3D Graphics and Speqg Update
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer Graphics on Mobile Devices
Computer Graphics on Mobile Devices Bruno Tunjic∗ Vienna University of Technology Figure 1: Different mobile devices available on the market today. Image courtesy of ASU [ASU 2011]. Abstract 1 Introduction Computer graphics hardware acceleration and rendering techniques Under the term mobile device we understand any device designed have improved significantly in recent years. These improvements for use in mobile context [Marcial 2010]. In other words this term are particularly noticeable in mobile devices that are produced in is used for devices that are battery-powered and therefore physi- great amounts and developed by different manufacturers. New tech- cally movable. This group of devices includes mobile (cellular) nologies are constantly developed and this extends the capabilities phones, personal media players (PMP), personal navigation devices of such devices correspondingly. (PND), personal digital assistants (PDA), smartphones, tablet per- sonal computers, notebooks, digital cameras, hand-held game con- soles and mobile internet devices (MID). Figure 1 shows different In this paper, a review about the existing and new hardware and mobile devices available on the market today. Traditional mobile software, as well as a closer look into some of the most important phones are aimed at making and receiving telephone calls over a revolutionary technologies, is given. Special emphasis is given on radio link. PDAs are personal organizers that later evolved into de- new Application Programming Interfaces (API) and rendering tech- vices with advanced units communication, entertainment and wire- niques that were developed in recent years. A review of limitations less capabilities [Wiggins 2004]. Smartphones can be seen as a that developers have to overcome when bringing graphics to mobile next generation of PDAs since they incorporate all its features but devices is also provided. -
An Emerging Architecture in Smart Phones
International Journal of Electronic Engineering and Computer Science Vol. 3, No. 2, 2018, pp. 29-38 http://www.aiscience.org/journal/ijeecs ARM Processor Architecture: An Emerging Architecture in Smart Phones Naseer Ahmad, Muhammad Waqas Boota * Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan Abstract ARM is a 32-bit RISC processor architecture. It is develop and licenses by British company ARM holdings. ARM holding does not manufacture and sell the CPU devices. ARM holding only licenses the processor architecture to interested parties. There are two main types of licences implementation licenses and architecture licenses. ARM processors have a unique combination of feature such as ARM core is very simple as compare to general purpose processors. ARM chip has several peripheral controller, a digital signal processor and ARM core. ARM processor consumes less power but provide the high performance. Now a day, ARM Cortex series is very popular in Smartphone devices. We will also see the important characteristics of cortex series. We discuss the ARM processor and system on a chip (SOC) which includes the Qualcomm, Snapdragon, nVidia Tegra, and Apple system on chips. In this paper, we discuss the features of ARM processor and Intel atom processor and see which processor is best. Finally, we will discuss the future of ARM processor in Smartphone devices. Keywords RISC, ISA, ARM Core, System on a Chip (SoC) Received: May 6, 2018 / Accepted: June 15, 2018 / Published online: July 26, 2018 @ 2018 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. -
Zeebo Developer Guide Gaming for the Next Billion
Zeebo Developer Guide Gaming for the next billion An in‐depth guide for the Zeebo wireless gaming platform Zeebo Developer Guide Zeebo Inc. Confidential and Proprietary Restricted Distribution: Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written permission of Zeebo Inc. Zeebo Inc reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed for any damages arising directly or indirectly by their use or application. The information provided in this document is provided on an “as is” basis. This document contains Zeebo Inc confidential and proprietary information and must be shredded when discarded. Zeebo is a registered trademark and registered service mark of Zeebo Inc. Other product and brand names may be trademarks or registered trademarks of their respective owners. CDMA2000 and GSM are registered certification mark of the Telecommunications Industry Association, used under license. ARM is a registered trademark of ARM Limited. Adreno, QXEngine, QXProfiler, BREW are registered trademarks of QUALCOMM Incorporated in the United States and other countries. 2 Zeebo Confidential and Proprietary Zeebo Developer Guide Contents 1 Introduction .................................................................................................................6 1.1 Purpose.............................................................................................................................. 6 1.2 Scope -
Comparative Study of Various Systems on Chips Embedded in Mobile Devices
Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.7, 2013 - National Conference on Emerging Trends in Electrical, Instrumentation & Communication Engineering Comparative Study of Various Systems on Chips Embedded in Mobile Devices Deepti Bansal(Assistant Professor) BVCOE, New Delhi Tel N: +919711341624 Email: [email protected] ABSTRACT Systems-on-chips (SoCs) are the latest incarnation of very large scale integration (VLSI) technology. A single integrated circuit can contain over 100 million transistors. Harnessing all this computing power requires designers to move beyond logic design into computer architecture, meet real-time deadlines, ensure low-power operation, and so on. These opportunities and challenges make SoC design an important field of research. So in the paper we will try to focus on the various aspects of SOC and the applications offered by it. Also the different parameters to be checked for functional verification like integration and complexity are described in brief. We will focus mainly on the applications of system on chip in mobile devices and then we will compare various mobile vendors in terms of different parameters like cost, memory, features, weight, and battery life, audio and video applications. A brief discussion on the upcoming technologies in SoC used in smart phones as announced by Intel, Microsoft, Texas etc. is also taken up. Keywords: System on Chip, Core Frame Architecture, Arm Processors, Smartphone. 1. Introduction: What Is SoC? We first need to define system-on-chip (SoC). A SoC is a complex integrated circuit that implements most or all of the functions of a complete electronic system. -
Reality Is Broken a Why Games Make Us Better and How They Can Change the World E JANE Mcgonigal
Reality Is Broken a Why Games Make Us Better and How They Can Change the World E JANE McGONIGAL THE PENGUIN PRESS New York 2011 ADVANCE PRAISE FOR Reality Is Broken “Forget everything you know, or think you know, about online gaming. Like a blast of fresh air, Reality Is Broken blows away the tired stereotypes and reminds us that the human instinct to play can be harnessed for the greater good. With a stirring blend of energy, wisdom, and idealism, Jane McGonigal shows us how to start saving the world one game at a time.” —Carl Honoré, author of In Praise of Slowness and Under Pressure “Reality Is Broken is the most eye-opening book I read this year. With awe-inspiring ex pertise, clarity of thought, and engrossing writing style, Jane McGonigal cleanly exploded every misconception I’ve ever had about games and gaming. If you thought that games are for kids, that games are squandered time, or that games are dangerously isolating, addictive, unproductive, and escapist, you are in for a giant surprise!” —Sonja Lyubomirsky, Ph.D., professor of psychology at the University of California, Riverside, and author of The How of Happiness: A Scientific Approach to Getting the Life You Want “Reality Is Broken will both stimulate your brain and stir your soul. Once you read this remarkable book, you’ll never look at games—or yourself—quite the same way.” —Daniel H. Pink, author of Drive and A Whole New Mind “The path to becoming happier, improving your business, and saving the world might be one and the same: understanding how the world’s best games work. -
Innovative AMD Handheld Technology – the Ultimate Visual Experience™ Anywhere –
MEDIA BACKGROUNDER Innovative AMD Handheld Technology – The Ultimate Visual Experience™ Anywhere – AMD Vision AMD has a vision of a new era of mobile entertainment, bringing all the capabilities of a camera, camcorder, music player and 3D gaming console to mobile phones, smart phones and tomorrow’s converged portable devices. This vision is quickly becoming reality. Mass adoption of image and video sharing sites like YouTube, as well as the growing popularity of camera phones and personalized media services, are several trends that demonstrate ever-increasing consumer demand for “always connected” multimedia. And consumers have demonstrated a willingness to pay for sophisticated devices and services that deliver immersive, media-rich experiences. This increasing appetite for mobile multimedia makes it more important than ever for device manufacturers to quickly deliver the latest multimedia features – without significantly increasing design and manufacturing costs. AMD in Mobile Multimedia With the acquisition of ATI Technologies in 2006, AMD expanded beyond its traditional realm of PC computing to become a powerhouse in multimedia processing technologies. Building on more than 20 years of graphics and multimedia expertise, AMD is a leading supplier of media processors to the handheld market with nearly 250 million AMD Imageon™ media processors shipped to date. Furthermore, AMD is a significant source of mobile intellectual property (IP), licensing graphics technology to semiconductor suppliers. AMD provides customers with a top-to-bottom family of cutting-edge audio, video, imaging, graphics and mobile TV products. The scalable AMD technology platforms are based on open industry standards, and are designed for maximum performance with low power consumption. -
GPU4S: Embedded Gpus in Space
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. “The final publication is available at: DOI: 10.1109/DSD.2019.00064 GPU4S: Embedded GPUs in Space Leonidas Kosmidis∗,Jer´ omeˆ Lachaizey, Jaume Abella∗ Olivier Notebaerty, Francisco J. Cazorla∗;z, David Steenarix ∗Barcelona Supercomputing Center (BSC), Spain yAirbus Defence and Space, France zSpanish National Research Council (IIIA-CSIC), Spain xEuropean Space Agency, The Netherlands Abstract—Following the same trend of automotive and avion- in space [1][2]. Those studies concluded that although their ics, the space domain is witnessing an increase in the on-board energy efficiency is high, their power consumption is an order computing performance demands. This raise in performance of magnitude higher than the limited power budget of a space needs comes from both control and payload parts of the space- craft and calls for advanced electronics able to provide high system, which is limited to a couple of Watts. computational power under the constraints of the harsh space Interestingly, GPUs entered in the embedded domain to environment. On the non-technical side, for strategic reasons it is satisfy the increasing demand for multimedia-based hand- mandatory to get European independence on the used computing held and consumer devices such as smartphones, in-vehicle technology. In this project, which is still in its early phases, we entertainment systems, televisions, set-top boxes etc. -
Video Gaming and Death
Untitled. Photographer: Pawel Kadysz (https://stocksnap.io/photo/OZ4IBMDS8E). Special Issue Video Gaming and Death edited by John W. Borchert Issue 09 (2018) articles Introduction to a Special Issue on Video Gaming and Death by John W. Borchert, 1 Death Narratives: A Typology of Narratological Embeddings of Player's Death in Digital Games by Frank G. Bosman, 12 No Sympathy for Devils: What Christian Video Games Can Teach Us About Violence in Family-Friendly Entertainment by Vincent Gonzalez, 53 Perilous and Peril-Less Gaming: Representations of Death with Nintendo’s Wolf Link Amiibo by Rex Barnes, 107 “You Shouldn’t Have Done That”: “Ben Drowned” and the Uncanny Horror of the Haunted Cartridge by John Sanders, 135 Win to Exit: Perma-Death and Resurrection in Sword Art Online and Log Horizon by David McConeghy, 170 Death, Fabulation, and Virtual Reality Gaming by Jordan Brady Loewen, 202 The Self Across the Gap of Death: Some Christian Constructions of Continued Identity from Athenagoras to Ratzinger and Their Relevance to Digital Reconstitutions by Joshua Wise, 222 reviews Graveyard Keeper. A Review by Kathrin Trattner, 250 interviews Interview with Dr. Beverley Foulks McGuire on Video-Gaming, Buddhism, and Death by John W. Borchert, 259 reports Dying in the Game: A Perceptive of Life, Death and Rebirth Through World of Warcraft by Wanda Gregory, 265 Perilous and Peril-Less Gaming: Representations of Death with Nintendo’s Wolf Link Amiibo Rex Barnes Abstract This article examines the motif of death in popular electronic games and its imaginative applications when employing the Wolf Link Amiibo in The Legend of Zelda: Breath of the Wild (2017). -
Hardware-Assisted Rootkits: Abusing Performance Counters on the ARM and X86 Architectures
Hardware-Assisted Rootkits: Abusing Performance Counters on the ARM and x86 Architectures Matt Spisak Endgame, Inc. [email protected] Abstract the OS. With KPP in place, attackers are often forced to move malicious code to less privileged user-mode, to ele- In this paper, a novel hardware-assisted rootkit is intro- vate privileges enabling a hypervisor or TrustZone based duced, which leverages the performance monitoring unit rootkit, or to become more creative in their approach to (PMU) of a CPU. By configuring hardware performance achieving a kernel mode rootkit. counters to count specific architectural events, this re- Early advances in rootkit design focused on low-level search effort proves it is possible to transparently trap hooks to system calls and interrupts within the kernel. system calls and other interrupts driven entirely by the With the introduction of hardware virtualization exten- PMU. This offers an attacker the opportunity to redirect sions, hypervisor based rootkits became a popular area control flow to malicious code without requiring modifi- of study allowing malicious code to run underneath a cations to a kernel image. guest operating system [4, 5]. Another class of OS ag- The approach is demonstrated as a kernel-mode nostic rootkits also emerged that run in System Manage- rootkit on both the ARM and Intel x86-64 architectures ment Mode (SMM) on x86 [6] or within ARM Trust- that is capable of intercepting system calls while evad- Zone [7]. The latter two categories, which leverage vir- ing current kernel patch protection implementations such tualization extensions, SMM on x86, and security exten- as PatchGuard. -
ARM Debugger
ARM Debugger TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents ...................................................................................................................... ICD In-Circuit Debugger ................................................................................................................ Processor Architecture Manuals .............................................................................................. ARM/CORTEX/XSCALE ........................................................................................................... ARM Debugger ..................................................................................................................... 1 History ................................................................................................................................ 7 Warning .............................................................................................................................. 8 Introduction ....................................................................................................................... 9 Brief Overview of Documents for New Users 9 Demo and Start-up Scripts 10 Quick Start of the JTAG Debugger .................................................................................. 12 FAQ ..................................................................................................................................... 13 Troubleshooting ............................................................................................................... -
Accelerating Augmented Reality Video Processing with Fpgas
Accelerating Augmented Reality Video Processing with FPGAs A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree of Bachelor of Science 4/27/2016 Anthony Dresser, Lukas Hunker, Andrew Weiler Advisors: Professor James Duckworth, Professor Michael Ciaraldi This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. Abstract This project implemented a system for performing Augmented Reality on a Xilinx Zync FPGA. Augmented and virtual reality is a growing field currently dominated by desktop computer based solutions, and FPGAs offer unique advantages in latency, performance, bandwidth, and portability over more traditional solutions. The parallel nature of FPGAs also create a favorable platform for common types of video processing and machine vision algorithms. The project uses two OV7670 cameras mounted on the front of an Oculus Rift DK2. A video pipeline is designed around an Avnet ZedBoard, which has a Zynq 7020 SoC/FPGA. The system aimed to highlight moving objects in front of the user. Executive Summary Virtual and augmented reality are quickly growing fields, with many companies bringing unique hard- ware and software solutions to market each quarter. Presently, these solutions generally rely on a desktop computing platform to perform their video processing and video rendering. While it is easy to develop on these platforms due to their abundant performance, several issues arise that are generally discounted: cost, portability, power consumption, real time performance, and latency. -
A Tour of the ARM Architecture and Its Linux Support
Linux Conf Australia 2017 A tour of the ARM architecture and its Linux support Thomas Petazzoni Bootlin [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1 I Since 2012: Linux kernel contributor, adding support for Marvell ARM processors I Core contributor to the Buildroot project, an embedded Linux build system I From Toulouse, France Thomas Petazzoni I Thomas Petazzoni I CTO and Embedded Linux engineer at Bootlin I Embedded Linux expertise I Development, consulting and training I Strong open-source focus I Linux kernel contributors, ARM SoC support, kernel maintainers embedded Linux and kernel engineering - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1 I Core contributor to the Buildroot project, an embedded Linux build system I From Toulouse, France Thomas Petazzoni I Thomas Petazzoni I CTO and Embedded Linux engineer at Bootlin I Embedded Linux expertise I Development, consulting and training I Strong open-source focus I Linux kernel contributors, ARM SoC support, kernel maintainers I Since 2012: Linux kernel contributor, adding support for Marvell ARM processors - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1 I From Toulouse, France Thomas Petazzoni I Thomas Petazzoni I CTO and Embedded Linux engineer at Bootlin I Embedded Linux expertise I Development, consulting and training I Strong open-source focus I Linux kernel contributors,