates Autophagosome Progression from the Endoplasmic Reticulum in Arabidopsis
ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis Xiaohong Zhuanga,b,1, Kin Pan Chunga,b,1, Yong Cuia,b,1, Weili Lina,b, Caiji Gaoa,b,2, Byung-Ho Kanga,b, and Liwen Jianga,b,c,3 aCentre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; bState Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; and cThe Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China Edited by Diane C. Bassham, Iowa State University, Ames, IA, and accepted by Editorial Board Member Maarten J. Chrispeels December 8, 2016 (received for review October 6, 2016) Autophagy is a conserved pathway for bulk degradationofcytoplasmic autophagy pathway because ATG9 was required for the biogenesis material by a double-membrane structure named the autophagosome. of ER-derived compartments during the unfolded protein response The initiation of autophagosome formation requires the recruitment of (9). However, whether ATG9 plays a direct role in the early stages autophagy-related protein 9 (ATG9) vesicles to the preautophagosomal of autophagosome formation or in a specific autophagy process structure. However, the functional relationship between ATG9 vesicles remainstobeinvestigatedinplants.Onemajorchallengeisthelack and the phagophore is controversial in different systems, and the mo- of morphologically informative visualization that might correlate the lecular function of ATG9 remains unknown in plants. Here, we demon- early autophagosomal structures and ATG9 vesicles in real-time and strate that ATG9 is essential for endoplasmic reticulum (ER)-derived in three dimensions. autophagosome formation in plants. -
Effect of Irradiation of the PEM of 1.531211SMJ29 Jeewanu with Clinical Mercury Lamp and Sunlight on the Morphological Features of the Silicon Molybdenum Jeewanu
International Journal of Engineering Research and General Science Volume 4, Issue 4, July-August, 2016 ISSN 2091-2730 Effect of Irradiation of the PEM of 1.531211SMJ29 Jeewanu with Clinical Mercury Lamp and Sunlight on the Morphological Features of the Silicon Molybdenum Jeewanu Deepa Srivastava Department of Chemistry, S.S.Khanna Girls‘ Degree College, Constituent College of Allahabad University, Allahabad, Uttar Pradesh, India E- Mail – [email protected] Abstract— Sterilized aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, mineral solution and formaldehyde on exposure to sunlight results in the formation of self-sustaining coacervates which were coined as Jeewanu, the autopoetic eukaryote by Bahadur and Ranganayaki. Jeewanu have been analyzed to contain a number of compounds of biological interest. The presence of various enzyme like activities viz., phosphatase, ATP-ase, esterase, nitrogenase have been also been detected in Jeewanu mixture. Gáinti (2003) discussed that Jeewanu possesses a promising configuration similar to protocell-like model. Keywords— Autopoetic, eukaryote, Jeewanu, PEM, sunlight, mercury lamp, morphology, 1.531211SMJ29 INTRODUCTION Sterilized aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, mineral solution and formaldehyde on exposure to sunlight results in the formation of self-sustaining coacervates which were coined as Jeewanu, the autopoetic eukaryote by Bahadur, K and Ranganayaki, S. in 1970. [1] The photochemical, formation of protocell-like microstructures ―Jeewanu‖ in a laboratory simulated prebiotic atmosphere capable of showing multiplication by budding, growth from within by actual synthesis of material and various metabolic activities has been reported by Bahadur et al. [1, 2, 3, 4, 5, 7, 8] Jeewanu have been analyzed to contain a number of compounds of biological interest viz. -
Structural Basis of Sterol Recognition and Nonvesicular Transport by Lipid
Structural basis of sterol recognition and nonvesicular PNAS PLUS transport by lipid transfer proteins anchored at membrane contact sites Junsen Tonga, Mohammad Kawsar Manika, and Young Jun Ima,1 aCollege of Pharmacy, Chonnam National University, Bukgu, Gwangju, 61186, Republic of Korea Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved December 18, 2017 (received for review November 11, 2017) Membrane contact sites (MCSs) in eukaryotic cells are hotspots for roidogenic acute regulatory protein-related lipid transfer), PITP lipid exchange, which is essential for many biological functions, (phosphatidylinositol/phosphatidylcholine transfer protein), Bet_v1 including regulation of membrane properties and protein trafficking. (major pollen allergen from birch Betula verrucosa), PRELI (pro- Lipid transfer proteins anchored at membrane contact sites (LAMs) teins of relevant evolutionary and lymphoid interest), and LAMs contain sterol-specific lipid transfer domains [StARkin domain (SD)] (LTPs anchored at membrane contact sites) (9). and multiple targeting modules to specific membrane organelles. Membrane contact sites (MCSs) are closely apposed regions in Elucidating the structural mechanisms of targeting and ligand which two organellar membranes are in close proximity, typically recognition by LAMs is important for understanding the interorga- within a distance of 30 nm (7). The ER, a major site of lipid bio- nelle communication and exchange at MCSs. Here, we determined synthesis, makes contact with almost all types of subcellular or- the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like ganelles (10). Oxysterol-binding proteins, which are conserved domain and the SDs of Lam2 and Lam4 in the apo form and in from yeast to humans, are suggested to have a role in the di- complex with ergosterol. -
Download Report 2010-12
RESEARCH REPORt 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Cover: Aurora borealis paintings by William Crowder, National Geographic (1947). The International Geophysical Year (1957–8) transformed research on the aurora, one of nature’s most elusive and intensely beautiful phenomena. Aurorae became the center of interest for the big science of powerful rockets, complex satellites and large group efforts to understand the magnetic and charged particle environment of the earth. The auroral visoplot displayed here provided guidance for recording observations in a standardized form, translating the sublime aesthetics of pictorial depictions of aurorae into the mechanical aesthetics of numbers and symbols. Most of the portait photographs were taken by Skúli Sigurdsson RESEARCH REPORT 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Introduction The Max Planck Institute for the History of Science (MPIWG) is made up of three Departments, each administered by a Director, and several Independent Research Groups, each led for five years by an outstanding junior scholar. Since its foundation in 1994 the MPIWG has investigated fundamental questions of the history of knowl- edge from the Neolithic to the present. The focus has been on the history of the natu- ral sciences, but recent projects have also integrated the history of technology and the history of the human sciences into a more panoramic view of the history of knowl- edge. Of central interest is the emergence of basic categories of scientific thinking and practice as well as their transformation over time: examples include experiment, ob- servation, normalcy, space, evidence, biodiversity or force. -
Understanding the Invisible Hands of Sample Preparation for Cryo-EM
FOCUS | REVIEW ARTICLE FOCUS | REVIEWhttps://doi.org/10.1038/s41592-021-01130-6 ARTICLE Understanding the invisible hands of sample preparation for cryo-EM Giulia Weissenberger1,2,3, Rene J. M. Henderikx1,2,3 and Peter J. Peters 2 ✉ Cryo-electron microscopy (cryo-EM) is rapidly becoming an attractive method in the field of structural biology. With the exploding popularity of cryo-EM, sample preparation must evolve to prevent congestion in the workflow. The dire need for improved microscopy samples has led to a diversification of methods. This Review aims to categorize and explain the principles behind various techniques in the preparation of vitrified samples for the electron microscope. Various aspects and challenges in the workflow are discussed, from sample optimization and carriers to deposition and vitrification. Reliable and versatile specimen preparation remains a challenge, and we hope to give guidelines and posit future directions for improvement. ryo-EM is providing macromolecular structures with the optimum biochemical state of the sample. Grid preparation up to atomic resolution at an unprecedented rate. In this describes the steps needed to make a sample suitable for analysis Ctechnique, electron microscopy images of biomolecules in the microscope. These steps involve chemical or plasma treat- embedded in vitreous, glass-like ice are combined to generate ment of the grid, sample deposition and vitrification. The first three-dimensional (3D) reconstructions. The detailed structural breakthroughs came about from a manual blot-and-plunge method models obtained from these reconstructions grant insight into the developed in the 1980s15 that is still being applied to achieve formi- function of macromole cules and their role in biological processes. -
Novel Liposomes for Targeted Delivery of Drugs and Plasmids
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-11-15 Novel Liposomes for Targeted Delivery of Drugs and Plasmids Marjan Javadi Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Chemical Engineering Commons BYU ScholarsArchive Citation Javadi, Marjan, "Novel Liposomes for Targeted Delivery of Drugs and Plasmids" (2013). Theses and Dissertations. 3879. https://scholarsarchive.byu.edu/etd/3879 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Novel Liposomes for Targeted Delivery of Drugs and Plasmids Marjan Javadi A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy William G. Pitt, Chair Morris D. Argyle Brad C. Bundy Alonzo D. Cook Randy S. Lewis Department of Chemical Engineering Brigham Young University November 2013 Copyright © 2013 Marjan Javadi All Rights Reserved ABSTRACT Novel Liposomes for Targeted Delivery of Drugs and Plasmids Marjan Javadi Department of Chemical Engineering, BYU Doctor of Philosophy People receiving chemotherapy not only suffer from side effects of therapeutics but also must buy expensive drugs. Targeted drug and gene delivery directed to specific tumor-cells is one way to reduce the side effect of drugs and use less amount of therapeutics. In this research, two novel liposomal nanocarriers were developed. This nanocarrier, called an eLiposome, is basically one or more emulsion droplets inside a liposome.