Endoplasmic Reticulum-Plasma Membrane Contact Sites Integrate Sterol and Phospholipid Regulation

Total Page:16

File Type:pdf, Size:1020Kb

Endoplasmic Reticulum-Plasma Membrane Contact Sites Integrate Sterol and Phospholipid Regulation RESEARCH ARTICLE Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation Evan Quon1☯, Yves Y. Sere2☯, Neha Chauhan2, Jesper Johansen1, David P. Sullivan2, Jeremy S. Dittman2, William J. Rice3, Robin B. Chan4, Gilbert Di Paolo4,5, Christopher T. Beh1,6*, Anant K. Menon2* 1 Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada, 2 Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of a1111111111 America, 3 Simons Electron Microscopy Center at the New York Structural Biology Center, New York, New a1111111111 York, United States of America, 4 Department of Pathology and Cell Biology, Columbia University College of a1111111111 Physicians and Surgeons, New York, New York, United States of America, 5 Denali Therapeutics, South San a1111111111 Francisco, California, United States of America, 6 Centre for Cell Biology, Development, and Disease, Simon a1111111111 Fraser University, Burnaby, British Columbia, Canada ☯ These authors contributed equally to this work. * [email protected] (AKM); [email protected] (CTB) OPEN ACCESS Abstract Citation: Quon E, Sere YY, Chauhan N, Johansen J, Sullivan DP, Dittman JS, et al. (2018) Endoplasmic Tether proteins attach the endoplasmic reticulum (ER) to other cellular membranes, thereby reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. PLoS creating contact sites that are proposed to form platforms for regulating lipid homeostasis Biol 16(5): e2003864. https://doi.org/10.1371/ and facilitating non-vesicular lipid exchange. Sterols are synthesized in the ER and trans- journal.pbio.2003864 ported by non-vesicular mechanisms to the plasma membrane (PM), where they represent Academic Editor: Sandra Schmid, UT almost half of all PM lipids and contribute critically to the barrier function of the PM. To deter- Southwestern Medical Center, United States of mine whether contact sites are important for both sterol exchange between the ER and PM America and intermembrane regulation of lipid metabolism, we generated Δ-super-tether (Δ-s-tether) Received: August 7, 2017 yeast cells that lack six previously identified tethering proteins (yeast extended synatotag- Accepted: April 20, 2018 min [E-Syt], vesicle-associated membrane protein [VAMP]-associated protein [VAP], and Published: May 21, 2018 TMEM16-anoctamin homologues) as well as the presumptive tether Ice2. Despite the lack of ER-PM contacts in these cells, ER-PM sterol exchange is robust, indicating that the sterol Copyright: © 2018 Quon et al. This is an open access article distributed under the terms of the transport machinery is either absent from or not uniquely located at contact sites. Unexpect- Creative Commons Attribution License, which edly, we found that the transport of exogenously supplied sterol to the ER occurs more permits unrestricted use, distribution, and slowly in Δ-s-tether cells than in wild-type (WT) cells. We pinpointed this defect to changes reproduction in any medium, provided the original in sterol organization and transbilayer movement within the PM bilayer caused by phospho- author and source are credited. lipid dysregulation, evinced by changes in the abundance and organization of PM lipids. Data Availability Statement: All relevant data are Indeed, deletion of either OSH4, which encodes a sterol/phosphatidylinositol-4-phosphate within the paper and its Supporting information files, specifically S1_Data.xlsx. (PI4P) exchange protein, or SAC1, which encodes a PI4P phosphatase, caused synthetic lethality in Δ-s-tether cells due to disruptions in redundant PI4P and phospholipid regulatory Funding: Qatar National Research Fund https:// www.qnrf.org/en-us/Funding/Research-Programs/ pathways. The growth defect of Δ-s-tether cells was rescued with an artificial "ER-PM sta- National-Priorities-Research-Program-NPRP (grant ple," a tether assembled from unrelated non-yeast protein domains, indicating that endoge- number NPRP 7 - 082 - 1 - 014). Received by nous tether proteins have nonspecific bridging functions. Finally, we discovered that sterols AKM. The funder had no role in study design, data collection and analysis, decision to publish, or play a role in regulating ER-PM contact site formation. In sterol-depleted cells, levels of the preparation of the manuscript. Discovery Grant and yeast E-Syt tether Tcb3 were induced and ER-PM contact increased dramatically. These PLOS Biology | https://doi.org/10.1371/journal.pbio.2003864 May 21, 2018 1 / 41 Lipid regulation at ER-plasma membrane contact sites Accelerator Supplement from the Natural Sciences results support a model in which ER-PM contact sites provide a nexus for coordinating the and Engineering Research Council (NSERC) of complex interrelationship between sterols, sphingolipids, and phospholipids that maintain Canada. Received by CTB. The funder had no role in study design, data collection and analysis, PM composition and integrity. decision to publish, or preparation of the manuscript. Competing interests: The authors have declared that no competing interests exist. Author summary Abbreviations: δ-ALA, δ-aminolevulinic acid; Δ-s- Almost half of the inner surface area of the yeast plasma membrane (PM) is covered with tether, Δ-super-tether; ABC, ATP-binding cassette; closely associated cortical endoplasmic reticulum (ER). In yeast and human cells, it has ACAT, acetyl-CoA acetyltransferase; ADP, adenosine diphosphate; CDP-DAG, cytidine been proposed that ER-anchored tether proteins staple the ER to the PM, creating mem- diphosphate DAG; CE, cholesteryl ester; cER, brane contact sites at which lipid transport between the ER and PM and membrane lipid cortical ER; CPYÃ, carboxypeptidase YÃ; cpm, synthesis are coordinately regulated, but the potential mechanisms are unclear. Here, we counts per minute; CTCF, corrected total cell test this idea by creating yeast cells that lack all ER-PM tethers. We find that whereas the fluorescence; C2, protein kinase C conserved bidirectional transport of sterols between the ER and PM is unaffected in these cells, ste- region 2; DAG, diacylglycerol; DHE, rols within the PM are disorganized due to disruptions in phospholipid biosynthesis that dehydroergosterol; DIC, differential interference contrast; DIM, detergent-insoluble membrane; ER, alter PM lipid composition. In particular, we show that phosphatidylinositol-4-phosphate, endoplasmic reticulum; ERAD, ER-associated a phospholipid needed for intracellular signaling and membrane trafficking, accumulates degradation; Erg9, squalene synthase; E-Syt, within the PM. Some of these defects can be rescued by reinstating membrane contacts extended synaptotagmin; FFAT, two phenylalanines via expression of an artificial tether. However, correction is also achieved without the crea- in an acidic tract; FIB-SEM, focused ion beam- tion of contacts by supplementing the growth medium with a precursor of membrane scanning electron microscope; GFP, green fluorescent protein; HPLC, high-performance liquid phospholipids. Based on these results, we propose that ER-PM contacts do not play a chromatography; IPC, inositol-phosphoceramide; major role as physical conduits for lipid exchange but rather serve as regulatory interfaces Lam, lipid transfer proteins anchored at MCSs; to integrate lipid synthesis pathways. MβCD, methyl-β-cyclodextrin; MCS, membrane contact site; MIPC, mannosylinositol phosphoceramide; mmPE, dimethyl PE; mPE, monomethyl PE; MRM, multiple reaction monitoring; MSP, major sperm protein; OSBP, Introduction oxysterol-binding protein; Osh, OSBP homologue; Most lipids are synthesized in the endoplasmic reticulum (ER) and distributed to other mem- PA, phosphatidic acid; PC, phosphatidylcholine; branes by non-vesicular mechanisms. These mechanisms act in conjunction with lipid meta- PCe, ether phosphatidylcholine; PE, bolic networks to maintain the unique lipid profile of the plasma membrane (PM) and phosphatidylethanolamine; PG, phosphatidylglycerol; PH, Pleckstrin homology; PI, subcellular organelles, and enable rapid membrane lipid remodeling in response to signals and phosphatidylinositol; PIP, phosphatidylinositol stresses [1±3]. An attractive hypothesis is that non-vesicular lipid transport and lipid biosyn- phosphate; PI4P, phosphatidylinositol-4- thetic and regulatory pathways intersect at ER-PM membrane contact sites (MCSs), where phosphate; PM, plasma membrane; PS, protein tethers retain the ER and PM within about 15±60 nm of each other [4±9]. In this view, phosphatidylserine; RFP, red fluorescent protein; ER-PM MCSs would serve as a nexus, coordinating requirements in the PM for lipids with RitC, C-terminal polybasic region from mammalian Rit1; RSR, relative specific radioactivity; SMP, their production in the ER [3, 9]. How this coordination is accomplished is not well under- synaptotagmin-like mitochondrial-lipid-binding stood. Here, we report on the interplay between sterol and phospholipid homeostasis at protein; SPOTS complex, SPT-Orm1/2-Tsc3-Sac1 ER-PM MCSs. complex; SR, specific radioactivity; StAR, CholesterolÐand its yeast counterpart ergosterolÐare synthesized in the ER and trans- steroidogenic acute regulatory; StART, ported by non-vesicular mechanisms to the PM [10, 11], where they are found at high concen- steroidogenic acute regulatory protein±related lipid trations corresponding to about 40 mole percent of PM lipids, i.e., one out of every two to transfer; STP, sterol transport protein; Tcb, tricalbin;
Recommended publications
  • Cell Membrane
    John Lenyo Corrina Perez Hazel Owens Cell Membrane http://micro.magnet.fsu.edu/cells/plasmamembrane/plasmamembrane.html • Cell membranes are composed of proteins and lipids. • Since they are made up of mostly lipids, only certain substances can move through. spmbiology403.blogspot.com •Phospholipids are the most abundant type of lipid found in the membrane. Phospholipids are made up of two layers, the outer and inner layers. The inside layer is made of hydrophobic fatty acid tails, while the outer layer is made up of hydrophilic polar heads that are pointed toward the water. academic.brooklyn.cuny.edu •Membrane structure relies on the tendency of fatty acid molecules to spread on the surface of water. • Membrane proteins (which take up half of the membrane) determine what gets into and leaves the cell. •Glycolipids are found on the outer part of the cell membrane. Single Chain vs. Phospholipid • Single chain lipids were assumed to be the first of those to form cell membranes with the more complex phospholipids evolving later • Phospholipids can be synthesized in an abiotic environment without enzymes now • Phosphoplipid bilayers now make up the plasma cell membranes that regulate movement into and out of prokaryotic and eukaryotic cells. Single chain lipid http://web.nestucca.k12.or.us/nvhs/staff/whitehead/homewor http://clincancerres.aacrjournals.org/content/11/5/2018/F1. k.htm expansion Types of Lipids • Today Plasma Membranes are made primarily of phospholipids • It is thought that early membranes may have been made of simpler fatty acids. http://exploringorigins.org/fattyacids.html Properties of Fatty Acids • They are Ampipathic, meaning that they have a hydrophobic (“water hating”) end and a hydrophilic (water loving”) end.
    [Show full text]
  • An Overview of Lipid Membrane Models for Biophysical Studies
    biomimetics Review Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies Alessandra Luchini 1 and Giuseppe Vitiello 2,3,* 1 Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; [email protected] 2 Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy 3 CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy * Correspondence: [email protected] Abstract: Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their Citation: Luchini, A.; Vitiello, G.
    [Show full text]
  • Membrane Proteins Are Associated with the Membrane of a Cell Or Particular Organelle and Are Generally More Problematic to Purify Than Water-Soluble Proteins
    Strategies for the Purification of Membrane Proteins Sinéad Marian Smith Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland. Email: [email protected] Abstract Although membrane proteins account for approximately 30 % of the coding regions of all sequenced genomes and play crucial roles in many fundamental cell processes, there are relatively few membranes with known 3D structure. This is likely due to technical challenges associated with membrane protein extraction, solubilization and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non- covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, whose extraction require phospholipid bilayer disruption by detergents. Here, important criteria for strategies of membrane protein purification are addressed, with a focus on the initial stages of membrane protein solublilization, where problems are most frequently are encountered. Protocols are outlined for the successful extraction of peripheral membrane proteins, solubilization of integral membrane proteins, and detergent removal which is important not only for retaining native protein stability and biological functions, but also for the efficiency of downstream purification techniques. Key Words: peripheral membrane protein, integral membrane protein, detergent, protein purification, protein solubilization. 1. Introduction Membrane proteins are associated with the membrane of a cell or particular organelle and are generally more problematic to purify than water-soluble proteins. Membrane proteins represent approximately 30 % of the open-reading frames of an organism’s genome (1-4), and play crucial roles in basic cell functions including signal transduction, energy production, nutrient uptake and cell-cell communication.
    [Show full text]
  • Structural Basis of Sterol Recognition and Nonvesicular Transport by Lipid
    Structural basis of sterol recognition and nonvesicular PNAS PLUS transport by lipid transfer proteins anchored at membrane contact sites Junsen Tonga, Mohammad Kawsar Manika, and Young Jun Ima,1 aCollege of Pharmacy, Chonnam National University, Bukgu, Gwangju, 61186, Republic of Korea Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved December 18, 2017 (received for review November 11, 2017) Membrane contact sites (MCSs) in eukaryotic cells are hotspots for roidogenic acute regulatory protein-related lipid transfer), PITP lipid exchange, which is essential for many biological functions, (phosphatidylinositol/phosphatidylcholine transfer protein), Bet_v1 including regulation of membrane properties and protein trafficking. (major pollen allergen from birch Betula verrucosa), PRELI (pro- Lipid transfer proteins anchored at membrane contact sites (LAMs) teins of relevant evolutionary and lymphoid interest), and LAMs contain sterol-specific lipid transfer domains [StARkin domain (SD)] (LTPs anchored at membrane contact sites) (9). and multiple targeting modules to specific membrane organelles. Membrane contact sites (MCSs) are closely apposed regions in Elucidating the structural mechanisms of targeting and ligand which two organellar membranes are in close proximity, typically recognition by LAMs is important for understanding the interorga- within a distance of 30 nm (7). The ER, a major site of lipid bio- nelle communication and exchange at MCSs. Here, we determined synthesis, makes contact with almost all types of subcellular or- the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like ganelles (10). Oxysterol-binding proteins, which are conserved domain and the SDs of Lam2 and Lam4 in the apo form and in from yeast to humans, are suggested to have a role in the di- complex with ergosterol.
    [Show full text]
  • Review Questions Plasma Membrane
    Review Questions Plasma Membrane 1. What is the function of the plasma membrane? The plasma membrane forms the outer boundary of all cells. Described as semi-permeable, the membrane regulates the passage of atoms and molecules in and out of the cell. All membrane-bound organelles are also built of plasma membrane. 2. Draw a phospholipid bilayer and label the polar heads and the non-polar tails. The plasma membrane is made of a phospholipid bilayer. Phospholipids have a glycerol backbone attached to two fatty acid chains (one is unsaturated) and one phosphate group. The phosphate has a negative charge. The rest of the lipid is nonpolar. Water is attracted to the phosphate group and repelled by the rest of the molecule, so a phospholipid has a dual nature: a hydrophilic region (“head”) and a hydrophobic region (“tails”). When placed in water, the phospholipids form a bilayer. The heads face outward and the tails stay inside. The bilayer is semi-permeable barrier. Some substances can freely cross the membrane whereas others are stopped. 3. Why is the plasma membrane described as a “fluid mosaic”? The plasma membrane is a fluid because the phospholipid molecule is unsaturated. At room temperature, this causes the bilayer to have the consistency of salad oil. The term “mosaic” refers to the variety of embedded transmembrane proteins scattered throughout the membrane. 4. Why is cholesterol an important component of animal cell membranes? Cholesterol is a component of the cell membranes of animals. Cholesterol makes the membrane less fluid and therefore more impermeable to biological molecules. In a sense, cholesterol creates a more solid membrane and a more restrictive membrane.
    [Show full text]
  • Lysosomal Biology and Function: Modern View of Cellular Debris Bin
    cells Review Lysosomal Biology and Function: Modern View of Cellular Debris Bin Purvi C. Trivedi 1,2, Jordan J. Bartlett 1,2 and Thomas Pulinilkunnil 1,2,* 1 Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; [email protected] (P.C.T.); jjeff[email protected] (J.J.B.) 2 Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada * Correspondence: [email protected]; Tel.: +1-(506)-636-6973 Received: 21 January 2020; Accepted: 29 April 2020; Published: 4 May 2020 Abstract: Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
    [Show full text]
  • ER–Mitochondria Contact Sites Reporters: Strengths and Weaknesses of the Available Approaches
    International Journal of Molecular Sciences Review ER–Mitochondria Contact Sites Reporters: Strengths and Weaknesses of the Available Approaches Flavia Giamogante 1 , Lucia Barazzuol 1, Marisa Brini 2,* and Tito Calì 1,3,* 1 Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; fl[email protected] (F.G.); [email protected] (L.B.) 2 Department of Biology, University of Padova, 35131 Padova, Italy 3 Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy * Correspondence: [email protected] (M.B.); [email protected] (T.C.) Received: 22 September 2020; Accepted: 30 October 2020; Published: 31 October 2020 Abstract: Organelle intercommunication represents a wide area of interest. Over the last few decades, increasing evidence has highlighted the importance of organelle contact sites in many biological processes including Ca2+ signaling, lipid biosynthesis, apoptosis, and autophagy but also their involvement in pathological conditions. ER–mitochondria tethering is one of the most investigated inter-organelle communications and it is differently modulated in response to several cellular conditions including, but not limited to, starvation, Endoplasmic Reticulum (ER) stress, and mitochondrial shape modifications. Despite many studies aiming to understand their functions and how they are perturbed under different conditions, approaches to assess organelle proximity are still limited. Indeed, better visualization and characterization of contact sites remain a fascinating challenge. The aim of this review is to summarize strengths and weaknesses of the available methods to detect and quantify contact sites, with a main focus on ER–mitochondria tethering. Keywords: ER–mitochondria tethering; split-GFP; SPLICS; organelle contact sites 1. Introduction In eukaryotes, organelles are delimited by a membrane that enables them to perform specific and unique tasks, whose characterization has been the goal of researchers for many decades.
    [Show full text]
  • 1 Novel Functions of the Flippase Drs2 and the Coat Protein COPI In
    Novel Functions of the Flippase Drs2 and the Coat Protein COPI in Protein Trafficking By Hannah Marcille Hankins Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences May, 2016 Nashville, Tennessee Approved: Todd R. Graham, Ph.D Katherine L. Friedman, Ph.D. Kendal S. Broadie, Ph.D. Anne K. Kenworthy, Ph.D. Charles R. Sanders, Ph.D. 1 ACKNOWLEDGEMENTS It takes a village to raise a graduate student, and I have many villagers to thank for getting me to this point. I would never have considered doing research if it were not for my professors at Henderson State University, particularly Martin Campbell and Troy Bray, who were very supportive and encouraging throughout my undergraduate studies. I was also fortunate to be able to do full time research during the summers of my sophomore and junior years in the lab of Kevin Raney at the University of Arkansas for Medical Sciences. If it were not for the support system and these wonderful research experiences I had as an undergraduate, I never would have pursued graduate school at Vanderbilt and would not be the scientist I am today. I would like to thank my graduate school mentor, Todd Graham, for giving me the opportunity to join his lab and for introducing me to the wonderful world of yeast. Todd is an amazing and enthusiastic scientist; his guidance and support throughout my graduate career has been invaluable and I am truly grateful to have such a wonderful mentor.
    [Show full text]
  • A New Family of Start Domain Proteins at Membrane Contact Sites Has a Role in ER-PM 2 Sterol Transport
    1 A new family of StART domain proteins at membrane contact sites has a role in ER-PM 2 sterol transport. 3 4 Alberto T Gatta*1, Louise H Wong*1, Yves Y Sere*2, Diana M Calderón-Noreña2, Shamshad 5 Cockcroft3, Anant K Menon2 and Tim P Levine1‡. 6 * contributed equally to this work 7 8 Affiliations: 9 1. Dept of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK 10 2. Dept of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA 11 3. Dept of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK 12 13 ‡ to whom correspondence should be addressed: email [email protected]; 14 phone +44/0–20 7608 4027/8 15 16 Major subject area: Cell biology 17 Funding information: AG: Marie Curie ITN “Sphingonet”; LW: Medical Research Council (UK); 18 YS and DMC-N: Qatar National Research Fund. 19 20 21 Competing Interests The authors declare that there are no competing interests. 1 22 ABSTRACT 23 Sterol traffic between the endoplasmic reticulum (ER) and plasma membrane (PM) is a 24 fundamental cellular process that occurs by a poorly understood non-vesicular mechanism. 25 We identified a novel, evolutionarily diverse family of ER membrane proteins with StART-like 26 lipid transfer domains and studied them in yeast. StART-like domains from Ysp2p and its 27 paralog Lam4p specifically bind sterols, and Ysp2p, Lam4p and their homologs Ysp1p and 28 Sip3p target punctate ER-PM contact sites distinct from those occupied by known ER-PM 29 tethers.
    [Show full text]
  • Current Research in Phospholipids and Their Use in Drug Delivery
    pharmaceutics Review Review TheThe PhospholipidPhospholipid ResearchResearch Center:Center: CurrentCurrent ResearchResearch inin PhospholipidsPhospholipids andand TheirTheir UseUse inin DrugDrug DeliveryDelivery SimonSimon DrescherDrescher ** andand Peter Peter van van Hoogevest Hoogevest PhospholipidPhospholipid ResearchResearch Center,Center, ImIm NeuenheimerNeuenheimerFeld Feld 515, 515, 69120 69120 Heidelberg, Heidelberg, Germany; Germany; [email protected] [email protected] * Correspondence: [email protected]; Tel.: +49-06221-588-83-60 * Correspondence: [email protected]; Tel.: +49-06221-588-83-60 Received:Received: 24 November 2020;2020; Accepted:Accepted: 14 December 2020; Published: 18 December 2020 Abstract:Abstract: ThisThis reviewreview summarizessummarizes thethe researchresearch onon phospholipidsphospholipids andand theirtheir useuse forfor drugdrug deliverydelivery relatedrelated toto thethe PhospholipidPhospholipid ResearchResearch CenterCenter HeidelbergHeidelberg (PRC).(PRC). TheThe focusfocus isis onon projectsprojects thatthat havehave beenbeen approvedapproved by by the the PRC PRC since since 2017 2017 and areand currently are currently still ongoing still ongoing or have recentlyor have been recently completed. been Thecompleted. different The projects different cover projects all facets cover of all phospholipid facets of phospholipid research, fromresearch, basic from to applied basic to research, applied includingresearch, including the
    [Show full text]
  • Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenue
    International Journal of Molecular Sciences Review Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues Doralicia Casares 1,2 , Pablo V. Escribá 1,2 and Catalina Ana Rosselló 1,2,* 1 Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain; [email protected] (D.C.); [email protected] (P.V.E.) 2 Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain * Correspondence: [email protected]; Tel.: +34-971-173-331 Received: 1 April 2019; Accepted: 30 April 2019; Published: 1 May 2019 Abstract: Biological membranes are key elements for the maintenance of cell architecture and physiology. Beyond a pure barrier separating the inner space of the cell from the outer, the plasma membrane is a scaffold and player in cell-to-cell communication and the initiation of intracellular signals among other functions. Critical to this function is the plasma membrane compartmentalization in lipid microdomains that control the localization and productive interactions of proteins involved in cell signal propagation. In addition, cells are divided into compartments limited by other membranes whose integrity and homeostasis are finely controlled, and which determine the identity and function of the different organelles. Here, we review current knowledge on membrane lipid composition in the plasma membrane and endomembrane compartments, emphasizing its role in sustaining organelle structure and function. The correct composition and structure of cell membranes define key pathophysiological aspects of cells. Therefore, we explore the therapeutic potential of manipulating membrane lipid composition with approaches like membrane lipid therapy, aiming to normalize cell functions through the modification of membrane lipid bilayers.
    [Show full text]
  • Phospholipid Bilayer Fibers of Extra- Cellular Matrix (ECM)
    Membrane Functions Cell Membranes 1. boundaries 6. Cell-cell Today’s Topics 2. Localize adhesion • Finish Cell Structure and Movement specific – Cytoskeleton functions – Motor Proteins • Membrane Structure – Fluid Mosaic 5. Cell-cell – How appropriate fluidity is maintained communication • Diffusion and Osmosis http://library.thinkquest.org/C004535/media/cell_membrane.gif 3. Transport Sept 19, 2011 4. Signal detection Figure 7.5 Phospholipid bilayer Fibers of extra- cellular matrix (ECM) Glyco- Carbohydrate protein Glycolipid Fig. 7-2 EXTRACELLULAR SIDE OF MEMBRANE WATER! Hydrophilic head! Cholesterol Microfilaments Peripheral of cytoskeleton proteins Hydrophobic Integral protein tail! CYTOPLASMIC SIDE OF MEMBRANE WATER! Membrane Structure: The Fluid Mosaic Model 1972 Singer & Nicholson • Proteins embedded and floating in a sea hydrophobic of phospholipids A B Phospholipid bilayer hydrophilic Protein and Lipid raft Figure 7.3 1 • Membrane proteins and lipids are Figure 7.6 synthesized in the ER and Golgi The Fluidity of Membranes apparatus 1 Transmembrane glycoproteins ER Secretory protein ~25% of known genes code for membrane Glycolipid Golgi 2 proteins apparatus Vesicle Most drugs target Lateral movement occurs Flip-flopping across the membrane membrane proteins !107 times per second. is rare (! once per month). 3 Plasma membrane: Cytoplasmic face 4 Extracellular face Transmembrane glycoprotein Secreted protein Membrane glycolipid Figure 7.10 Figure 7.7 Evidence for integral membrane proteins: Evidence for membrane fluidity? Freeze-Fracture Electron Microscopy Extracellular layer A cell is frozen and fractured with a knife. The fracture plane often follows the hydrophobic interior of a membrane, splitting the phospholipid bilayer into two separated layers. The membrane proteins go wholly with one of the layers.
    [Show full text]