Arm-Debugger-Lauterbach-75570.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sistemi Operativi Real-Time Marco Cesati Lezione R13 Sistemi Operativi Real-Time – II Schema Della Lezione
Sistemi operativi real-time Marco Cesati Lezione R13 Sistemi operativi real-time – II Schema della lezione Caratteristiche comuni VxWorks LynxOS Sistemi embedded e real-time QNX eCos Windows Linux come RTOS 15 gennaio 2013 Marco Cesati Dipartimento di Ingegneria Civile e Ingegneria Informatica Università degli Studi di Roma Tor Vergata SERT’13 R13.1 Sistemi operativi Di cosa parliamo in questa lezione? real-time Marco Cesati In questa lezione descriviamo brevemente alcuni dei più diffusi sistemi operativi real-time Schema della lezione Caratteristiche comuni VxWorks LynxOS 1 Caratteristiche comuni degli RTOS QNX 2 VxWorks eCos 3 LynxOS Windows Linux come RTOS 4 QNX Neutrino 5 eCos 6 Windows Embedded CE 7 Linux come RTOS SERT’13 R13.2 Sistemi operativi Caratteristiche comuni dei principali RTOS real-time Marco Cesati Corrispondenza agli standard: generalmente le API sono proprietarie, ma gli RTOS offrono anche compatibilità (compliancy) o conformità (conformancy) allo standard Real-Time POSIX Modularità e Scalabilità: il kernel ha una dimensione Schema della lezione Caratteristiche comuni (footprint) ridotta e le sue funzionalità sono configurabili VxWorks Dimensione del codice: spesso basati su microkernel LynxOS QNX Velocità e Efficienza: basso overhead per cambi di eCos contesto, latenza delle interruzioni e primitive di Windows sincronizzazione Linux come RTOS Porzioni di codice non interrompibile: generalmente molto corte e di durata predicibile Gestione delle interruzioni “separata”: interrupt handler corto e predicibile, ISR lunga -
An Emerging Architecture in Smart Phones
International Journal of Electronic Engineering and Computer Science Vol. 3, No. 2, 2018, pp. 29-38 http://www.aiscience.org/journal/ijeecs ARM Processor Architecture: An Emerging Architecture in Smart Phones Naseer Ahmad, Muhammad Waqas Boota * Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan Abstract ARM is a 32-bit RISC processor architecture. It is develop and licenses by British company ARM holdings. ARM holding does not manufacture and sell the CPU devices. ARM holding only licenses the processor architecture to interested parties. There are two main types of licences implementation licenses and architecture licenses. ARM processors have a unique combination of feature such as ARM core is very simple as compare to general purpose processors. ARM chip has several peripheral controller, a digital signal processor and ARM core. ARM processor consumes less power but provide the high performance. Now a day, ARM Cortex series is very popular in Smartphone devices. We will also see the important characteristics of cortex series. We discuss the ARM processor and system on a chip (SOC) which includes the Qualcomm, Snapdragon, nVidia Tegra, and Apple system on chips. In this paper, we discuss the features of ARM processor and Intel atom processor and see which processor is best. Finally, we will discuss the future of ARM processor in Smartphone devices. Keywords RISC, ISA, ARM Core, System on a Chip (SoC) Received: May 6, 2018 / Accepted: June 15, 2018 / Published online: July 26, 2018 @ 2018 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. -
Operating System Structure
Operating System Structure Joey Echeverria [email protected] modified by: Matthew Brewer [email protected] Nov 15, 2006 Carnegie Mellon University: 15-410 Fall 2006 Overview • Motivations • Kernel Structures – Monolithic Kernels ∗ Kernel Extensions – Open Systems – Microkernels – Exokernels – More Microkernels • Final Thoughts Carnegie Mellon University: 15-410 Fall 2006 1 Motivations • Operating systems have a hard job. • Operating systems are: – Hardware Multiplexers – Abstraction layers – Protection boundaries – Complicated Carnegie Mellon University: 15-410 Fall 2006 2 Motivations • Hardware Multiplexer – Each process sees a “computer” as if it were alone – Requires allocation and multiplexing of: ∗ Memory ∗ Disk ∗ CPU ∗ IO in general (network, graphics, keyboard etc.) • If OS is multiplexing it must also allocate – Priorities, Classes? - HARD problems!!! Carnegie Mellon University: 15-410 Fall 2006 3 Motivations • Abstraction Layer – Presents “simple”, “uniform” interface to hardware – Applications see a well defined interface (system calls) ∗ Block Device (hard drive, flash card, network mount, USB drive) ∗ CD drive (SCSI, IDE) ∗ tty (teletype, serial terminal, virtual terminal) ∗ filesystem (ext2-4, reiserfs, UFS, FFS, NFS, AFS, JFFS2, CRAMFS) ∗ network stack (TCP/IP abstraction) Carnegie Mellon University: 15-410 Fall 2006 4 Motivations • Protection Boundaries – Protect processes from each other – Protect crucial services (like the kernel) from process – Note: Everyone trusts the kernel • Complicated – See Project 3 :) – Full -
Workstation Operating Systems Mac OS 9
15-410 “Now that we've covered the 1970's...” Plan 9 Nov. 25, 2019 Dave Eckhardt 1 L11_P9 15-412, F'19 Overview “The land that time forgot” What style of computing? The death of timesharing The “Unix workstation problem” Design principles Name spaces File servers The TCP file system... Runtime environment 3 15-412, F'19 The Land That Time Forgot The “multi-core revolution” already happened once 1982: VAX-11/782 (dual-core) 1984: Sequent Balance 8000 (12 x NS32032) 1985: Encore MultiMax (20 x NS32032) 1990: Omron Luna88k workstation (4 x Motorola 88100) 1991: KSR1 (1088 x KSR1) 1991: “MCS” paper on multi-processor locking algorithms 1995: BeBox workstation (2 x PowerPC 603) The Land That Time Forgot The “multi-core revolution” already happened once 1982: VAX-11/782 (dual-core) 1984: Sequent Balance 8000 (12 x NS32032) 1985: Encore MultiMax (20 x NS32032) 1990: Omron Luna88k workstation (4 x Motorola 88100) 1991: KSR1 (1088 x KSR1) 1991: “MCS” paper on multi-processor locking algorithms 1995: BeBox workstation (2 x PowerPC 603) Wow! Why was 1995-2004 ruled by single-core machines? What operating systems did those multi-core machines run? The Land That Time Forgot Why was 1995-2004 ruled by single-core machines? In 1995 Intel + Microsoft made it feasible to buy a fast processor that fit on one chip, a fast I/O bus, multiple megabytes of RAM, and an OS with memory protection. Everybody could afford a “workstation”, so everybody bought one. Massive economies of scale existed in the single- processor “Wintel” universe. -
Hardware-Assisted Rootkits: Abusing Performance Counters on the ARM and X86 Architectures
Hardware-Assisted Rootkits: Abusing Performance Counters on the ARM and x86 Architectures Matt Spisak Endgame, Inc. [email protected] Abstract the OS. With KPP in place, attackers are often forced to move malicious code to less privileged user-mode, to ele- In this paper, a novel hardware-assisted rootkit is intro- vate privileges enabling a hypervisor or TrustZone based duced, which leverages the performance monitoring unit rootkit, or to become more creative in their approach to (PMU) of a CPU. By configuring hardware performance achieving a kernel mode rootkit. counters to count specific architectural events, this re- Early advances in rootkit design focused on low-level search effort proves it is possible to transparently trap hooks to system calls and interrupts within the kernel. system calls and other interrupts driven entirely by the With the introduction of hardware virtualization exten- PMU. This offers an attacker the opportunity to redirect sions, hypervisor based rootkits became a popular area control flow to malicious code without requiring modifi- of study allowing malicious code to run underneath a cations to a kernel image. guest operating system [4, 5]. Another class of OS ag- The approach is demonstrated as a kernel-mode nostic rootkits also emerged that run in System Manage- rootkit on both the ARM and Intel x86-64 architectures ment Mode (SMM) on x86 [6] or within ARM Trust- that is capable of intercepting system calls while evad- Zone [7]. The latter two categories, which leverage vir- ing current kernel patch protection implementations such tualization extensions, SMM on x86, and security exten- as PatchGuard. -
In-Circuit Emulator for ARM7
ICE-ARM Technical Information Technical In-Circuit Emulator for ARM7 ■ Active, passive and tracking emulation supported ■ Interface for flexible adaption to ARM7TDMI based designs ■ Software compatible JTAG debugger available ■ HLL debugger with C and C++ support ■ Disassembler for ARM and THUMB code ■ Inline assembler for ARM and THUMB code ■ Little and big endian byte ordering ■ Support for pipelined and de-pipelined address timing ARM7TDMI ■ Operation from 3.0 to 5.0V in passive mode ARM7TDMI-AMBA and from 3.0 to 3.6V in active and tracking mode The TRACE32-ICEARM supports the ARM7TDMI macro- cell with and without AMBA interface. The flexible concept of the probe allows the adaption to customer specific ASICs or to standard microcontrollers. An extensive spec- ification is available that provides a detailed overview of our requirements. Please call or email our techinal sup- port to get this document. ICE-ARM 21.02.17 TRACE32 - Technical Information 2 In-Circuit Emulator Basics of Operation Emulation Bus Break Exception Control Control Strobe/ Emulation- Dualport Target Buffer CPU Control Control Voltage Wait Control Control Port Port Buffer Analyzer Emulation module Base module Emulation Modules Modules Overview LA-7230 LA-7231 ARM7TDMI ARMICE-240 LA-7232 ARM7TDMI-AMBA ARMICE-240 ICE-ARM In-Circuit Emulator TRACE32 - Technical Information 3 Interfaces Compiler CPU Language Compier Compan Option y ARM C ARMCC ARM Ltd. AIF ARM C ARMCC ARM Ltd. ELF/DWARF ARM C REALVIEW- ARM Ltd. ELF/DWARF2 MDK ARM C GCCARM Free COFF/STABS Software Foundati on, Inc. ARM C GCCARM Free ELF/DWARF2 Software Foundati on, Inc. -
ARM Debugger
ARM Debugger TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents ...................................................................................................................... ICD In-Circuit Debugger ................................................................................................................ Processor Architecture Manuals .............................................................................................. ARM/CORTEX/XSCALE ........................................................................................................... ARM Debugger ..................................................................................................................... 1 History ................................................................................................................................ 7 Warning .............................................................................................................................. 8 Introduction ....................................................................................................................... 9 Brief Overview of Documents for New Users 9 Demo and Start-up Scripts 10 Quick Start of the JTAG Debugger .................................................................................. 12 FAQ ..................................................................................................................................... 13 Troubleshooting ............................................................................................................... -
Embedded Linux System Design and Development
Au0586 half title page 11/17/05 2:05 PM Page 1 EMBEDDED LINUX SYSTEM DESIGN AND DEVELOPMENT Au0586 title page 11/17/05 2:04 PM Page 1 EMBEDDED LINUX SYSTEM DESIGN AND DEVELOPMENT TEAM FLY P. Raghavan • Amol Lad • Sriram Neelakandan Boca Raton New York Published in 2006 by Auerbach Publications Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC Auerbach is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10987654321 International Standard Book Number-10: 0-8493-4058-6 (Hardcover) International Standard Book Number-13: 978-0-8493-4058-1 (Hardcover) Library of Congress Card Number 2005048179 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. -
Real-Time and Embedded Guide
Real-Time and Embedded Guide Herman Bruyninckx K.U.Leuven, Mechanical Engineering Leuven Belgium [email protected] Real-Time and Embedded Guide by Herman Bruyninckx Copyright © 2000, 2001, 2002 [email protected] This Guide covers the fundamentals of (i) real-time and embedded operating systems (focusing mostly on the differences with general purpose operating systems such as Linux), and (ii) real-time programming. The emphasis is on Free Software and Open Source Software examples: RTAI, RTLinux, eCos, RT-EMS, uCLinux, . , with a more than proportional focus on RTAI. This text also talks about design issues, software patterns and frameworks for real-time applications. That is, the “high-level” aspects of these software projects. These higher levels are often poorly dealt with in publications on real-time programming, which leads to the unfortunate situation that still too many real-time programmers use only the powerful but dangerously unstructured API of their RTOS. Missing the chance to develop more structured, and, hence, more deterministic and more portable software systems. Both the low-level RTOS primitives, and the high-level design issues, are illustrated by the real-world example of a hard real-time core for feedback control and signal processing. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation, with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of this license can be found at http://www.fsf.org/copyleft/fdl.html. -
Systèmes Embarqués PFSEM 2007 - 2008
ChorusOS Systèmes Embarqués PFSEM 2007 - 2008 Real-Time & Embedded OS Principles Use case: ChorusOS B/PFSEM/Systèmes Embarqués Ivan Boule 1 ChorusOS Plan Environnement de Développement Micro-noyau C5 (ChorusOS®) Device Driver Framework Personnalité POSIX Voir "Programming Under Chorus", Jean-Marie Rifflet http://www.pps.jussieu.fr/~rifflet/PUBLICATIONS/book4.html B/PFSEM/Systèmes Embarqués Ivan Boule 2 ChorusOS OS Architecture Outils, Agents Applications POSIX API DDI C5 Services POSIX Device Drivers API Micro-noyau C5 Micro-noyau B/PFSEM/Systèmes Embarqués Ivan Boule 3 ChorusOS ChorusOS - Système Temps-Réel Environnement de développement croisé (Host/Target) Commandes d'administration embarquées C5 micro-noyau (Chorus 5ème génération) Comportement temps-réel garanti Verrouillage à grain fin (fine-grain locking) Gestion(s) mémoire flexible Device Drivers Framework Debugger système (kdb) intégré B/PFSEM/Systèmes Embarqués Ivan Boule 4 ChorusOS Host/Target System Environment Tool Agents Applications POSIX API DDI C5 POSIX Services Device Drivers C5 Microkernel Host System (Linux or Solaris) Target Platform B/PFSEM/Systèmes Embarqués Ivan Boule 5 ChorusOS Environnement de Développement Embedded Targets • Application download • Embedded Debugger Development Host Linux or Solaris • Jaluna/C5 system configurator • C and C++ Development Toolchain • C and C++ Symbolic Debugger Liens: • Application management utilities ● Ligne série • Set of libraries ● Ethernet ● JTAG B/PFSEM/Systèmes Embarqués Ivan Boule 6 ChorusOS Développement Host/Target -
A Tour of the ARM Architecture and Its Linux Support
Linux Conf Australia 2017 A tour of the ARM architecture and its Linux support Thomas Petazzoni Bootlin [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1 I Since 2012: Linux kernel contributor, adding support for Marvell ARM processors I Core contributor to the Buildroot project, an embedded Linux build system I From Toulouse, France Thomas Petazzoni I Thomas Petazzoni I CTO and Embedded Linux engineer at Bootlin I Embedded Linux expertise I Development, consulting and training I Strong open-source focus I Linux kernel contributors, ARM SoC support, kernel maintainers embedded Linux and kernel engineering - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1 I Core contributor to the Buildroot project, an embedded Linux build system I From Toulouse, France Thomas Petazzoni I Thomas Petazzoni I CTO and Embedded Linux engineer at Bootlin I Embedded Linux expertise I Development, consulting and training I Strong open-source focus I Linux kernel contributors, ARM SoC support, kernel maintainers I Since 2012: Linux kernel contributor, adding support for Marvell ARM processors - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1 I From Toulouse, France Thomas Petazzoni I Thomas Petazzoni I CTO and Embedded Linux engineer at Bootlin I Embedded Linux expertise I Development, consulting and training I Strong open-source focus I Linux kernel contributors, -
Droidcluster: Towards Smartphone Cluster Computing the Streets Are Paved with Potential Computer Clusters
DroidCluster: Towards Smartphone Cluster Computing The Streets are Paved with Potential Computer Clusters Sebastian Schildt, Felix B¨usching,Lars Wolf PhoneCom 2012 Introduction The Cluster Implications Opportunities Once upon a time... In the beginning of 2011 we bought 6 medium class Android Smartphones for a programming lab. LG P500, Android 2.2, 600 MHz Qualcomm MSM7227, 512 MiB RAM Sebastian Schildt j DroidCluster: Towards Smartphone Cluster Computing j 2 We should build a cluster out of it! Sounds like a reasonable idea! Introduction The Cluster Implications Opportunities The idea... Sebastian Schildt j DroidCluster: Towards Smartphone Cluster Computing j 3 Sounds like a reasonable idea! Introduction The Cluster Implications Opportunities The idea... We should build a cluster out of it! Sebastian Schildt j DroidCluster: Towards Smartphone Cluster Computing j 3 Introduction The Cluster Implications Opportunities The idea... We should build a cluster out of it! Sounds like a reasonable idea! Sebastian Schildt j DroidCluster: Towards Smartphone Cluster Computing j 3 Introduction The Cluster Implications Opportunities Architecture USB-Connection (a) Wireless Access Point WiFi-Connection (b) Android #1 Control PC MPI Master 2 3 4 5 6 MPI Slaves Sebastian Schildt j DroidCluster: Towards Smartphone Cluster Computing j 4 Introduction The Cluster Implications Opportunities Software Full ARM Debian installation alongside the Android OS (chroot) MPI-based Linpack benchmark Connectivity through WiFi or USB reverse-tethering Control PC only used