Embedded Linux System Design and Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sistemi Operativi Real-Time Marco Cesati Lezione R13 Sistemi Operativi Real-Time – II Schema Della Lezione
Sistemi operativi real-time Marco Cesati Lezione R13 Sistemi operativi real-time – II Schema della lezione Caratteristiche comuni VxWorks LynxOS Sistemi embedded e real-time QNX eCos Windows Linux come RTOS 15 gennaio 2013 Marco Cesati Dipartimento di Ingegneria Civile e Ingegneria Informatica Università degli Studi di Roma Tor Vergata SERT’13 R13.1 Sistemi operativi Di cosa parliamo in questa lezione? real-time Marco Cesati In questa lezione descriviamo brevemente alcuni dei più diffusi sistemi operativi real-time Schema della lezione Caratteristiche comuni VxWorks LynxOS 1 Caratteristiche comuni degli RTOS QNX 2 VxWorks eCos 3 LynxOS Windows Linux come RTOS 4 QNX Neutrino 5 eCos 6 Windows Embedded CE 7 Linux come RTOS SERT’13 R13.2 Sistemi operativi Caratteristiche comuni dei principali RTOS real-time Marco Cesati Corrispondenza agli standard: generalmente le API sono proprietarie, ma gli RTOS offrono anche compatibilità (compliancy) o conformità (conformancy) allo standard Real-Time POSIX Modularità e Scalabilità: il kernel ha una dimensione Schema della lezione Caratteristiche comuni (footprint) ridotta e le sue funzionalità sono configurabili VxWorks Dimensione del codice: spesso basati su microkernel LynxOS QNX Velocità e Efficienza: basso overhead per cambi di eCos contesto, latenza delle interruzioni e primitive di Windows sincronizzazione Linux come RTOS Porzioni di codice non interrompibile: generalmente molto corte e di durata predicibile Gestione delle interruzioni “separata”: interrupt handler corto e predicibile, ISR lunga -
Current Status of Win32 Gdk Implementation
Current status of Win32 Gdk implementation Bertrand Bellenot - [email protected] Features (recall) ! Same environment on every system : ! Same look and feel on every platform. ! Simplify the code maintenance : ! No need to care about a « windows specific code ». ! Simplify functionality extension : ! No need to implement the code twice, once for windows and once for other OS. ! Only use TVirtualX. Actual Status (recall) ! The actual code uses a modified version of gdk and glib, the GIMP low-level libraries ported on win32. In practice, this means that we only need to link with gdk.lib, glib.lib and iconv.dll as additional libraries (hopefully less in the future). These libraries are under LGPL, so there are no licensing issues in using and distributing them. ! As original version of gdk was not doing everything needed by root (as font orientation!), I did have to slightly modify the original code. Points fixed since last year ! Some characters were not displayed. " ! Some problems with icon’s transparency. " ! The event handling was not perfect. " ! OpenGL was not working. " Events handling architecture (actual) TSystem CINT TGClient TVirtualX Gdk Threads issue ! From gdk developper FAQ : ! Without some major restructuring in GDK-Win32, I don't think there is any chance that GTK+ would work, in general, in a multi-threaded app, with different threads accessing windows created by other threads. ! One problem is that each thread in Windows have its own message queue. GDK-Win32 currently uses just one "message pump" in the main thread. It will never see messages for windows created by other threads. Threads issue ! As gdk is not thread safe, I had to create a separate thread from within the gdk calls are made. -
The GNOME Desktop Environment
The GNOME desktop environment Miguel de Icaza ([email protected]) Instituto de Ciencias Nucleares, UNAM Elliot Lee ([email protected]) Federico Mena ([email protected]) Instituto de Ciencias Nucleares, UNAM Tom Tromey ([email protected]) April 27, 1998 Abstract We present an overview of the free GNU Network Object Model Environment (GNOME). GNOME is a suite of X11 GUI applications that provides joy to users and hackers alike. It has been designed for extensibility and automation by using CORBA and scripting languages throughout the code. GNOME is licensed under the terms of the GNU GPL and the GNU LGPL and has been developed on the Internet by a loosely-coupled team of programmers. 1 Motivation Free operating systems1 are excellent at providing server-class services, and so are often the ideal choice for a server machine. However, the lack of a consistent user interface and of consumer-targeted applications has prevented free operating systems from reaching the vast majority of users — the desktop users. As such, the benefits of free software have only been enjoyed by the technically savvy computer user community. Most users are still locked into proprietary solutions for their desktop environments. By using GNOME, free operating systems will have a complete, user-friendly desktop which will provide users with powerful and easy-to-use graphical applications. Many people have suggested that the cause for the lack of free user-oriented appli- cations is that these do not provide enough excitement to hackers, as opposed to system- level programming. Since most of the GNOME code had to be written by hackers, we kept them happy: the magic recipe here is to design GNOME around an adrenaline response by trying to use exciting models and ideas in the applications. -
GTK Lesson 3: Containers
CSci493.70 Graphical User Interface Programming Prof. Stewart Weiss Lesson 3: Containers Lesson 3: Containers 1 Container Widgets and Packing When you design an application with a graphical user interface, you put various widgets inside of one another and implicitly dene a hierarchy of what's inside of what. This is a containment hierarchy. Some of the widgets you use have specic purposes, such as buttons, text entry boxes, and menus. If you design your GUI on paper, you draw these widgets where you want them and making them the sizes that you want them to be. However, getting them to be in those specic positions with their specic sizes using a library like GTK+ requires that you use widgets whose primary purpose is for laying out other widgets. These widgets are called container widgets. In Lesson 2, we introduced the GtkContainer class, which is the ancestral class of all container widgets and which we now cover in more detail. Recall that containers can be partitioned into two categories: (1) those that can hold only a single child widget, and (2) those that can hold more than one. Containers that can contain only a single widget are called decorator containers, because their principal purpose is to add functionality and decorative eects to the child widget. Containers that can hold several children are called layout containers, because they are used primarily for laying out the child widgets within their (GDK) windows. Layout containers assign sizes and positions to their children. 1.1 The GtkContainer Class Before we look at their concrete subclasses, we will examine what functionality and properties GtkContainers possess. -
Drawing in GTK+
CSci493.70 Graphical User Interface Programming Prof. Stewart Weiss Drawing in GTK+ Drawing in GTK+ Background In order to understand how to draw in GTK, you rst have to understand something about how GTK draws widgets, because how GTK draws widgets has an important role in how you design your drawing application. An understanding of how GTK draws widgets is also required if you ever plan to build your own custom widgets. Windows and Clipping Most windowing systems are designed around the idea that an application's visual display lies within a rectangular region on the screen called its window. The windowing system, e.g. Gnome or KDE or Explorer, does not automatically save the graphical content of an application's windows; instead it asks the application itself to repaint 1 its windows whenever it is needed. For example, if a window that is stacked below other windows gets raised to the top, then a client program has to repaint the area that was previously obscured. When the windowing system asks a client program to redraw part of a window, it sends an exposure event to the program that contains that window. An exposure event is simply an event sent from the underlying windowing system to a widget to notify it that it must redraw itself. In this context, a "window" means "a rectangular region with automatic clipping", not a top-level application window. Clipping is the act of removing portions of a window that do not need to be redrawn, or looked at the other way, it is determining which are the only regions of a window that must be redrawn. -
Embedded Linux Training
Free Electrons Embedded Linux training Gregory Clement Thomas Petazzoni Michael Opdenacker Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com Rights to copy © Copyright 2004-2011, Free Electrons [email protected] Electronic version of this document available on http://free-electrons.com/doc/training/embedded-linux Updates will be available on http://free-electrons.com/doc/training/embedded-linux/ Attribution ± ShareAlike 3.0 Corrections, suggestions, You are free contributions and translations are welcome! to copy, distribute, display, and perform the work to make derivative works Latest update: Feb 14, 2011 to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com Linux kernel Linux device drivers Free Electrons Board support code Our services Mainstreaming kernel code Kernel debugging Custom Development System integration -
Operating System Structure
Operating System Structure Joey Echeverria [email protected] modified by: Matthew Brewer [email protected] Nov 15, 2006 Carnegie Mellon University: 15-410 Fall 2006 Overview • Motivations • Kernel Structures – Monolithic Kernels ∗ Kernel Extensions – Open Systems – Microkernels – Exokernels – More Microkernels • Final Thoughts Carnegie Mellon University: 15-410 Fall 2006 1 Motivations • Operating systems have a hard job. • Operating systems are: – Hardware Multiplexers – Abstraction layers – Protection boundaries – Complicated Carnegie Mellon University: 15-410 Fall 2006 2 Motivations • Hardware Multiplexer – Each process sees a “computer” as if it were alone – Requires allocation and multiplexing of: ∗ Memory ∗ Disk ∗ CPU ∗ IO in general (network, graphics, keyboard etc.) • If OS is multiplexing it must also allocate – Priorities, Classes? - HARD problems!!! Carnegie Mellon University: 15-410 Fall 2006 3 Motivations • Abstraction Layer – Presents “simple”, “uniform” interface to hardware – Applications see a well defined interface (system calls) ∗ Block Device (hard drive, flash card, network mount, USB drive) ∗ CD drive (SCSI, IDE) ∗ tty (teletype, serial terminal, virtual terminal) ∗ filesystem (ext2-4, reiserfs, UFS, FFS, NFS, AFS, JFFS2, CRAMFS) ∗ network stack (TCP/IP abstraction) Carnegie Mellon University: 15-410 Fall 2006 4 Motivations • Protection Boundaries – Protect processes from each other – Protect crucial services (like the kernel) from process – Note: Everyone trusts the kernel • Complicated – See Project 3 :) – Full -
Pygtk GUI Programming Pygtk GUI Programming Table of Contents Pygtk GUI Programming
PyGTK GUI programming PyGTK GUI programming Table of Contents PyGTK GUI programming...............................................................................................................................1 Chapter 1. Introduzione....................................................................................................................................2 1.1. Primo approccio...............................................................................................................................2 1.2. Il toolkit PyGTK..............................................................................................................................2 1.3. PyGTK e Glade................................................................................................................................2 1.4. IDE o editor......................................................................................................................................4 1.5. Installazione.....................................................................................................................................6 1.5.1. Installazione su piattaforma GNU/Linux...............................................................................6 1.5.2. Installazione su piattaforma Windows...................................................................................6 1.6. Supporto e help................................................................................................................................6 Chapter 2. I Widget, le classi ed un -
Workstation Operating Systems Mac OS 9
15-410 “Now that we've covered the 1970's...” Plan 9 Nov. 25, 2019 Dave Eckhardt 1 L11_P9 15-412, F'19 Overview “The land that time forgot” What style of computing? The death of timesharing The “Unix workstation problem” Design principles Name spaces File servers The TCP file system... Runtime environment 3 15-412, F'19 The Land That Time Forgot The “multi-core revolution” already happened once 1982: VAX-11/782 (dual-core) 1984: Sequent Balance 8000 (12 x NS32032) 1985: Encore MultiMax (20 x NS32032) 1990: Omron Luna88k workstation (4 x Motorola 88100) 1991: KSR1 (1088 x KSR1) 1991: “MCS” paper on multi-processor locking algorithms 1995: BeBox workstation (2 x PowerPC 603) The Land That Time Forgot The “multi-core revolution” already happened once 1982: VAX-11/782 (dual-core) 1984: Sequent Balance 8000 (12 x NS32032) 1985: Encore MultiMax (20 x NS32032) 1990: Omron Luna88k workstation (4 x Motorola 88100) 1991: KSR1 (1088 x KSR1) 1991: “MCS” paper on multi-processor locking algorithms 1995: BeBox workstation (2 x PowerPC 603) Wow! Why was 1995-2004 ruled by single-core machines? What operating systems did those multi-core machines run? The Land That Time Forgot Why was 1995-2004 ruled by single-core machines? In 1995 Intel + Microsoft made it feasible to buy a fast processor that fit on one chip, a fast I/O bus, multiple megabytes of RAM, and an OS with memory protection. Everybody could afford a “workstation”, so everybody bought one. Massive economies of scale existed in the single- processor “Wintel” universe. -
In-Circuit Emulator for ARM7
ICE-ARM Technical Information Technical In-Circuit Emulator for ARM7 ■ Active, passive and tracking emulation supported ■ Interface for flexible adaption to ARM7TDMI based designs ■ Software compatible JTAG debugger available ■ HLL debugger with C and C++ support ■ Disassembler for ARM and THUMB code ■ Inline assembler for ARM and THUMB code ■ Little and big endian byte ordering ■ Support for pipelined and de-pipelined address timing ARM7TDMI ■ Operation from 3.0 to 5.0V in passive mode ARM7TDMI-AMBA and from 3.0 to 3.6V in active and tracking mode The TRACE32-ICEARM supports the ARM7TDMI macro- cell with and without AMBA interface. The flexible concept of the probe allows the adaption to customer specific ASICs or to standard microcontrollers. An extensive spec- ification is available that provides a detailed overview of our requirements. Please call or email our techinal sup- port to get this document. ICE-ARM 21.02.17 TRACE32 - Technical Information 2 In-Circuit Emulator Basics of Operation Emulation Bus Break Exception Control Control Strobe/ Emulation- Dualport Target Buffer CPU Control Control Voltage Wait Control Control Port Port Buffer Analyzer Emulation module Base module Emulation Modules Modules Overview LA-7230 LA-7231 ARM7TDMI ARMICE-240 LA-7232 ARM7TDMI-AMBA ARMICE-240 ICE-ARM In-Circuit Emulator TRACE32 - Technical Information 3 Interfaces Compiler CPU Language Compier Compan Option y ARM C ARMCC ARM Ltd. AIF ARM C ARMCC ARM Ltd. ELF/DWARF ARM C REALVIEW- ARM Ltd. ELF/DWARF2 MDK ARM C GCCARM Free COFF/STABS Software Foundati on, Inc. ARM C GCCARM Free ELF/DWARF2 Software Foundati on, Inc. -
Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae -
Real-Time and Embedded Guide
Real-Time and Embedded Guide Herman Bruyninckx K.U.Leuven, Mechanical Engineering Leuven Belgium [email protected] Real-Time and Embedded Guide by Herman Bruyninckx Copyright © 2000, 2001, 2002 [email protected] This Guide covers the fundamentals of (i) real-time and embedded operating systems (focusing mostly on the differences with general purpose operating systems such as Linux), and (ii) real-time programming. The emphasis is on Free Software and Open Source Software examples: RTAI, RTLinux, eCos, RT-EMS, uCLinux, . , with a more than proportional focus on RTAI. This text also talks about design issues, software patterns and frameworks for real-time applications. That is, the “high-level” aspects of these software projects. These higher levels are often poorly dealt with in publications on real-time programming, which leads to the unfortunate situation that still too many real-time programmers use only the powerful but dangerously unstructured API of their RTOS. Missing the chance to develop more structured, and, hence, more deterministic and more portable software systems. Both the low-level RTOS primitives, and the high-level design issues, are illustrated by the real-world example of a hard real-time core for feedback control and signal processing. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation, with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of this license can be found at http://www.fsf.org/copyleft/fdl.html.