Innovative AMD Handheld Technology – the Ultimate Visual Experience™ Anywhere –
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reviving the Development of Openchrome
Reviving the Development of OpenChrome Kevin Brace OpenChrome Project Maintainer / Developer XDC2017 September 21st, 2017 Outline ● About Me ● My Personal Story Behind OpenChrome ● Background on VIA Chrome Hardware ● The History of OpenChrome Project ● Past Releases ● Observations about Standby Resume ● Developmental Philosophy ● Developmental Challenges ● Strategies for Further Development ● Future Plans 09/21/2017 XDC2017 2 About Me ● EE (Electrical Engineering) background (B.S.E.E.) who specialized in digital design / computer architecture in college (pretty much the only undergraduate student “still” doing this stuff where I attended college) ● Graduated recently ● First time conference presenter ● Very experienced with Xilinx FPGA (Spartan-II through 7 Series FPGA) ● Fluent in Verilog / VHDL design and verification ● Interest / design experience with external communication interfaces (PCI / PCIe) and external memory interfaces (SDRAM / DDR3 SDRAM) ● Developed a simple DMA engine for PCI I/F validation w/Windows WDM (Windows Driver Model) kernel device driver ● Almost all the knowledge I have is self taught (university engineering classes were not very useful) 09/21/2017 XDC2017 3 Motivations Behind My Work ● General difficulty in obtaining meaningful employment in the digital hardware design field (too many students in the field, difficulty obtaining internship, etc.) ● Collects and repairs abandoned computer hardware (It’s like rescuing puppies!) ● Owns 100+ desktop computers and 20+ laptop computers (mostly abandoned old stuff I -
Computer Graphics on Mobile Devices
Computer Graphics on Mobile Devices Bruno Tunjic∗ Vienna University of Technology Figure 1: Different mobile devices available on the market today. Image courtesy of ASU [ASU 2011]. Abstract 1 Introduction Computer graphics hardware acceleration and rendering techniques Under the term mobile device we understand any device designed have improved significantly in recent years. These improvements for use in mobile context [Marcial 2010]. In other words this term are particularly noticeable in mobile devices that are produced in is used for devices that are battery-powered and therefore physi- great amounts and developed by different manufacturers. New tech- cally movable. This group of devices includes mobile (cellular) nologies are constantly developed and this extends the capabilities phones, personal media players (PMP), personal navigation devices of such devices correspondingly. (PND), personal digital assistants (PDA), smartphones, tablet per- sonal computers, notebooks, digital cameras, hand-held game con- soles and mobile internet devices (MID). Figure 1 shows different In this paper, a review about the existing and new hardware and mobile devices available on the market today. Traditional mobile software, as well as a closer look into some of the most important phones are aimed at making and receiving telephone calls over a revolutionary technologies, is given. Special emphasis is given on radio link. PDAs are personal organizers that later evolved into de- new Application Programming Interfaces (API) and rendering tech- vices with advanced units communication, entertainment and wire- niques that were developed in recent years. A review of limitations less capabilities [Wiggins 2004]. Smartphones can be seen as a that developers have to overcome when bringing graphics to mobile next generation of PDAs since they incorporate all its features but devices is also provided. -
Amd Filed: February 24, 2009 (Period: December 27, 2008)
FORM 10-K ADVANCED MICRO DEVICES INC - amd Filed: February 24, 2009 (period: December 27, 2008) Annual report which provides a comprehensive overview of the company for the past year Table of Contents 10-K - FORM 10-K PART I ITEM 1. 1 PART I ITEM 1. BUSINESS ITEM 1A. RISK FACTORS ITEM 1B. UNRESOLVED STAFF COMMENTS ITEM 2. PROPERTIES ITEM 3. LEGAL PROCEEDINGS ITEM 4. SUBMISSION OF MATTERS TO A VOTE OF SECURITY HOLDERS PART II ITEM 5. MARKET FOR REGISTRANT S COMMON EQUITY, RELATED STOCKHOLDER MATTERS AND ISSUER PURCHASES OF EQUITY SECURITIES ITEM 6. SELECTED FINANCIAL DATA ITEM 7. MANAGEMENT S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS ITEM 7A. QUANTITATIVE AND QUALITATIVE DISCLOSURE ABOUT MARKET RISK ITEM 8. FINANCIAL STATEMENTS AND SUPPLEMENTARY DATA ITEM 9. CHANGES IN AND DISAGREEMENTS WITH ACCOUNTANTS ON ACCOUNTING AND FINANCIAL DISCLOSURE ITEM 9A. CONTROLS AND PROCEDURES ITEM 9B. OTHER INFORMATION PART III ITEM 10. DIRECTORS, EXECUTIVE OFFICERS AND CORPORATE GOVERNANCE ITEM 11. EXECUTIVE COMPENSATION ITEM 12. SECURITY OWNERSHIP OF CERTAIN BENEFICIAL OWNERS AND MANAGEMENT AND RELATED STOCKHOLDER MATTERS ITEM 13. CERTAIN RELATIONSHIPS AND RELATED TRANSACTIONS AND DIRECTOR INDEPENDENCE ITEM 14. PRINCIPAL ACCOUNTANT FEES AND SERVICES PART IV ITEM 15. EXHIBITS, FINANCIAL STATEMENT SCHEDULES SIGNATURES EX-10.5(A) (OUTSIDE DIRECTOR EQUITY COMPENSATION POLICY) EX-10.19 (SEPARATION AGREEMENT AND GENERAL RELEASE) EX-21 (LIST OF AMD SUBSIDIARIES) EX-23.A (CONSENT OF ERNST YOUNG LLP - ADVANCED MICRO DEVICES) EX-23.B -
Comparative Study of Various Systems on Chips Embedded in Mobile Devices
Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.7, 2013 - National Conference on Emerging Trends in Electrical, Instrumentation & Communication Engineering Comparative Study of Various Systems on Chips Embedded in Mobile Devices Deepti Bansal(Assistant Professor) BVCOE, New Delhi Tel N: +919711341624 Email: [email protected] ABSTRACT Systems-on-chips (SoCs) are the latest incarnation of very large scale integration (VLSI) technology. A single integrated circuit can contain over 100 million transistors. Harnessing all this computing power requires designers to move beyond logic design into computer architecture, meet real-time deadlines, ensure low-power operation, and so on. These opportunities and challenges make SoC design an important field of research. So in the paper we will try to focus on the various aspects of SOC and the applications offered by it. Also the different parameters to be checked for functional verification like integration and complexity are described in brief. We will focus mainly on the applications of system on chip in mobile devices and then we will compare various mobile vendors in terms of different parameters like cost, memory, features, weight, and battery life, audio and video applications. A brief discussion on the upcoming technologies in SoC used in smart phones as announced by Intel, Microsoft, Texas etc. is also taken up. Keywords: System on Chip, Core Frame Architecture, Arm Processors, Smartphone. 1. Introduction: What Is SoC? We first need to define system-on-chip (SoC). A SoC is a complex integrated circuit that implements most or all of the functions of a complete electronic system. -
4010, 237 8514, 226 80486, 280 82786, 227, 280 a AA. See Anti-Aliasing (AA) Abacus, 16 Accelerated Graphics Port (AGP), 219 Acce
Index 4010, 237 AIB. See Add-in board (AIB) 8514, 226 Air traffic control system, 303 80486, 280 Akeley, Kurt, 242 82786, 227, 280 Akkadian, 16 Algebra, 26 Alias Research, 169 Alienware, 186 A Alioscopy, 389 AA. See Anti-aliasing (AA) All-In-One computer, 352 Abacus, 16 All-points addressable (APA), 221 Accelerated Graphics Port (AGP), 219 Alpha channel, 328 AccelGraphics, 166, 273 Alpha Processor, 164 Accel-KKR, 170 ALT-256, 223 ACM. See Association for Computing Altair 680b, 181 Machinery (ACM) Alto, 158 Acorn, 156 AMD, 232, 257, 277, 410, 411 ACRTC. See Advanced CRT Controller AMD 2901 bit-slice, 318 (ACRTC) American national Standards Institute (ANSI), ACS, 158 239 Action Graphics, 164, 273 Anaglyph, 376 Acumos, 253 Anaglyph glasses, 385 A.D., 15 Analog computer, 140 Adage, 315 Anamorphic distortion, 377 Adage AGT-30, 317 Anatomic and Symbolic Mapper Engine Adams Associates, 102 (ASME), 110 Adams, Charles W., 81, 148 Anderson, Bob, 321 Add-in board (AIB), 217, 363 AN/FSQ-7, 302 Additive color, 328 Anisotropic filtering (AF), 65 Adobe, 280 ANSI. See American national Standards Adobe RGB, 328 Institute (ANSI) Advanced CRT Controller (ACRTC), 226 Anti-aliasing (AA), 63 Advanced Remote Display Station (ARDS), ANTIC graphics co-processor, 279 322 Antikythera device, 127 Advanced Visual Systems (AVS), 164 APA. See All-points addressable (APA) AED 512, 333 Apalatequi, 42 AF. See Anisotropic filtering (AF) Aperture grille, 326 AGP. See Accelerated Graphics Port (AGP) API. See Application program interface Ahiska, Yavuz, 260 standard (API) AI. -
RADEON 7000 MAC EDITION User's Guide
RADEON™ 7000 MAC® EDITION User’s Guide P/N: 137-40298-20 Copyright © 2002, ATI Technologies Inc. All rights reserved. ATI and all ATI product and product feature names are trademarks and/or registered trademarks of ATI Technologies Inc. All other company and/or product names are trademarks and/or registered trademarks of their respective owners. Features, performance and specifications are subject to change without notice. Product may not be exactly as shown in the diagrams. Reproduction of this manual, or parts thereof, in any form, without the express written permission of ATI Technologies Inc. is strictly prohibited. Disclaimer While every precaution has been taken in the preparation of this document, ATI Technologies Inc. assumes no liability with respect to the operation or use of ATI hardware, software or other products and documentation described herein, for any act or omission of ATI concerning such products or this documentation, for any interruption of service, loss or interruption of business, loss of anticipatory profits, or for punitive, incidental or consequential damages in connection with the furnishing, performance, or use of the ATI hardware, software, or other products and documentation provided herein. ATI Technologies Inc. reserves the right to make changes without further notice to a product or system described herein to improve reliability, function or design. With respect to ATI products which this document relates, ATI disclaims all express or implied warranties regarding such products, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. Page ii 1 Introduction The RADEON 7000 MAC EDITION represents the next generation in 3D and video acceleration for your Power Macintosh computer. -
GPU4S: Embedded Gpus in Space
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. “The final publication is available at: DOI: 10.1109/DSD.2019.00064 GPU4S: Embedded GPUs in Space Leonidas Kosmidis∗,Jer´ omeˆ Lachaizey, Jaume Abella∗ Olivier Notebaerty, Francisco J. Cazorla∗;z, David Steenarix ∗Barcelona Supercomputing Center (BSC), Spain yAirbus Defence and Space, France zSpanish National Research Council (IIIA-CSIC), Spain xEuropean Space Agency, The Netherlands Abstract—Following the same trend of automotive and avion- in space [1][2]. Those studies concluded that although their ics, the space domain is witnessing an increase in the on-board energy efficiency is high, their power consumption is an order computing performance demands. This raise in performance of magnitude higher than the limited power budget of a space needs comes from both control and payload parts of the space- craft and calls for advanced electronics able to provide high system, which is limited to a couple of Watts. computational power under the constraints of the harsh space Interestingly, GPUs entered in the embedded domain to environment. On the non-technical side, for strategic reasons it is satisfy the increasing demand for multimedia-based hand- mandatory to get European independence on the used computing held and consumer devices such as smartphones, in-vehicle technology. In this project, which is still in its early phases, we entertainment systems, televisions, set-top boxes etc. -
Lewis University Dr. James Girard Summer Undergraduate Research Program 2021 Faculty Mentor - Project Application
Lewis University Dr. James Girard Summer Undergraduate Research Program 2021 Faculty Mentor - Project Application Exploring the Use of High-level Parallel Abstractions and Parallel Computing for Functional and Gate-Level Simulation Acceleration Dr. Lucien Ngalamou Department of Engineering, Computing and Mathematical Sciences Abstract System-on-Chip (SoC) complexity growth has multiplied non-stop, and time-to- market pressure has driven demand for innovation in simulation performance. Logic simulation is the primary method to verify the correctness of such systems. Logic simulation is used heavily to verify the functional correctness of a design for a broad range of abstraction levels. In mainstream industry verification methodologies, typical setups coordinate the validation e↵ort of a complex digital system by distributing logic simulation tasks among vast server farms for months at a time. Yet, the performance of logic simulation is not sufficient to satisfy the demand, leading to incomplete validation processes, escaped functional bugs, and continuous pressure on the EDA1 industry to develop faster simulation solutions. In this research, we will explore a solution that uses high-level parallel abstractions and parallel computing to boost the performance of logic simulation. 1Electronic Design Automation 1 1 Project Description 1.1 Introduction and Background SoC complexity is increasing rapidly, driven by demands in the mobile market, and in- creasingly by the fast-growth of assisted- and autonomous-driving applications. SoC teams utilize many verification technologies to address their complexity and time-to-market chal- lenges; however, logic simulation continues to be the foundation for all verification flows, and continues to account for more than 90% [10] of all verification workloads. -
Advanced Micro Devices (AMD)
Strategic Report for Advanced Micro Devices, Inc. Tad Stebbins Andrew Dialynas Rosalie Simkins April 14, 2010 Advanced Micro Devices, Inc. Table of Contents Executive Summary ............................................................................................ 3 Company Overview .............................................................................................4 Company History..................................................................................................4 Business Model..................................................................................................... 7 Market Overview and Trends ...............................................................................8 Competitive Analysis ........................................................................................ 10 Internal Rivalry................................................................................................... 10 Barriers to Entry and Exit .................................................................................. 13 Supplier Power.................................................................................................... 14 Buyer Power........................................................................................................ 15 Substitutes and Complements............................................................................ 16 Financial Analysis ............................................................................................. 18 Overview ............................................................................................................ -
High Bandwidth Memory for Graphics Applications Contents
High Bandwidth Memory for Graphics Applications Contents • Differences in Requirements: System Memory vs. Graphics Memory • Timeline of Graphics Memory Standards • GDDR2 • GDDR3 • GDDR4 • GDDR5 SGRAM • Problems with GDDR • Solution ‐ Introduction to HBM • Performance comparisons with GDDR5 • Benchmarks • Hybrid Memory Cube Differences in Requirements System Memory Graphics Memory • Optimized for low latency • Optimized for high bandwidth • Short burst vector loads • Long burst vector loads • Equal read/write latency ratio • Low read/write latency ratio • Very general solutions and designs • Designs can be very haphazard Brief History of Graphics Memory Types • Ancient History: VRAM, WRAM, MDRAM, SGRAM • Bridge to modern times: GDDR2 • The first modern standard: GDDR4 • Rapidly outclassed: GDDR4 • Current state: GDDR5 GDDR2 • First implemented with Nvidia GeForce FX 5800 (2003) • Midway point between DDR and ‘true’ DDR2 • Stepping stone towards DDR‐based graphics memory • Second‐generation GDDR2 based on DDR2 GDDR3 • Designed by ATI Technologies , first used by Nvidia GeForce FX 5700 (2004) • Based off of the same technological base as DDR2 • Lower heat and power consumption • Uses internal terminators and a 32‐bit bus GDDR4 • Based on DDR3, designed by Samsung from 2005‐2007 • Introduced Data Bus Inversion (DBI) • Doubled prefetch size to 8n • Used on ATI Radeon 2xxx and 3xxx, never became commercially viable GDDR5 SGRAM • Based on DDR3 SDRAM memory • Inherits benefits of GDDR4 • First used in AMD Radeon HD 4870 video cards (2008) • Current -
Accelerating Augmented Reality Video Processing with Fpgas
Accelerating Augmented Reality Video Processing with FPGAs A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree of Bachelor of Science 4/27/2016 Anthony Dresser, Lukas Hunker, Andrew Weiler Advisors: Professor James Duckworth, Professor Michael Ciaraldi This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. Abstract This project implemented a system for performing Augmented Reality on a Xilinx Zync FPGA. Augmented and virtual reality is a growing field currently dominated by desktop computer based solutions, and FPGAs offer unique advantages in latency, performance, bandwidth, and portability over more traditional solutions. The parallel nature of FPGAs also create a favorable platform for common types of video processing and machine vision algorithms. The project uses two OV7670 cameras mounted on the front of an Oculus Rift DK2. A video pipeline is designed around an Avnet ZedBoard, which has a Zynq 7020 SoC/FPGA. The system aimed to highlight moving objects in front of the user. Executive Summary Virtual and augmented reality are quickly growing fields, with many companies bringing unique hard- ware and software solutions to market each quarter. Presently, these solutions generally rely on a desktop computing platform to perform their video processing and video rendering. While it is easy to develop on these platforms due to their abundant performance, several issues arise that are generally discounted: cost, portability, power consumption, real time performance, and latency. -
(12) Patent Application Publication (10) Pub. No.: US 2014/0098849 A1 Panich Et Al
US 20140098849A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0098849 A1 Panich et al. (43) Pub. Date: Apr. 10, 2014 (54) METHOD AND DEVICE FOR CREATING AND Publication Classification MANTAINING SYNCHRONIZATION BETWEEN VIDEO SIGNALS (51) Int. Cl. H04N II/02 (2006.01) (71) Applicant: ATI TECHNOLOGIES, ULC, (52) U.S. Cl. Markham (CA) USPC .............................. 375/240.01; 375/E07.026 (72) Inventors: Alexander Panich, Richmond Hill (57) ABSTRACT (CA); Syed Athar Hussain, A method and device for providing synchronized data output Scarborough (CA) is provided. The method includes generating two data streams sending data to be presented in Synchronization. Both streams (73) Assignee: ATI Technologies, ULC, Markham are generated by the same processor-based device. The first (CA) data stream follows a first protocol and the second data stream follows a second (different) protocol. The processor of the (21) Appl. No.: 13/645,020 processor-based device adjusts a data rate of the second data stream to cause a reduction in any timing offset between the (22) Filed: Oct. 4, 2012 StreamS. 3. ? 2 2. 15 1 4. 2 3. He ri Corgia's Eiggiie Pixei Rate Register 8 16 *::s: Ragic: 2 A y V w isiay isplay isplay iisplay {articlef Coliidier fitoe? gic: -, SA Patent Application Publication Apr. 10, 2014 Sheet 1 of 2 US 2014/0098849 A1 N - sa re 8 ii. c) 3. -- - s ^ s s . $ s M s is -- -- S t e 2. --- ^. s .. --- X. s - -- — s s res al c i. i. - as S. - is a - H i - . Y - - t wner - * M w ia.