A Structural Perspective on the Dynamics of Biochemical Systems Sylvain Soliman

Total Page:16

File Type:pdf, Size:1020Kb

A Structural Perspective on the Dynamics of Biochemical Systems Sylvain Soliman A structural perspective on the dynamics of biochemical systems Sylvain Soliman To cite this version: Sylvain Soliman. A structural perspective on the dynamics of biochemical systems. Bioinformatics [q-bio.QM]. Université Paris Sud - Orsay, 2016. tel-01403712 HAL Id: tel-01403712 https://tel.archives-ouvertes.fr/tel-01403712 Submitted on 7 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HABILITATION À DIRIGER DES RECHERCHES Spécialité : Informatique par Sylvain Soliman A structural perspective on the dynamics of biochemical systems Présentée le 7 décembre 2016 devant le jury composé de : M. Vincent Danos (Rapporteur) M. Simon de Givry (Rapporteur) M. Nicolas Le Novère (Rapporteur) M. Philippe Dague M. Alain Denise M. François Fages M. Christophe Soulé H.D.R. préparée au sein de l’EPI LIFEWARE CENTRE DE RECHERCHE Inria Saclay – Île-de-France 1 rue Honoré d’Estienne d’Orves Bâtiment Alan Turing Campus de l’École Polytechnique 91120 Palaiseau Abstract In recent years Systems Biology has become a rich field of study, trying to encompass all the information that has become available thanks to the new high-throughput techniques of biologists. Fifteen years ago, a fundamental breakthrough was the publication of Kurt Kohn’s map of the cell cycle control in mammals. Its similarity with electronic circuits was crucial in both making it impossible for humans to comprehend fully, and in prompting the use of formal methods. Since then however, the networks built by biologists and modellers have continued grow- ing bigger, filled with more and more mechanistic details, especially recently acquired post- transcriptional information, but lacking most of precise kinetic data. Because analysis tech- niques providing dynamical insights mostly rely on complete kinetic information, what was challenging for the human ten years ago is now a challenge even for computers, In this manuscript we will try to give an account of our work of the last twelve years, centered around the question of model. We will define more precisely what this object is, formally, and try to handle the challenges raised by the ever growing amount of data, and corresponding size of models developed in Systems Biology. Our main focus will be the links between the structure and dynamics of those models, seen as means to use several formal methods, like Constraint Programming, to reason on their dynamics. Because of the size issue we will also discuss the question of model reduction, and the related relationships between models, formalisms and interpretations. The discrete nature of the structure underlying a model might seem opposed to the con- tinuous dynamics often associated via differential equations to that model. Nevertheless, we hope to demonstrate that the gap between those two views is quite artificial, and that recent results offer very promising perspectives to bridge it. Keywords : Systems biology, Petri nets, Constraint Programming, Abstract Interpretation, Model-Checking. Une perspective structurelle sur la dynamique des systèmes biochimiques Résumé La Biologie des Systèmes est depuis peu devenue un domaine de recherche florissant qui tente de tirer parti de toutes les informations que les techniques à haut débit des biologistes ont rendues disponibles. Il y a une quinzaine d’années, la publication de la carte du contrôle du cycle cellulaire des mammifères par Kurt Kohn a été une avancée fondamentale. Sa similarité avec un circuit électronique est cruciale dans l’impossibilité pour des humains de l’appréhender complètement mais aussi dans l’idée d’utiliser pour cela des méthodes formelles. Cependant, depuis cette carte, les réseaux construits par les biologistes et modélisateurs ont continué à croître, enrichis de détails mécanistes de plus en plus précis, en particulier des informations post-transcriptionnelles acquises récemment, mais sans données cinétiques précises. Or les méthodes d’analyse qui fournissent des informations dynamiques s’appuient principalement sur une information cinétique complète, par conséquent, ce qui était un défi pour l’humain il y a dix ans l’est devenu pour l’ordinateur aussi. Dans ce manuscrit nous allons tenter de donner une idée de notre travail des douze der- nières années, centré autour de la notion de modèle. Nous allons définir plus précisément, et formellement, cet objet, et essayer de répondre aux défis liés au foisonnement des données et à la croissance des modèles de Biologie des Systèmes. Notre approche est fondée sur les liens entre structure et dynamique d’un tel modèle, ces liens permettant d’utiliser de nombreuses méthodes formelles, comme par exemple la programmation par contraintes, pour raisonner sur la dynamique de ces objets. Le problème de la taille nous amènera par ailleurs à envisa- ger les questions de réduction de modèle, mais aussi de liens entre modèles, formalismes et interprétations. La nature discrète de la structure qui sous-tend un modèle peut sembler opposée à la continuité de la dynamique qui lui est souvent associée via des équations différentielles. Ce- pendant nous espérons démontrer que cette séparation est essentiellement artificielle, et que les résultats récents offrent des perspectives prometteuses de la réduire. Mots-clefs : Biologie des systèmes, réseaux de Petri, Programmation par Contraintes, Inter- prétation Abstraite, Model-Checking. As an adolescent I aspired to lasting fame, I craved factual certainty, and I thirsted for a meaningful vision of human life - so I became a scientist. This is like becoming an archbishop so you can meet girls. Remerciements M. Cartmill Je tiens d’abord à remercier l’équipe Lifeware, et même l’ancienne équipe Contraintes, dont les membres ont depuis des années contribué à mon travail, que ce soit à travers des publications communes, des séminaires de groupe ou même des discussions à table ou en pause café. L’ambiance agréable dont je profite n’est pas étrangère au plaisir renouvelé que j’ai d’aller travailler le matin. Même les anciens membres sont pour certains devenus des amis, ce qui montre leur incroyable capacité à supporter mon humour, mes références musicales des années 80 et ma manière de parler trop fort. Merci en particulier à François qui a su accepter mes particularités (comment ça je n’aime pas voyager ?) tout en ne cessant de me pousser dans la direction la meilleure pour moi. Je remercie aussi ma famille, notamment mes parents qui sans bien savoir ce qu’est une HDR n’en ont pas moins été encourageants depuis bien longtemps. Mes amis hors du monde académique qui ne comprennent rien à mon travail mais continuent à feindre l’admiration, dans l’espoir secret que je pourrai prochainement réparer leur imprimante défectueuse. Enfin mon épouse, Lisa, qui, malgré des moments difficiles, n’a jamais varié dans son soutien inébranlable ; c’est à elle que je dédie ce mémoire. iii Contents 1 Introduction 1 1.1 Context – Systems Biology and Modelling . 2 1.1.1 What is a model? . 3 1.1.2 Simple Biocham Modelling Language . 3 1.1.3 A picture is worth one thousand words . 4 1.1.4 Size is a growing issue . 5 1.1.5 From qualitative to quantitative . 6 1.2 Preliminaries - Reaction models as bipartite graphs . 6 1.2.1 Boolean and bounded views . 7 1.2.2 Continuous and Stochastic views . 8 1.2.3 Petri nets . 8 2 Dynamical Analysis Based on Structural Properties 11 2.1 Context . 11 2.2 Place and Transition Invariants . 12 2.2.1 Computing invariants with Constraint Programming . 13 2.2.2 Finding steady states corresponding to steady fluxes . 23 2.3 Siphons and Traps . 33 2.4 Circuit-based Conditions for Multistationarity . 62 3 Structural and Dynamical Model Reduction 79 3.1 Context . 79 3.2 Subgraph Epimorphisms . 80 3.2.1 A Graphical Method for Reducing and Relating Models . 81 3.2.2 On the Subgraph Epimorphism Problem . 89 3.3 A Constraint Solving Approach to Tropical Equilibration . 105 v vi 4 One Structure, a Hierarchy of Semantics 117 4.1 Abstraction and Type Inference . 118 4.1.1 Abstract Interpretation and Types for Systems Biology . 118 4.1.2 From Reaction Models to Influence Graphs and Back: A Theorem 138 4.2 Relating ODE Systems and Reaction Models . 152 4.2.1 Inferring Reaction Systems from ODEs . 152 4.2.2 A Unique Transformation from ODEs to Reaction Networks . 168 Conclusion 175 Bibliography 176 Research is the process of going up alleys to see if they are blind. Marston Bates Chapter 1 Introduction Summary 1.1 Context – Systems Biology and Modelling . 2 1.1.1 What is a model? . 3 1.1.2 Simple Biocham Modelling Language . 3 1.1.3 A picture is worth one thousand words . 4 1.1.4 Size is a growing issue . 5 1.1.5 From qualitative to quantitative . 6 1.2 Preliminaries - Reaction models as bipartite graphs . 6 1.2.1 Boolean and bounded views . 7 1.2.2 Continuous and Stochastic views . 8 1.2.3 Petri nets . 8 I would first like to point out that most of the work presented in this thesishas already been published. Furthermore, it is usually common work with several of my colleagues, François Fages my former Ph.D. advisor and leader of the team, but also Ph.D. students and interns that spent some time in the LIFEWARE team and also researchers from other institutions. I thus decided to compile these results, not as a compendium of novel research, or as a proof of the amount of work I did by myself, but rather with the aim to share a perspective upon this emerging body of work.
Recommended publications
  • Fighting for Tenure the Jenny Harrison Case Opens Pandora's
    Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this issue insofar as is possible. Instructions for submission of abstracts can be found in the went to press. The summer and annual meetings are joint meetings with the Mathe­ January 1993 issue of the Notices on page 46. Abstracts of papers to be presented at matical Association of America. the meeting must be received at the headquarters of the Society in Providence, Rhode Abstracts of papers presented at a meeting of the Society are published in the Island, on or before the deadline given below for the meeting. Note that the deadline for journal Abstracts of papers presented to the American Mathematical Society in the abstracts for consideration for presentation at special sessions is usually three weeks issue corresponding to that of the Notices which contains the program of the meeting, earlier than that specified below. Meetings Abstract Program Meeting# Date Place Deadline Issue 890 t March 18-19, 1994 Lexington, Kentucky Expired March 891 t March 25-26, 1994 Manhattan, Kansas Expired March 892 t April8-10, 1994 Brooklyn, New York Expired April 893 t June 16-18, 1994 Eugene, Oregon April4 May-June 894 • August 15-17, 1994 (96th Summer Meeting) Minneapolis, Minnesota May 17 July-August 895 • October 28-29, 1994 Stillwater, Oklahoma August 3 October 896 • November 11-13, 1994 Richmond, Virginia August 3 October 897 • January 4-7, 1995 (101st Annual Meeting) San Francisco, California October 1 December March 4-5, 1995
    [Show full text]
  • Asymptotology of Chemical Reaction Networks
    Chemical Engineering Science 65 (2010) 2310-2324 Asymptotology of Chemical Reaction Networks A. N. Gorban ∗ University of Leicester, UK O. Radulescu IRMAR, UMR 6625, University of Rennes 1, Campus de Beaulieu, 35042 Rennes, France A. Y. Zinovyev Institut Curie, U900 INSERM/Curie/Mines ParisTech, 26 rue d’Ulm, F75248, Paris, France Abstract The concept of the limiting step is extended to the asymptotology of multiscale reaction networks. Complete theory for linear networks with well separated reaction rate constants is developed. We present algorithms for explicit approximations of eigenvalues and eigenvectors of kinetic matrix. Accuracy of estimates is proven. Performance of the algorithms is demonstrated on simple examples. Application of algorithms to nonlinear systems is discussed. Key words: Reaction network, asymptotology, dominant system, limiting step, multiscale asymptotic, model reduction PACS: 64.60.aq, 82.40.Qt, 82.39.Fk, 82.39.Rt 87.15.R-, 89.75.Fb 1. Introduction was proposed by Kruskal (1963), but fundamental research in this direction are much older, and many Most of mathematical models that really work fundamental approaches were developed by I. New- are simplifications of the basic theoretical models ton (Newton polyhedron, and many other things). Following Kruskal (1963), asymptotology is “the arXiv:0903.5072v2 [physics.chem-ph] 14 Jun 2010 and use in the backgrounds an assumption that some terms are big, and some other terms are small art of describing the behavior of a specified solution enough to neglect or almost neglect them. The closer (or family of solutions) of a system in a limiting case. consideration shows that such a simple separation ..
    [Show full text]
  • Tropical Geometry of Biological Systems O Radulescu
    Tropical Geometry of Biological Systems O Radulescu To cite this version: O Radulescu. Tropical Geometry of Biological Systems. CASC 2020, Sep 2020, Linz, Austria. hal- 02949563 HAL Id: hal-02949563 https://hal.archives-ouvertes.fr/hal-02949563 Submitted on 25 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tropical Geometry of Biological Systems (Invited Talk) O. Radulescu University of Montpellier, and CNRS UMR5235 LPHI, Montpellier, France [email protected] Abstract. Tropical geometry ideas were developed by mathematicians that got inspired from very different topics in physics, discrete mathe- matics, optimization, algebraic geometry. In tropical geometry, tools like the logarithmic transformation coarse grain complex objects, drastically simplifying their analysis. I discuss here how similar concepts can be applied to dynamical systems used in biological modeling. In particular, tropical geometry is a natural framework for model reduction and for the study of metastability and itinerancy phenomena in complex biochemical networks. Keywords: Tropical geometry, chemical reaction networks, model reduction, singular perturbations, metastability, itinerancy 1 Introduction Mathematical modelling of biological systems is a daunting challenge. In or- der to cope realistically with the biochemistry of cells, tissues and organisms, both in fundamental and applied biological research, systems biology models use hundreds and thousands of variables structured as biochemical networks [16,38,1].
    [Show full text]
  • Appendix a Linear and Nonlinear Mathematical Physics: from Harmonic Waves to Solitons
    Appendix A Linear and Nonlinear Mathematical Physics: from Harmonic Waves to Solitons It does not say in the Bible that the fundamental equations of physics must be linear. -E. Fermi 1 In this section we describe briefly a very impressing development of Nonlinear Science strongly connected with the discovery of solitons ( Manevitch, 1996). In the last few decades, problems of a qualitatively new type have appeared in different fields of physics. A turning point was transition from quasi-linear (almost linear) Physics to essentially nonlinear Physics. Such a transition would be impossible or, at least, near hopelessly difficult without a parallel development of mathematical techniques fitting well with the new physical ideas. Therefore it is very important that modern progress in physics took place at the same time as amazing mathematical discoveries. Similar key notions (though in different guises), for the first time, after a long period, turn out to be at the center of attention simultaneously of physicists and mathemati­ cians. Certainly a soliton or particle-like wave is a case in point. This term first appeared in the pages of scientific journals some forty years ago and one sees it, perhaps, in all fields of physics. The role of the soliton in nonlinear mathematical physics is similar to the role of har­ monic oscillations and waves (corresponding, for example to pure tones in acoustics and pure colors in optics) in the quasi-linear case. Therefore we can symbolically characterize the path from quasi-linear to nonlin­ ear mathematical physics, as it is called in the title of this section, as: 183 184 ASYMPTOTOLOGY: IDEAS, METHODS, AND APPLICATIONS from harmonic waves to solitons.
    [Show full text]
  • Arxiv:1802.05745V1 [Physics.Chem-Ph] 15 Feb 2018 Rpitsbitdt Elsevier to Submitted Preprint Hoiso Ope Hmclratos He Simple Invented: Three Been Have Ideas Reactions
    Model reduction in chemical dynamics: slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph A.N. Gorbana,b aDepartment of Mathematics, University of Leicester, Leicester, LE1 7RH, UK bLobachevsky University, Nizhni Novgorod, Russia Abstract The paper has two goals: (1) It presents basic ideas, notions, and methods for reduction of reaction kinetics models: quasi-steady-state, quasi- equilibrium, slow invariant manifolds, and limiting steps. (2) It describes briefly the current state of the art and some latest achievements in the broad area of model reduction in chemical and biochemical kinetics, including new results in methods of invariant manifolds, computation singular perturbation, bottleneck methods, asymptotology, tropical equilibration, and reaction mechanism skeletonisation. Keywords: reaction network, quasi steady state, quasi-equilibrium, limiting step, dominant path, entropy production Historical introduction • The Quasi Steady State approximation or QSS (some of species, very often these are some of Three eras (or waves) of chemical dynamics can be intemediates or radicals, exist in relatively small associated with their leaders [1]: (1) the vant Hoff amounts; they reach quickly their QSS concentra- wave (the first Nobel Prize in Chemistry, 1901) (2) the tions, and then follow, as a slave, the dynamics of Semenov–Hinshelwood wave, and (3) the Aris wave. these other species remaining close to the QSS). The problem of modelling of complex reaction networks The QSS is defined as the steady state under con- was in the focus of chemical dynamics research since dition that the concentrations of other species do the invention of the concept of “chain reactions” by not change; Semenov and Hinshelwood (the shared Nobel Prize in Chemistry, 1956).
    [Show full text]
  • Lincoln University Digital Thesis
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Two reduction methods to simplify complex ODE mathematical models of biological networks and a case study: The G1/S checkpoint/DNA-damage signal transduction pathways A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Computer Sience at Lincoln University by Mutaz Khazaaleh Lincoln University 2018 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Computer Science Two reduction methods to simplify complex ODE mathematical models of biological networks and a case study: The G1/S checkpoint/DNA-damage signal transduction pathways by Mutaz Khazaaleh Model reduction is a hot topic in studies of biological systems. By reducing the complexity of detailed models through finding important elements, developing multi-level models and keeping the soul (biological meaning) of the model, model reduction can help answer many important questions raised about these systems. This thesis addressed several issues related to complex systems, complexity, biological systems complexity and the different reduction methods used to simplify biological models.
    [Show full text]
  • Mathematical Analysis of the Interaction of an Inviscid Fluid with Immersed Structures Krisztian Benyo
    Mathematical analysis of the interaction of an inviscid fluid with immersed structures Krisztian Benyo To cite this version: Krisztian Benyo. Mathematical analysis of the interaction of an inviscid fluid with immersed structures. Fluid mechanics [physics.class-ph]. Université de Bordeaux, 2018. English. NNT : 2018BORD0156. tel-01927910 HAL Id: tel-01927910 https://tel.archives-ouvertes.fr/tel-01927910 Submitted on 20 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de doctorat de l’Université de Bordeaux École doctorale de mathématiques et d’informatique Spécialité : Mathématiques Appliquées Présentée par Krisztián Benyó pour obtenir le grade de docteur de l’Université de Bordeaux Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées Date de soutenance : 25 septembre 2018 Directeurs de thèse : M. David Lannes DR CNRS (Université de Bordeaux) M. Franck Sueur Professeur (Université de Bordeaux) Rapporteurs : M. Pascal Noble Professeur (Université Paul Sabatier) M. Takéo Takahashi CR Inria (Université
    [Show full text]
  • As a Conclusion
    As a Conclusion This book proposed a tour d’horizon, a fresco, on linear and nonlinear extrapolation methods, Padé approximation, formal orthogonal polynomials, continued fractions, and related topics. It also has the unique feature of mixing mathematical concepts and results, their history, a detailed analysis of important publications, personal testimonies by researchers involved in research on these domains, and information, anecdotes, and exclusive remembrances on some actors. After a mathematical introduction to these themes, we gave an account of their status of knowledge around 1950, that is, at the time most scholars, Aitken, Richard- son, Shanks, Wynn, and others, began their research. In the course of the analysis of these works, and in particular of Peter Wynn’s papers and reports (all written alone), some more mathematical concepts were introduced and explained. Then the recent developments of the domains were presented. In published papers and books, research is most of the time introduced in an impersonal way, although developed by people who have existed or are still alive. The human side of research is missing. This is why we asked researchers who personally played (and are still playing) a role in these fields, and whose works are related to those described herein, to send us their testimonies. They show how research in a domain starts and evolves. For the same reason, biographies of other scholars encountered have been included. The human side of research plays a fundamental part in its development. This is why congresses form an important feature of our profession, since they allow researchers to meet other specialists and to build relationships that often last a lifetime.
    [Show full text]